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 Spatial analysis of crash data is to study the distribution of 
crash locations in order to identify the spatial patterns and 
their underlying causes. 

 Spatial association indicators such as Getis G and 
Moran’s I can measure the clustering of crash attributes of 
a set of geographic features at a global or a local scale. 

 Kernel density estimation, Ripley’s k-function and cross-k 
function analyze crash points by calculating crash intensity 
or the strength of correlation between two distinct sets of 
points. 

 Spatial regression methods explicitly consider spatial 
dependency of crash observations and spatial 
heterogeneity in the relationship between crashes and their 
contributing factors.
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 Understand the characteristics of spatial data, data types 
and data models.

 Use spatial correlation indicators such as Getis G, 
Moran’s I to measure and explain spatial association. 

 Use kernel density estimation, K function to perform first-
order and second-order spatial analysis.

 Understand the similarities and differences between 
different spatial econometric models.

 Learn and develop hierarchical Bayesian models to 
quantify the relationship between crashes and 
contributing factors.

 Understand the limitations of geographically weighted 
regression and use the model to its advantages.
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 Spatial data identify the geographic location of 
features, boundaries and other geographic 
phenomena on the surface of the Earth. 

 Spatial data are usually recorded by coordinates, 
pixels, and typology. 

 The main spatial data types are vectors and rasters.
◦ Points, lines and polygons are vector data. 
◦ Other data types such as elevation, temperature, and rainfall 

precipitation have no distinct shape. Instead, they can be 
measured for any location and are better represented as 
surfaces than as shapes. The most typical surface is raster, 
which is a matrix of identically sized square cells. 
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 In a vector model, the physical representation of 
the features includes two components: 
◦ the location, and
◦ the characteristics (i.e., attributes) of the feature. 

 In a raster model, each cell represents a unit of 
surface area and contains a measured or 
estimated value for that location. The raster model 
stores only the data values, and does not include 
the location information pertaining to the position 
of individual grid cells.
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 Spatial series data possess certain patterns that 
may be the result of the concentration of weighted 
points or the areas represented by weighted 
points. 

 Characterize the structure embedded in spatially 
referenced data and measure the strength of the 
correlation.

 Measurement can be taken globally or locally. 
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 A global measure provides the overall trend for the 
entire region under study. 

 Two most popular global statistics for spatial 
association or specially, spatial autocorrelation:
◦ Getis-Ord General G* (d)
◦ Moran’s I

 Sometimes it is beneficial to examine patterns at a 
local level, particularly if the pattern generating 
process is varying over the space. 
◦ Local Gi*(d)
◦ Local Moran’s Ii
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Getis and Ord (1992) proposed G*(d) as a global statistic to measure the concentration 
of the high or low values for an entire study area as a function of distance d. For a 
specific location or subarea i,

𝑮𝒊
∗ 𝒅 ൌ

∑ 𝒘𝒊𝒋ሺ𝒅ሻ𝒙𝒋
𝒏
𝒋స𝟏

∑ 𝒙𝒋
𝒏
𝒋స𝟏

,∀ 𝒋 (9.1a)

𝐺 𝑑 ൌ
∑ ௪ೕሺௗሻ௫ೕ

ೕసభ

∑ ௫ೕ

ೕసభ

 , j not equal to i (9.1b)

Where wij is a symmetric 0-1 spatial weights matrix with the value of 1 for all subareas defined as 
being within distance d of a given subarea i; all others are 0, including the i itself. Each subarea i (i = 
1, 2, …, n) is identified with its centroid associated with a value x (a weight or attribute) taken from a 
variable X. 

Gi*(d) and Gi (d) measure similar spatial phenomenon and the difference is the x values includes the 
x at i.
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 Since Gi*(d) is a proportion of the sum of all xj values that are 
within distance d of i, Gi*(d)  is high if high value xjs are within d 
of i, and Gi*(d)  is low if low value xjs are within d of i. 

 A more general statistic can be defined based on all pairs of 
values (xi, xj) if i and j are within the distance of d of each other.
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 G*(d) measures the concentration or lack of concentration. If the 
absolute value of the Z score of G*(d) is greater than a 
predetermined value, strong spatial association or clustering is 
present. A +Z score means that high values cluster together, 
and a -Z score means that low values cluster together.
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 Moran’s I evaluates whether the pattern (of a set of geographic features 
with attribute values) is spatially clustered, dispersed, or random on a 
global scale in a study area.

 Moran (1950) developed Moran’s I in Equation (9.3) to measure the 
correlation of each xi with all neighboring xjs, including itself.
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(9.3)

where x ̅ is the mean of x; wij is a matrix of spatial weights with zeroes on the diagonal (i.e., wii = 
0), and W is the sum of all wij, W=∑i∑jwij. Distance d is used to determine the neighbors j. 

 As a correlation statistic, values of I(d) range from -1 to +1. A Moran's Index 
value near +1 indicates a clustering pattern while an index value near -1 
indicates a dispersed pattern.
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 Local indicators of spatial association (LISA) have been introduced to help 
detect local clusters.

 LISA assess the significance of local statistics at each location, identify 
locations of spatial clusters and spatial outliers irrespective of the presence 
of global spatial association.

 Ord and Getis (1995) developed the local version of G*(d). 
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 G*(d) statistics are often used for hot spot/cold spot analysis. The 
underlying theory is that a feature with a high value is interesting, but it must 
be surrounded by other features with high values in order to be qualified as 
statistically significant. Note that local 𝑮𝒊∗ 𝒅 is a z-score so no further 
calculation is needed. 

12



 Anselin (1995) modified the local Moran’s I index as: 
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 Note that ∑Ii=NI. Therefore, global Moran is the average of local Moran statistics. 

 A positive value for I indicates a clustering pattern, 
meaning the feature is surrounded by features with similar 
values. A negative value for I indicates an outlier, meaning 
the feature is surrounded by features with dissimilar values. 

 Hence, the local Moran's I can help identify the cluster of 
high values (HH), cluster of low values (LL), an outlier in 
which a high value is surround primarily by low values (HL), 
and an outlier in which a low value is surrounded primarily 
by high values (LH). 13



 Both can measure the association among the set of 
weighted points or areas represented by points, but they 
are different in formulation.

 Gi*(d) measures the concentration or lack of concentration 
of all pairs of (xi, xj) such that i and j are within d of each 
other. 

 Ii(d) is used to measure the correlation of each xi with i all 
xjs within d. 

 This difference means that G statistics are useful when 
only positive spatial autocorrelation is of interest (i.e., hot 
spots (clustering of high values) or cold spots (clustering of 
low values)), whereas Moran’s I identifies both spatial 
clusters and outliers. 
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 The reason for spatial clusters 
of snow-related crashes in the 
northern region is likely due to 
the fact that northern counties 
in Wisconsin experience more 
snowfall and snowstorm 
events. 

 Counties with a Z-score 
between +2 and –2 represent 
locations that may have a high 
or low relative crash rate 
value, but are not part of a 
statistically significant spatial 
pattern or cluster.
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(Source: Khan et al., 2008) 



 The spatial weights matrix (or spatial weighting matrix, weighting 
factor) is the proximity measure that determines the influence of site 
j on site i where i ≠ j. 

 The measurement can be either adjacency-based or distance-
based. 
◦ In some textbooks, adjacency-based is also referred to as contiguity-

based. 

 The rule of thumb is that the adjacency-based measure is more 
common for area or zonal variables and the distance-based 
measure is more common for point data. 

 When the rule is relaxed, the concept of adjacency can be extended 
for point data based on the distance dij against a predetermined 
value; or the concept of distance can be applied to zonal variables 
in which the distance is measured from zonal centroid to centroid. 18



The weights express the neighbor structure 
between the observations as a n × n matrix W 
where the elements wij of the matrix are the spatial 
weights.
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 Contiguity weights: The most common neighboring relation is contiguity, which 
means the two spatial features share a common border of non-zero length.

 Distance-band weights: adjacency relation can be constructed from distance based 
on a predetermined cutoff value. 

 The adjacency-based measure might cause the issue of discontinuity and abrupt 
change along the border. Rather than expressing spatial influence as a binary value 
based on adjacency, the spatial weight is often expressed as a continuous value 
using a distance decay function.

 Inverse distance weighting:

𝑤ሺ𝑑ሻ ൌ
ଵ
ௗೕ
ೖ (9.7)

     A generalized powered exponential family: 

𝑤ሺ𝑑ሻ ൌ exp ሾെ 𝜙𝑑
ሿ, 𝑘 ∈ 0, 2 ;𝜙  0, (9.8)

where 𝜙 is the principal decay parameter; k is a smoothing factor. When k = 2, this is a 
Gaussian distance decay function. A variant of Equation (9.8) is 

                                     𝑤ሺ𝑑ሻ ൌ expሾെ ଵ
ଶ

ௗೕ


ଶ
ሿ, where h is the bandwidth. 
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 The spatial weighting function can either be 
universal (i.e., applied equally at each point) or 
adaptive, depending on the location of a point as 
shown in Fig. 9.3. 
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 Point data analysis studies the distribution of the location of point 
data in the hope that the spatial patterns observed will provide 
information about the underlying process that generates the 
points. 

 In safety analysis, researchers often aggregate crashes by 
location based on pre-established boundaries and scales. 

 But the patterns observed can vary by the choice of scales and 
boundaries. Other techniques such as kernel density estimation 
allow researchers to analyze crash point patterns directly.

 Researchers may also be interested in studying the location 
association between two sets of data (i.e., co-location), such as 
the association between a run-off road crash location and a 
horizontal curve location.
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 The modifiable areal 
unit problem (MAUP) 
is a source of 
statistical bias that 
occurs when you 
aggregate point data 
such as the scale and 
zonal effect.

23



There are two types of biases for the MAUP: Scale 
effect and Zonal effect? So, do we have a 
solution??

24

The scale effect occurs when maps 
show different results at different 
levels of aggregation.

The zonal effect occurs when you 
group data by various artificial 
boundaries.



 Point patterns can be defined by running the 
statistical test of a point pattern against the point 
pattern generated through a random process, also 
known as complete spatial randomness (CSR). 

 In the first-order property of point process, a point 
pattern is a data set X, consisting of a series of 
points {x1, ,xn}. All points are contained in a study 
area R.

 The intensity at the point x, denoted by 𝜆 𝑥 is:
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→ ଶ
(9.12)



The most straightforward way to analyze data patterns at 
first-order intensity is to divide the area into grid squares, 
count the number of events in each square, divide the 
counts by the area of the squares, and then formulate a 
density function over space. 
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 A better alternative is the kernel density estimation (KDE). KDE is a 
non-parametric method used to estimate the probability density 
function of a random variable. 

 Let 𝑃 ൌ ሼ𝑥ଵ,⋯ , 𝑥ሽ be a univariate independent and identically 
distributed sample drawn from some distribution with an unknown 
density function. The shape of this unknown function can be 
estimated through its kernel density estimates as follows:

𝑓መ 𝑥 ൌ
1
𝑛ℎௗ𝐾

𝑥 െ 𝑥
ℎ



ୀଵ
where x is the variable of interest; h is the bandwidth that controls the 
amount of smoothing; d is the dimension (e.g., d = 1 is one-
dimensional kernel like a roadway link; d = 2 is two-dimensional kernel 
like an area); and, K(.) is the kernel function. 
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Kernel functions can take on different forms: 
uniform, normal, exponential and spherical. 

Uniform: 𝐾 ൌ ቊ
1,  𝑑  ℎ
0,  𝑑  ℎ (9.16a)

Normal (or Gaussian): 𝐾 ൌ exp ሺെ

ೕ


మ

ଶ
ሻ (9.16b)

Exponential: 𝐾 ൌ 𝑒𝑥𝑝ሺെ ௗೕ

ሻ (9.16c)

Spherical: 𝐾 ൌ ൞ 1 െ ௗೕ


ଶ ଶ

,  𝑑  ℎ

0,  𝑑  ℎ
(9.16d)
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 The kernel function determines the shape of the hump.
 Parameter h (bandwidth) controls the spread of the hump. 
 A small h results in a very rapid distance decay, whereas a 

larger value will result in a smoother decay. 
 Also, a large h value tends to smooth out local effects, 

while a smaller h value tends to produce rugged surfaces 
with many spikes. 

 The kernel function can be either universal (i.e., applied 
equally at each point) or adaptive to the location of a point. 
The location-specific kernel is presumed to improve 
accuracy in prediction, but it can be computationally 
challenging.
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 Local Moran’s I are 
calculated for the n 
units based on the 
number of crashes 
per hectometer and a 
spatial contiguity 
matrix (0-1 matrix) is 
considered. 

 The kernel function 
for KDE is assumed 
to be a normal 
distribution. The 
reference bandwidth 
(href = 59.6 hm) and 
the optimal bandwidth 
(hopt = 26.5 hm) - are 
compared.
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Fig. 9.5 Comparison of the dangerousness of the 
N29 determined by kernel and the spatial correlation 
methods (Source: Flahaut et al., 2003)



 The second-order property of point process examines the correlations 
(i.e., interactions) between two distinct points in R. 

 When considering the interaction between a pair of points in the study 
area R, the second-order intensity function can be formulated as: 

 The distance d=x1-x2, between a pair of points can also be called 
displacement or pairwise distance. When only the distance between the 
two points is of interest, the expression of γ(d) referred to as a 
stationary process is more appropriate. Ripley’s K function is probably 
the most known second-order measure for summarizing a point pattern. 
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 When the second-order property of data is characterized 
as an isotropic and stationary process, the second-order 
intensity function depends only on the distance between 
the two points 

 Ripley’s K is the best-known second-order statistic in 
spatial statistics. 

 Ripley (1976) introduces the planar K-function analysis 
to depict the spatial distribution of point events in a given 
data set P. 

 Ripley’s K tests point patterns on various spatial scales, 
handles all event to event distances, and does not 
aggregate points into areas.
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 An estimate of Kpl(d) (pl stands for planar) is:

Where n is the number of points in the dataset and |A| is the 
size of study area. 𝐼ௗ 𝑑 is an indicator function defined as: 

𝐼ௗ 𝑑 ൌ ൝
1  𝑖𝑓 𝑑  𝑑
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

. 

 So, the K function for a distance d is the average 
number of points found in a circle of radius d centered 
on an event, divided by the intensity of points which is 
the number of events divided by the study area.
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 When the point pattern is CSR following the Poisson point process and 
where events are independently and uniformly distributed over the study 
area, the theoretical value of 𝐾 𝑑 is given by 𝜋𝑑ଶ.

 In practice, the Monte Carlo simulation is often used to calculate pseudo-
significance levels by repeated randomization. This technique determines 
the expected values of 𝐾 𝑑 , the upper and lower significance envelopes 
under the null hypothesis of CSR. Cressie (1993) had a more detailed 
discussion of the planar K-function analysis.
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Source: 
(doi:10.1371/journal.pone.0080914.g001)



36Source: Okabe and Yamada (2001) 



 Okabe and Yamada (2001) and Yamada and Thill (2004) extended 
from a Euclidean space to a network space. For An observed point 
pattern, the estimator of the network K-function 𝐾௧ 𝑑 (net is for 
network) is given by:

where 𝑑 is the network distance between points xi and xj, and I( ) is the 
indicator function defined previously. Note that an unbiased estimator of the 
density of points, ିଵ


, is used here rather than, 


. See Okabe and Yamada 

(2001) for more details on the method derivation.
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Monte Carlo simulation is a conventional approach to generate the values for the 
expected value of Knet (h) and its upper and lower envelops for a given network . 38



 Cross-K function is for bivariate point patterns as 
compared to univariate point patterns. 

 The network cross-K function describes the relationship 
between the patterns of two sets of points (e.g., A = {a1, 
a2, . . . , ana} and B = {b1, b2, . . . , bnb}) placed on a finite 
planar network, and shows whether the set of points B 
affects the location of the set of points A. 

 The effect can be examined with the following null 
hypothesis: the set of points A is randomly distributed, 
regardless of the location of the set of points B. 

 The cross-K function is defined as follows:
 𝑲𝒃𝒂 𝒅 ൌ

𝟏

𝝆𝒂
𝑬 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒐𝒊𝒏𝒕𝒔 𝒐𝒇 𝑨 𝒘𝒊𝒕𝒉𝒊𝒏 𝒏𝒆𝒕𝒘𝒐𝒓𝒌 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝒅 𝒐𝒇 𝒂 𝒑𝒐𝒊𝒏𝒕 𝒃𝒊 𝒊𝒏 𝑩
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 Two graphs showing the 
results of incremental (left) 
and cumulative (right) 
cross K-function values up 
to 1 km from either side of 
a bridge.

 Y is crash count 
(incremental or 
cumulative); x is the 
distance away from a 
bridge location)

 Above: Barron County; 
Below: Bayfield County

 The results of the K-
function analysis show for 
the northwest counties, 
suggesting that bridge 
locations in Barron County 
are more prone to ice-
related crashes than are 
the locations in Rusk. 
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(Source: Khan et al., 2009)



 Crash data such as frequency or severity within close proximity in 
space or time can be correlated due to shared weather, land use 
characteristics, driver behavior, policies and enforcement practices 
(Levine et al, 1995). 

 In spatial regression, the residuals are not independent of each 
other, but are spatially structured and correlated. 

 Applying spatial regression analysis is to explicitly consider the 
spatial dependence of crash observations in the regression model. 

 Ignoring the spatial dependence of crash data will result in 
inefficient, biased and inconsistent parameter estimates and 
statistical inferences. 

 In the highway safety analysis, spatial regression analysis has been 
used to identify and rank areas with potential improvements for 
safety, estimate the varying effects of crash contributing factors over 
the space, and recognize spatial patterns and scopes.
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 In general, the two techniques in the 
spatial regression analysis are: 
◦ Spatial econometrics models for continuous 

spatial data and 
◦ Bayesian hierarchical models for non-negative 

random count spatial data.

42



 Spatial econometrics is a sub discipline of econometrics that 
handles spatial autocorrelation and spatial heterogeneity in 
regression models. Herein, spatial heterogeneity refers to 
structural instability, either in the form of non-constant error 
variances (heteroskedasticity) or in the form of regression 
coefficients. 

 They are particularly appealing in modeling crashes because 
crash events are regarded as the consequence of complicated 
interactions between many factors: driver, vehicle, roadway, and 
environment. 

 Models used to estimate such geographic phenomena require 
the specification of spatial effects in econometric models such as 
◦ the spatial autoregressive model (SAR)
◦ the spatial error model (SEM).
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 Autocorrelation means a correlation exists between the values of the same 
variable.

 The spatial autoregressive model (SAR) (also known as the lagged 
response model or spatial lag model) deals with spatial autocorrelation by 
adding an explanatory variable in the form of a spatially lagged dependent 
variable to a multivariable regression model, as formulated below:

ᇱ (9.26)

where 𝒚 is an n ൈ 1 vector of observations for all locations, i; 𝒙 is an n ൈ k 
matrix of observations on the explanatory variables, 𝜷 is a k ൈ 1 vector of 
regression coefficients, 𝜌 is the coefficient of the spatial lag, 𝑾𝒚 is the 
spatially lagged dependent variable, and 𝑾 is the spatial matrix that specifies 
the spatial dependence between observations; 𝜺 is an n ൈ 1 vector of normally 
distributed random error terms, with zero mean and constant variance 𝜎ଶ.

44



 Crash count within close proximity in space or time can be 
correlated due to shared factors, observed or unobserved 
(e.g., weather, land use characteristics, driver characteristics 
and behavior, policies and enforcement practices). 

 The SAR model expresses the notion that the value of a 
variable (e.g. crash count) at a given location is related to the 
values of the same variable measured at nearby locations 
through the spatial weights matrix 𝑾.

 The SAR model rearranges and multiplies both sides by ሺ𝑰 െ
𝜌𝑾ሻ, and is reformulated as:

ି𝟏 ᇱ ି𝟏 (9.27)
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 In the SEM, the error term - not the dependent variable - is 
considered as autoregressive. The SEM is formulated as:

𝒚 ൌ 𝒙ᇱ𝜷  𝜺 where 𝜺 ൌ 𝜆𝑾𝜺  𝝁 (9.28)

 Note that the error term is made up of a spatially weighted 
error vector λWε where 𝜆 is the spatial autoregressive 
coefficient and a vector of i.i.d random errors u with zero 
mean and variance 𝜎ଶ. 

 We can re-arrange the expression for ε to obtain: 𝜺 ൌ 𝒚 െ 𝒙ᇱ𝜷; 
and, the spatial error model can be arranged as:

𝒚 ൌ 𝒙ᇱ𝜷  𝜆𝑾 𝒚 െ 𝒙ᇱ𝜷  𝝁 ൌ 𝒙ᇱ𝜷  𝜆𝑾𝒚 െ 𝜆𝑾𝒙ᇱ𝜷  𝝁 (9.29)
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 In the SEM model, 
the dependent variable y is a combination of 

1. a general (global) linear trend component 𝒙ᇱ𝜷, 
2. plus a pure spatial autocorrelation component λWy, 
3. plus a (negative) weighted average of predicted neighboring 

value 𝜆𝑾𝒙𝜷, 
4. plus an i.i.d random error term u.

 So, SEM can be viewed as a form of the mixed 
SAR with the additional spatial component of the 
neighboring trend λWXβ.
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𝒚 ൌ 𝒙ᇱ𝜷  𝜆𝑾𝒚 െ 𝜆𝑾𝒙𝜷  𝝁



Zonal-level crash counts (2000-2002) are modeled by traffic 
characteristics, roadway characteristics, and socio-
demographic factors. The spatial autoregressive model (SAR) 
and the spatial error model (SEM) are formulated as:

SAR: 𝑙𝑛 ௬
ா

ൌ 𝜌𝑾 𝑙𝑛 ௬
ா

 𝒙ᇱ𝜷  𝜀 where 𝜀~𝑁ሺ0,𝜎ଶ𝑰ሻ

SEM: 𝑙𝑛 ௬
ா

ൌ 𝒙ᇱ𝜷  𝜇; 𝜇 ൌ 𝜆𝑾𝜇  𝜀 where 𝜀~𝑁ሺ0,𝜎ଶ𝑰ሻ

where 𝑦 are number of crashes at ward i; EVi is the exposure 
variable; 𝒙 are covariates and 𝜷 is the estimable coefficients. 
W is the spatial weights matrix.
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 Modeling crash rate rather than directly crash count is a compromising strategy 
because in spatial econometric models, the error term is normally distributed.

 Another issue emerges due to the natural logarithm of the dependent variable  
crash rate which is a non-negative real. Hence, data with zero counts cannot be 
modeled.

 The autoregressive coefficient ρ in the SAR model was statistically insignificant, 
suggesting SAR may not be an appropriate model specification. 

 A SEM model with an autoregressive coefficient λ was statistically significant. 49



 Generalized Linear Mixed Model
 Hierarchical Bayesian Model.
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 The generalized linear mixed model (GLMM) can accommodate spatial 
random effects and provide a flexible means of modeling spatially 
correlated counts.

 The spatial Poisson GLMM model can be specified as:

    

ୀଵ (9.31)

Where 𝜙 is assumed to have conditional autoregressive (CAR) (Besag
1974 and 1975). A subclass of CAR called the intrinsic conditional 
autoregressive (ICAR) is used here. The conditional distribution of the 
random effects is: 𝜙|𝜙ି~𝑁 𝜇థ,𝜎థ

ଶ

 A more general CAR model is called the Besag York Mollié (BYM) 
(1991) model. It is a lognormal Poisson model which includes both an 
ICAR component for spatial smoothing (i.e., spatial autocorrelation) and 
an ordinary random-effects component for non-spatial heterogeneity.
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 A more popular approach to modeling crash count with 
spatial correlation in safety literature is the hierarchical 
Bayesian model (HBM) with spatial random effects. 

 HBM are flexible in configuring complicated models by 
specifying a variety of components and prior 
distributions in a hierarchical structure. 

 HBM is capable of accounting for high data variance due 
to unobserved heterogeneity, discovering geographic 
patterns and trends, and increasing accuracy of model 
estimates through “borrowing strengths” from 
neighboring sites. 
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Safety literature tells us about three mechanisms of spatial effects:
1. interaction, clustering, spillover, externality, diffusion, attraction, 

and copycat effects via some manners through which actions or 
phenomena at a given location affect those of other locations;

◦ An interesting example of the spillover effect in road safety is the traffic crash 
“migration effect”: the crash rate rises at sites that are untreated but that are 
“neighbors” to treated sites.

2. varying degrees of measurement errors over space; 
3. mis-specification of functional forms for the mean of the response 

in the model. 
However, “a thorough understanding of the mechanisms of spread 
remains elusive due to limitations both with the data and development 
in spatial models”.
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Structure of the hierarchical Bayesian Spatial-temporal Model

௧



At the first level of model hierarchy, the 
number of crashes (Yit) at site i and the time 
period t is assumed to be a mutually 
independent and Poisson distributed random 
variable and is defined as:

𝑦௧|𝜇௧~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜇௧
for i = 1,2,…,I and t = 1,2,…,t. (9.33)

The mean (𝜇௧) of Poisson is modeled as:

𝜇௧ ൌ 𝜈௧𝜆௧ (9.34)

The rate 𝜆௧, as a non-negative real, can be 
specified as:

𝜆௧ ൌ 𝑒𝑥𝑝 𝜇௧  𝑒௧ (9.35)
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where 𝑒௧ is an exchangeable, unstructured 
random error. 



 𝜀௧ can take different forms. 
 When the exchangeable random error 𝑒௧ is assumed to be normal, 
𝜀௧~𝑁 0,𝜎ఌଶ , the hierarchical model is the Poisson-lognormal model. 

 When 𝑒𝑥𝑝 𝜀௧ is assumed to be gamma,  𝑒𝑥𝑝 𝜀௧ ~𝐺𝑎𝑚𝑚𝑎 𝜃,𝜃 , then 
the hierarchical model is the Poisson-gamma model with the dispersion 
parameter 𝜃.

 According to Miaou et al. (2003), the gamma distribution is preferred over 
the lognormal distribution. When 𝜃 increases, the amount of overdispersion 
(due to spatial effects) decreases. 

 Non-informative inverse gamma and gamma distributions are assumed for 
hyperprior 𝜎ଶ and 𝜃, respectively, such as 𝐺𝑎 0.5, 0.0005 . 

 Gelman has extensively discussed the choice of prior distributions for 
variance parameters in hierarchical models (Gelman, 2006). 
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The mean (𝜇௧) of Poisson is modeled as:

𝜇௧ ൌ 𝜈௧𝜆௧ (9.34)

The rate 𝜆௧, as a non-negative real, can be 
specified as:

(9.35)
Where log is the natural logarithm, 
Xitk are kth explanatory covariate, 
βs are the regression coefficients to be 
estimated from the data, 
𝛿௧ represents the time effect, 
𝜙 represents the random spatial effect; 𝑒௧ is 
an exchangeable, unstructured random error. 
All 𝜙, 𝛿௧ and 𝜀௧ are mutually independent. 
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 At the second level of hierarchy, the prior 
distribution of 
◦ spatial effect, 𝜙, 
◦ temporal, 𝛿௧ , and
◦ unknown coefficients β s  
These are the components that represent the knowledge 
of the analyst’s. 

 (Third level of hierarchy) Their prior distributions 
may contain new unknown parameters called 
hyper-parameters whose distributions, also called 
hyperpriors, constitute the third level of the 
hierarchy. 
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 𝜙 represents the random spatial effect. 
 Besag's Gaussian conditional autoregressive (CAR) 

model (Besag 1974 and 1975) and its variants are 
probably the most popular spatial models and the 
CAR model is formulated as:

(9.37)

Where 𝑃 𝜙 𝜙ି  is the conditional probability of 𝜙 given 
𝜙ି and 𝜙ି represents all 𝜙 except 𝜙. 
∝ means “proportional to”, 
𝜌 is a parameter that determines the sign and magnitude of the 
overall spatial dependence.
𝜎థଶ controls variability of 𝜙 and is a fixed effect parameter 
across all sites. 
Ci is a set of sites that are neighbors of site i or have influence 
on site i and wij is a spatial weighting factor associated with the 
pair (i, j), 

59

𝑃 𝜙|𝜙ି ∝ ଵ
ఙഝ
𝑒𝑥𝑝 െ ଵ

ଶఙഝ
మ ∑ 𝑤 𝜙 െ 𝜌𝜙

ଶ
∈



 Alternatively, Gaussian conditional autoregressive (CAR) can also be 
formulated as

 Where 𝐶ା ൌ ∑ 𝐶ஷ ; then, 𝜙|𝜙ିଵ~𝑁 𝜌∑ ೕ
శ

𝜙 ,
ఙഝ
మ

శஷ

 When ρ is assumed to be 1, Equation 9.37 can be simplified as 
𝜙|𝜙ି~𝑁 𝜇థ ,𝜎థ

ଶ . 𝜎థଶ controls the variability of 𝜙, and its inverse is 
precision (precision=1/variance). 

 Most safety literature (Aguero-Valverde and Jovanis, 2006, 2008, 2010; 
Quddus, 2008) adopts the suggestion in Wakefield et al. (2000) to diffuse the 
hyperprior density of the precision (or ଵ

ఙഝ
మ): 𝐺𝑎 0.5, 0.0005 . 60



 ௧ represents the time effect which is 
assumed to be fixed with noninformative 
normal priors. 

 Miaou et al.(2003) suggested two types of 
fixed effects for ௧: 
◦ fixed effects that vary by time t (e.g., If the data are 

described in yearly crash count, then use a year-wise fixed 
effect model with 𝛿ଵ=0 for the first year as the baseline); and 

◦ order-one autoregressive (AR(1)) with the same coefficient 
for all t s. 
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 Covariates 𝑥௧ can be treated either as fixed effects or random 
effects. The model that includes both fixed and random effects 
of covariates is called a mixed effect model. 
◦ For fixed effects, a non-informative prior is assumed (e.g., 𝛽 ∼ 𝑁ሺ0, 1000ሻ

(Aguero-Valverde and Jovanis, 2006, 2008 and 2010), 𝛽 ∼ 𝑁ሺ0, 10000ሻ
(Quddus, 2008)). 

◦ For random effects, the prior for random effects follows a probabilistic 
structure with hyperpriors whose probabilistic distribution needs to be specified.  

For example, βk ~ 𝑁 𝜇ఉೖ,,𝜎ఉೖ
ଶ and 𝜇ఉೖ and 𝜎ఉೖ

ଶ  are assumed to follow a non-

informative normal and inverse gamma distribution, respectively (Miaou et al. 
(2003), Miaou & Song (2005)).

 Most of the safety literature using hierarchical Bayesian 
models with random spatial effects treat 𝛽𝑠 as fixed effects.
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 Aguero-Valverde et al. developed spatial models of road 
crash frequency for the State of Pennsylvania at the county 
level. 

 The models include socioeconomic, transportation-related, 
and environmental factors. 

 The results from full Bayesian (FB) hierarchical spatial 
models are compared with the traditional negative binomial 
(NB) model. 

 Conclusions:
◦ no evidence of spatial correlation is found in fatal crashes but 

statistically significant spatial correlation in injury crashes. 
◦ the effects of the covariates on fatal and injury crash risk are found to 

be mostly consistent between the negative binomial and full Bayes 
models. 

◦ Variables just marginally significant in the NB models are generally 
not significant in the FB models. 63
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 The geographically weighted regression (GWR) 
model is a more sophisticated modeling technique 
to help understand local variations of the data 
(Fotheringham et al., 2002). 

 Site-specific parameters are useful in revealing 
the influence of unobserved data heterogeneity 
and are more accurate in prediction compared 
with a global model in which the parameters do 
not vary across the space.

65



GWR can be formulated as:

    ∑ 
ᇱ

     (9.40)

where 𝛽 𝑢 ,𝑣 (k = 0, m) are a set of specific coefficients 
to site 𝑢 ,𝑣 of point i; 𝒙 are explanatory variables; 𝑦
are dependent variables; and, 𝜀 is the error term.
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 The geographically weighted Poisson regression 
(GWPR) and the geographically weighted negative 
binomial regression (GWNBR) model are appropriate 
and consistent with the state of practice in crash count 
modeling.

 In GWPR or GWNBR, the log transformation of μi is:

𝜇 ൌ 𝑒𝑥𝑝
 

𝛽 𝜇, 𝜐  𝛽ଵ 𝜇, 𝜐 𝜐   𝛽ଶ 𝜇, 𝜐 𝑥ଶ  ⋯ 𝛽 𝜇, 𝜐 𝑥 (9.41)

 In GWPR or GWNBR, 𝛽s can be formulated as:
𝜷 𝜇 , 𝜐 ൌ 𝒙ᇱ𝑾 𝜇 , 𝜐 𝒙

ିଵ
𝒙ᇱ𝑾 𝜇 , 𝜐 𝒚
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 When calibrating GWR, it is assumed that the observations that are 
closer to point i are more influential in the estimation of βs than the 
observations that are farther away (the first law of geography: 
everything is related to everything else, but near things are more 
related than distant things" (Tobler 1970)). 

 This weight determines how many points will be used to calibrate the 
coefficients for point i and their contributions in the model calibration. 

 The degree of influence is commonly specified through a distance-
decayed weight function, W. 

 The Gaussian function and bi-square function (adaptive kernel) are 
commonly used. 

 The selection of bandwidth is important, even more important than the 
choice of kernel density. 

 In most of the safety literature on GWRP, either an adaptive kernel or a 
trial-and-error procedure is adopted to determine the optimal bandwidth 
(Hadayeghia, et al. 2010; Li et al. 2013; Xu et al., 2018).
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 The purpose is to investigate the spatial variations in the 
relationship between the number of zonal crashes and the 
transportation planning predictors using the Geographically 
Weighted Poisson Regression (GWPR) modeling technique. 

 This study was based on 481 traffic analysis zones in 2001, 
Toronto, CA. 

 The dependent variable of each developed model is the 
number of zonal crashes per year. 

 Other data include one-day travel survey data, traffic volume, 
and street network and land use data. 

 The model parameters were estimated using the maximum 
likelihood method for GWPR in the “GWRx3.0” package.
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 It is clear from the table that the signs of Traffic Exposure (e.g. 
VKT) coefficients for each TAZ are not always the same 
(underlined in red). 

 This is counterintuitive because traffic exposure is expected to 
have a positive effect on the number of crashes; therefore, its 
coefficient should be positive.
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The figure depicts the local parameters of VKT for the 
total crash. The parameters clearly demonstrate spatial 
variations across the city.
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 Modeling location-referenced crash data may need to consider:
◦ Spatial dependence between crash observations; and
◦ Spatial heterogeneity in the relationships

 This study developed four types of models and quantitatively 
investigated spatial heterogeneity in regional safety modeling using 
two approaches: 
◦ negative binomial model (NB)
◦ Bayesian negative binomial model with conditional autoregressive prior 

(NB-CAR)
◦ random parameter negative binomial model (RPNB)
◦ semi-parametric geographically weighted Poisson regression model (S-

GWPR).

72

Xu, P., Huang, H., 2015. Modeling crash spatial heterogeneity: 
random parameter versus geographically weighting Accid. Anal. 
Prev. 16–25



 The two methods have intrinsic differences:
◦ the local regression coefficients in RPNB are drawn 

independently from some univariate distributions, and not 
necessarily referred to specific locations,
◦ the local coefficients in GWPR are assumed to be a 

function of the coordinates in geographical space. 
 Based on a 3-year data set from the county of 

Hillsborough, Florida.
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 Both RPNB and S-GWPR successfully capture the spatially varying 
relationship, but the two methods yield notably different sets of 
results.

 S-GWPR performs best with the highest value of R2 as well as the 
lowest mean absolute deviance and Akaike information criterion 
measures. Whereas the RPNB is comparable to the CAR, in some 
cases, it provides less accurate predictions.

 A moderately significant spatial correlation is found in the residuals 
of RPNB and NB, implying their inadequacy in accounting for the 
spatial correlation.

 Despite S-GWPR’s superior performance, the models calibrated in 
the study are not spatially transferable because they produce a set 
of local parameters for a specific geographic region.
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 Transport applications of big data, cloud computing 
and connected & autonomous vehicle technologies 
that can be used to provide a more integrated spatial 
environment.

 Standardize crash data and built environmental 
data collection and processing such as crash data 
assignment, area type classifications and 
socioeconomics, land use, extent of multimodal 
transportation infrastructure, area-wide operational 
characteristics and strategies; and develop better 
understanding of their safety and equity implications.  
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 Crash assignment acknowledges that 
boundary roads are a product of both 
adjoining zones.
◦ Crashes are assigned randomly, evenly to 

each zone.
◦ Road data (i.e., vehicle miles traveled - VMT) 

are split between boundary zones.

 Avoiding duplicate data lends analysis 
to target setting.
◦ Allows users to aggregate zones to larger 

geographies (e.g., counties).

 Integration produces a trivial amount of 
“error.” 
◦ No more than 1 or 2% of baseline conditions.

Source: Macro-Level Safety Planning Analysis Chapter for 
the Highway Safety Manual (NCHRP 17-81)



Transferability of results of spatial analysis is the creation of 
common frameworks for the two famous problems (boundary 
and MAUP).
 How and why were boundaries handled the way they were 

(i.e., Modifiable Area Unit Problem – MAUP – etc.)?
◦ Keep it simple, repeatable while acknowledging reality on the ground.
◦ Preliminary investigation showed minimal differences between schemes.
◦ Consistent results across agencies in final models.
◦ Subsequent analysis shows similar results using different zone types.

 Why choose a specific areal unit (e.g., census block) for this 
effort?
◦ Consistent (and nested) geographic definitions.
◦ Consistent data definitions.
◦ Publicly available and easily accessible.
◦ Existing component of transportation planning practice (i.e., Census informs agencies’ 

travel demand model process).
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 Spatial dependence and spatial heterogeneity 
affect the coefficient in different directions: can we 
distinguish them; is it necessary to separate their 
effects; and how can we separate them?

 The determination of the spatial impacts of 
implemented road safety measures would be 
thoroughly studied.

 More thoughtful study design: 
◦ Higher vehicle speed is an indicator of safer driving condition 

or a contributing factor to crashes? 
◦ Crashes involving pedestrian was revealed to be significantly 

affected by more location-related factors, while pedestrian 
origin was revealed to be significantly affected by more 
demographic related factors. 80
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