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Introduction

Spatial analysis of crash data is to study the distribution of
crash locations in order to identify the spatial patterns and
their underlying causes.

Spatial association indicators such as Getis G and
Moran’s | can measure the clustering of crash attributes of
a set of geographic features at a global or a local scale.

Kernel density estimation, Ripley’s k-function and cross-k
function analyze crash points by calculating crash intensity
or the strength of correlation between two distinct sets of
points.

Spatial regression methods explicitly consider spatial
dependency of crash observations and spatial

N arogeneity in the relationship between crashes and their



Learning Objectives

Understand the characteristics of spatial data, data types
and data models.

Use spatial correlation indicators such as Getis G,
Moran’s | to measure and explain spatial association.

Use kernel density estimation, K function to perform first-
order and second-order spatial analysis.

Understand the similarities and differences between
different spatial econometric models.

Learn and develop hierarchical Bayesian models to
quantify the relationship between crashes and
contributing factors.

nderstand the limitations of geographically weighted
2greS®eg.and use the model to its advantages.



Spatial Data and Data Types

» Spatial data identify the geographic location of
features, boundaries and other geographic
phenomena on the surface of the Earth.

» Spatial data are usually recorded by coordinates,
pixels, and typology.

» The main spatial data types are vectors and rasters.
> Points, lines and polygons are vector data.

- Other data types such as elevation, temperature, and rainfall
precipitation have no distinct shape. Instead, they can be
measured for any location and are better represented as
surfaces than as shapes. The most typical surface is raster,
which is a matrix of identically sized square cells.



Spatial Data Models

» In a vector model, the physical representation of
the features includes two components:
> the location, and
> the characteristics (i.e., attributes) of the feature.

» In a raster model, each cell represents a unit of
surface area and contains a measured or
estimated value for that location. The raster model
stores only the data values, and does not include
the location information pertaining to the position
of individual grid cells.




Vector Data Model

Point Line Polygon

Raster Data Model

FIGURE 9.1 Vector data model and raster data model.




Measurement of Spatial Association

» Spatial series data possess certain patterns that
may be the result of the concentration of weighted
points or the areas represented by weighted
points.

» Characterize the structure embedded in spatially
referenced data and measure the strength of the
correlation.

» Measurement can be taken globally or locally.




Global Vs. Local

» A global measure provides the overall trend for the
entire region under study.

» Two most popular global statistics for spatial
association or specially, spatial autocorrelation:
> Getis-Ord General G* (d)
> Moran’s |

» Sometimes it is beneficial to examine patterns at a
local level, particularly if the pattern generating
process Is varying over the space.

> Local G;*(d)

- Local Moran’s |,

Z




Getis-Ord G.*(d)

Getis and Ord (1992) proposed G*(d) as a global statistic to measure the concentration
of the high or low values for an entire study area as a function of distance d. For a
specific location or subarea i,

wi;(d)
¢, (a) = Lo vy L vj (9.1a)
1 1%j
w; (d)x
G; (d) =1y , j not equal to i (9.1b)
j=1 %

Where w; is a symmetric 0-1 spatial weights matrix with the value of 1 for all subareas defined as
being within distance d of a given subarea i; all others are 0, including the i itself. Each subareai (i =
1, 2, ..., n)is identified with its centroid associated with a value x (a weight or attribute) taken from a
variable X.

Gi*(d) and Gi (d) measure similar spatial phenomenon and the difference is the x values includes the
x ati.




Getis-Ord General G*(d)

» Since G;*(d) is a proportion of the sum of all x; values that are
within distance d of i, G*(d) is high if high value x;s are within d
of i, and G*(d) is low if low value x;s are within d of i.

» A more general statistic can be defined based on all pairs of

values (x;, x;) if i and j are within the distance of d of each other.

n n
i=1 Zj:l wij(d)x;x;

n n
i=1 Laj=1 XiXj

G (d) = Y j (9.2)

» G*(d) measures the concentration or lack of concentration. If the
absolute value of the Z score of G*(d) is greater than a

predetermined value, strong spatial association or clustering is

present. A +Z score means that high values cluster together,
Ntheed score means that low values cluster together.
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Moran’s I

» Moran’s | evaluates whether the pattern (of a set of geographic features
with attribute values) is spatially clustered, dispersed, or random on a
global scale in a study area.

» Moran (1950) developed Moran’s | in Equation (9.3) to measure the
correlation of each xi with all neighboring xjs, including itself.

where x is the mean of x; w; is a matrix of spatial weights with zeroes on the diagonal (i.e., w; =
0), and W is the sum of all w;, W=3i3jw;. Distance d is used to determine the neighbors j.

» As a correlation statistic, values of I(d) range from -1 to +1. A Moran's Index
alue near +1 indicates a clustering pattern while an index value near -1
ispersed pattern.
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G.*(d) Local Statistics

» Local indicators of spatial association (LISA) have been introduced to help
detect local clusters.

» LISA assess the significance of local statistics at each location, identify
locations of spatial clusters and spatial outliers irrespective of the presence
of global spatial association.

» Ord and Getis (1995) developed the local version of G*(d).

iz Wy @Dy X T wy@) j (9.4)

2 2
NZ] 1W,](d) (E] 1Wij(d)>
s N-1

Gi(d) =

With £ = 2= ang s = [EE _ (ey2
n

G*(d) statistics are often used for hot spot/cold spot analysis. The
underlying theory is that a feature with a high value is interesting, but it must
be surrounded by other features with hlgh values in order to be qualified as

12



Local Moran’s I

Anselin (1995) modified the local Moran’s | index as:

(x,-x) B
I, = S (D) Zi w;; (x]. — x) (9.5)

Note that Y |=NI. Therefore, global Moran is the average of local Moran statistics.

A positive value for | indicates a clustering pattern,

meaning the feature is surrounded by features with similar

values. A negative value for | indicates an outlier, meaning

the feature is surrounded by features with dissimilar values.

Hence, the local Moran's | can help identify the cluster of
high values (HH), cluster of low values (LL), an outlier in
which a high value is surround primarily by low values (HL),

13



G.*(d) and I(d)

Both can measure the association among the set of
weighted points or areas represented by points, but they
are different in formulation.

G,*(d) measures the concentration or lack of concentration
of all pairs of (x;, x;) such that i and j are within d of each
other.

l.(d) is used to measure the correlation of each x;, with i all
x;s within d.

This difference means that G statistics are useful when
only positive spatial autocorrelation is of interest (i.e., hot
spots (clustering of high values) or cold spots (clustering of
low values)), whereas Moran’s | identifies both spatial

14



Example Local Moran’s I Compared to
Local Gi*

LISA Cluster Map: Nepal
[] Wot Significant {52)
Bl High-High (12)

I ow-Low (8)
[ Low-High {1}
[ High-Low (2)

g,

// local Moran

L

Gi* Cluster Map (Mepal_c
[] Mot Significant (52)
Il High (13)
H Low(10)

~ local Gi*
MQ

(source “Geospatial Analysis)
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TABLE 9.1 Standard normal variates for G(d) and I(d).

Situation Z(G) Z(I)
HH ++ ++
HM + +
MM 0 0
Random 0 0
HL — - —
ML — 4 —
LL — — ++

#, tends to be more negative than HL; +, moderate positive association; ++-, strong positive association
(high positive Z scores); 0, no association; HH, pattern of high values of xs within d of other high x values;
L, low values; M, moderate values; H, high values; Random, no discernible pattern of xs.

Table is adapted from Getis, A., Ord, |.K. 1992. The analysis of spatial association by use of distance statistics. Geogr.
Anal. 24 (3), 189—206.
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Example 9.1 Clusters of Show-Related Crashes in
Wisconsin Calculated by G*i(d)

» The reason for spatial clusters
of snow-related crashes in the
northern region is likely due to
the fact that northern counties
in Wisconsin experience more
snowfall and snowstorm
events.

» Counties with a Z-score
between +2 and -2 represent

%;L locations that may have a high
;f;fff or low relative crash rate
R value, but are not part of a
— i o> statistically significant spatial
— o

pattern or cluster.
(Source: Khan et al., 2008)
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Spatial Weights

The spatial weights matrix (or spatial weighting matrix, weighting

factor) is the proximity measure that determines the influence of site

jon site i where i # .

The measurement can be either adjacency-based or distance-

based.

> |In some textbooks, adjacency-based is also referred to as contiguity-
based.

The rule of thumb is that the adjacency-based measure is more

common for area or zonal variables and the distance-based

measure is more common for point data.

When the rule is relaxed, the concept of adjacency can be extended

for point data based on the distance d; against a predetermined
aleQL the concept of distance can be applied to zonal variables

Q\ e s measured from zonal centroid to centroid.
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Spatial Weights Matrix

The weights express the neighbor structure
between the observations as a n X n matrix W
where the elements wij of the matrix are the spatial
weights.
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Distance Decay Models

»  Contiguity weights: The most common neighboring relation is contiguity, which
means the two spatial features share a common border of non-zero length.

» Distance-band weights: adjacency relation can be constructed from distance based
on a predetermined cutoff value.

» The adjacency-based measure might cause the issue of discontinuity and abrupt

change along the border. Rather than expressing spatial influence as a binary value
based on adjacency, the spatial weight is often expressed as a continuous value

using a distance decay function.
- Inverse distance weighting:

wdy) = 7 (9.7)
A generalized powered exponential family:
w(d;;) = exp[ (cpdu) k €[0,2];¢ >0, (9.8)

where ¢ is the principal decay parameter; k is a smoothing factor. When k = 2, this is a
aussian distance decay function. A variant of Equation (9.8) is

1 dij 2 . .
w(dyj) = exp[—3(2) ], where h i the bandwidth.
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FIGURE 9.3 Adaptive spatial weighting function (€ data point).

» The spatial weighting function can either be
universal (i.e., applied equally at each point) or
adaptive, depending on the location of a point as
shown in Fig. 9.3.
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Point Data Analysis

Point data analysis studies the distribution of the location of point
data in the hope that the spatial patterns observed will provide
information about the underlying process that generates the
points.

In safety analysis, researchers often aggregate crashes by
location based on pre-established boundaries and scales.

But the patterns observed can vary by the choice of scales and
boundaries. Other techniques such as kernel density estimation
allow researchers to analyze crash point patterns directly.

Researchers may also be interested in studying the location
association between two sets of data (i.e., co-location), such as
the association between a run-off road crash location and a

horizontal curve location.
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Modifiable Areal Unit Problem (MAUP)

Thzii‘:d"r:iﬁmts RegionSetB__ | ) The modifiable areal

unit problem (MAUP)
IS a source of
statistical bias that
occurs when you
aggregate point data
such as the scale and
zonal effect.

Individual

One
lliness
Event

lliness
Rate
0% =N

Aggregate

lliness Rate 50%




MAUP Effects

There are two types of biases for the MAUP: Scale
effect and Zonal effect? So, do we have a
solution??

The scale effect occurs when maps The zonal effect occurs when you
show different results at different group data by various artificial
levels of aggregation. boundaries.




First-order Process

» Point patterns can be defined by running the
statistical test of a point pattern against the point
pattern generated through a random process, also
known as complete spatial randomness (CSR).

» In the first-order property of point process, a point
pattern is a data set X, consisting of a series of
points {x,,---,X.}. All points are contained in a study
area R.

» The intensity at the point x, denoted by A(x) is:

A(x) = limE(N(C(x'z r),X))  (9.12)
r—0 nr
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Data Patterns at First-order Intensity

The most straightforward way to analyze data patterns at
first-order intensity is to divide the area into grid squares,
count the number of events in each square, divide the
counts by the area of the squares, and then formulate a
density function over space.

“c Grid counts for crashes
? ? ? d bar chart
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2
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Kernel Density Function

» A better alternative is the kernel density estimation (KDE). KDE is a
non-parametric method used to estimate the probability density
function of a random variable.

» Let P = {x4,:-,x,} be a univariate independent and identically
distributed sample drawn from some distribution with an unknown
density function. The shape of this unknown function can be

estimated through its kernel density estimates as follows:
n

A 1 X — X;
fre(x) = WZK( A ) (9.15)
1=
where x is the variable of interest; h is the bandwidth that controls the
amount of smoothing; d is the dimension (e.g., d = 1 is one-

dimensional kernel like a roadway link; d = 2 is two-dimensional kernel
like an area); and, K(.) is the kernel function.

27



One- and Two-dimensional Kernel
Density Function
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Kernel Function

Kernel functions can take on different forms:
uniform, normal, exponential and spherical.

form: K = | W =N 9.16
Uniform: K = 0, dij > h (9.16a)
()

h
Normal (or Gaussian): K = exp(— T) (9.16b)
Exponential: K = exp(— %) (9.16c¢)

an2]’
_(Zu
Spherical: K = [1 () ] » dij s h (9.16d)




Notes about Kernel Functions

The kernel function determines the shape of the hump.
Parameter h (bandwidth) controls the spread of the hump.

A small h results in a very rapid distance decay, whereas a
larger value will result in a smoother decay.

Also, a large h value tends to smooth out local effects,
while a smaller h value tends to produce rugged surfaces
with many spikes.

The kernel function can be either universal (i.e., applied
equally at each point) or adaptive to the location of a point.
The location-specific kernel is presumed to improve
accuracy in prediction, but it can be computationally
challenging.
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Example 9.2 Use local spatial autocorrelation and
the kernel method for identifying crash hot spots

Kernel method (h = 2.5hm)

L LA LA i

51 101 151 201 251 301 351 401 451 501

Stone marker (hm)

Spatial autocorrelation method (weigths function of d ;; 2y

a1 101 151 201 251 301 351 401 451 501

Stone marker (hm)

Fig. 9.5 Comparison of the dangerousness of the
N29 determined by kernel and the spatial correlation
ethods (Source: Flahaut et al., 2003)

. Local Moran’s | are

calculated for the n
units based on the
number of crashes
per hectometer and a
spatial contiguity
matrix (0-1 matrix) is
considered.

. The kernel function

for KDE is assumed
to be a normal
distribution. The
reference bandwidth
(href = 59.6 hm) and
the optimal bandwidth
(hopt = 26.5 hm) - are
compared.
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Second-order Process

» The second-order property of point process examines the correlations
(i.e., interactions) between two distinct points in R.

» When considering the interaction between a pair of points in the study
area R, the second-order intensity function can be formulated as:

(tox) = lim  ENCELT), XN(C(xy 1), X))
VX X _r1—>0,r2—>0 11'1'1211'1”22

(9.14)

» The distance d=x,-X,, between a pair of points can also be called
displacement or pairwise distance. When only the distance between the
two points is of interest, the expression of y(d) referred to as a
stationary process is more appropriate. Ripley’s K function is probably
the most known second-order measure for summarizing a point pattern.
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Ripley’s (Planar) K-function

» When the second-order property of data is characterized
as an isotropic and stationary process, the second-order
intensity function depends only on the distance between
the two points

» Ripley’s K'is the best-known second-order statistic in
spatial statistics.

» Ripley (1976) introduces the planar K-function analysis
to depict the spatial distribution of point events in a given
data set P.

» Ripley’s K tests point patterns on various spatial scales,
handles all event to event distances, and does not
ggresale points into areas.
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Ripley’s K-function

» An estimate of KP!(d) (pl stands for planar) is:

RO = S 1) =g 9. D aldy)  (9.21)

i#j i#j

Where n is the number of points in the dataset and |A|] is the
size of study area. 1,(d;;) is an indicator function defined as:

1ifd;;<d
[;(d;;)= ) .
d( Y ) {0 otherwise

» S0, the K function for a distance d is the average
number of points found in a circle of radius d centered
on an event, divided by the intensity of points which is
the number of events divided by the study area.
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Ripley’s K-function

» When the point pattern is CSR following the Poisson point process and
where events are independently and uniformly distributed over the study

area, the theoretical value of K** (d) is given by md?.

» In practice, the Monte Carlo simulation is often used to calculate pseudo-
significance levels by repeated randomization. This technique determines
the expected values of KP!(d), the upper and lower significance envelopes
under the null hypothesis of CSR. Cressie (1993) had a more detailed
discussion of the planar K-function analysis.

Uniform Clustered Dispersed K (r)

. » A

- g - -

' - * . "

Source:
(doi:10.1371/journal.pone.0080914.g001)
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Basic concepts of the planar and
network K-functions

X : Accident

=

2
S 2
2 =
5 :
N %
(™ o
2 z
= ' Z.
= =

& |

Source: Okabe and Yamada (2001)

36



Network K-function

» Okabe and Yamada (2001) and Yamada and Thill (2004) extended
from a Euclidean space to a network space. For An observed point

pattern, the estimator of the network K-function K™¢t(d) (net is for
network) is given by:

Rnet(d) — n(n — 1) z Id(dl]) (924)

i+j

where d;; is the network distance between points x; and x;, and I( ) is the
indicator function defined previously. Note that an unbiased estimator of the

density of points, nL—_l is used here rather than, -~ See Okabe and Yamada
T T

(2001) for more details on the method derivation.
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Monte Carlo simulation is a conventional approach to generate the values for the
expected value of K"t (h) and its upper and lower envelops for a given network .

38



Cross-K Function

Cross-K function is for bivariate point patterns as
compared to univariate point patterns.

The network cross-K function describes the relationship
between the patterns of two sets of points (e.g., A = {a,,
a, ...,a,,yand B={b,, b,, ..., b,}) placed on a finite
planar network, and shows whether the set of points B
affects the location of the set of points A.

The effect can be examined with the following null
hypothesis: the set of points A is randomly distributed,
regardless of the location of the set of points B.

The cross-K function is defined as follows:

1
K" (d) =— E(number of points of Awithin network distance d of a point b, in B)
. Pa

\\\M (9.25)
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Example 9.3: Apply Network K-Functions to Study
Ice-Related Crashes and Bridge locations
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----- Observed = « Mean == Upper s|ower

900
1000

(Source: Khan et al., 2009)

»

Two graphs showing the
results of incremental (left)
and cumulative (right)
cross K-function values up
to 1 km from either side of
a bridge.

Y is crash count
(incremental or
cumulative); x is the
distance away from a
bridge location)

Above: Barron County;
Below: Bayfield County

The results of the K-
function analysis show for
the northwest counties,
suggesting that bridge
locations in Barron County
are more prone to ice-
related crashes than are
the locations in Rusk.



Spatial Regression Analysis

Crash data such as frequency or severity within close proximity in
space or time can be correlated due to shared weather, land use
characteristics, driver behavior, policies and enforcement practices
(Levine et al, 1995).

In spatial regression, the residuals are not independent of each
other, but are spatially structured and correlated.

Applying spatial regression analysis is to explicitly consider the
spatial dependence of crash observations in the regression model.

Ilgnoring the spatial dependence of crash data will result in
inefficient, biased and inconsistent parameter estimates and
statistical inferences.

In the highway safety analysis, spatial regression analysis has been
used to identify and rank areas with potential improvements for
safety, estimate the varying effects of crash contributing factors over
ce, and recognize spatial patterns and scopes.
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Spatial Regression Techniques

» In general, the two techniques in the
spatial regression analysis are:

- Spatial econometrics models for continuous
Spatial data and

- Bayesian hierarchical models for non-negative
random count spatial data.
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Spatial Econometrics Methods

» Spatial econometrics is a sub discipline of econometrics that
handles spatial autocorrelation and spatial heterogeneity in
regression models. Herein, spatial heterogeneity refers to
structural instability, either in the form of non-constant error
variances (heteroskedasticity) or in the form of regression
coefficients.

They are particularly appealing in modeling crashes because
crash events are regarded as the consequence of complicated
interactions between many factors: driver, vehicle, roadway, and
environment.

Models used to estimate such geographic phenomena require
the specification of spatial effects in econometric models such as

- the spatial autoregressive model (SAR)
> the spatial error model (SEM).
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Spatial Autoregressive Model

» Autocorrelation means a correlation exists between the values of the same
variable.

» The spatial autoregressive model (SAR) (also known as the lagged
response model or spatial lag model) deals with spatial autocorrelation by
adding an explanatory variable in the form of a spatially lagged dependent
variable to a multivariable regression model, as formulated below:

y=x'p+pWy+e (9.26)

where y is an n X 1 vector of observations for all locations, i; x isan n x k
matrix of observations on the explanatory variables, fis a k x 1 vector of
regression coefficients, p is the coefficient of the spatial lag, Wy is the
spatially lagged dependent variable, and W is the spatial matrix that specifies
the spatial dependence between observations; € is an n x 1 vector of normally
distributed random error terms, with zero mean and constant variance ¢2.
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Spatial Autoregressive Model (cont’'d)

» Crash count within close proximity in space or time can be
correlated due to shared factors, observed or unobserved
(e.g., weather, land use characteristics, driver characteristics
and behavior, policies and enforcement practices).

» The SAR model expresses the notion that the value of a
variable (e.g. crash count) at a given location is related to the
values of the same variable measured at nearby locations
through the spatial weights matrix W.

» The SAR model rearranges and multiplies both sides by (I —
pW), and is reformulated as:

y=U—-pW) X'+ - pW) ¢ (9.27)
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Spatial Error Model

» In the SEM, the error term - not the dependent variable - is
considered as autoregressive. The SEM is formulated as:

y=x'B+&ewhere e =AWe+pu (9.28)

» Note that the error term is made up of a spatially weighted
error vector AWe where A is the spatial autoregressive
coefficient and a vector of i.i.d random errors u with zero
mean and variance o?.

» We can re-arrange the expression for & to obtain: e =y — x'B;
and, the spatial error model can be arranged as:

y=x'B+Wly—-x'B)+u=x'p+ Wy —-Wx'g+pu (9.29)
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Spatial Error Model (cont'd)

» Inthe SEM model, y=x'g+ 1wy —awxp +u
the dependent variable y is a combination of

1. ageneral (global) linear trend component x B,

2. plus a pure spatial autocorrelation component AWy,

3. plus a (negative) weighted average of predicted neighboring
value AWx,

4. plus an i.i.d random error term u.

» S0, SEM can be viewed as a form of the mixed
SAR with the additional spatial component of the
neighboring trend AWXp.
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Example 9.4 Model area-wide crash count

with spatial correlation and heterogeneity
(Quddus, M.A., 2008)

Zonal-level crash counts (2000-2002) are modeled by traffic
characteristics, roadway characteristics, and socio-
demographic factors. The spatial autoregressive model (SAR)
and the spatial error model (SEM) are formulated as:

SAR: ln( ) len( )+xlﬁ+elwhereel~N(Oa)

SEM: In (Ey_;) = x;B + u;; u; = AWu; + €; where ;~N(0,0%1)

l

where y; are number of crashes at ward i; EV, is the exposure
variable; x are covariates and g is the estimable coefficients.
W is the spatial weights matrix.
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Estimation results for SEM models

Spatial error models (SEM) Total serious Total slight Motorised slight
Coef t-stat Coef t-stat Coef t-stat
Traffic characteristics
In(Traffic flow (PCU km/h)) 0.5713 3.08 0.5882 3.57 0.3499 1.56
Average speed (km/h) -0.0215 -2.77 -0.0163 -134 -0.0101 -1.12
Road characteristics
Length of motorway (km) 0.1025 289 0.1228 3.89 0.0730 1.70
Length of A-road (km) 0.0507 2,07 0.0358 1.64 0.0873 293
Length of B-road (km) 0.0091 040 -0.0071 -0.35 0.0174 064
Length of minor road (km) 0.0191 257 0.0166  2.51 0.0207 229
In(Road curvature) - - - - -1.9405 -0.29
Socio-demographic factors
In(Resident population aged less than 60) 0.1209 0.83 0.0562 0.43 0.1656 092
In(Resident population aged 60 or over) —0.2588 -2.67 —0.2295 -2.64 -0.2493 -2.14
In(# of employees) 0.1204 325 0,1269 3.85 0.0382 0.85
In(# of households with no cars) 0.3160 3.26 03344 3.86 0.1843 156
Constant -16.95 —6.10 —15.14 —6.12 -11.21 -3.33
Spatial autoregressive coef (lamda) 0.8246 16.02 0.8478 17.71 0.7778 13.23
Observations 633 633 633

Tests for lamda=0

Wald test Reject HO: of no spatial dependence
Likelihood ratio test Reject HO: of no spatial dependence
Lagrange multiplier test Reject HO: of no spatial dependence

Reject HO: of no spatial dependence
Reject HO: of no spatial dependence
Reject HO: of no spatial dependence

Reject HO: of no spatial dependence
Reject HO: of no spatial dependence
Reject HO: of no spatial dependence

» Modeling crash rate rather than directly crash count is a compromising strategy
because in spatial econometric models, the error term is normally distributed.

» Another issue emerges due to the natural logarithm of the dependent variable
crash rate which is a non-negative real. Hence, data with zero counts cannot be
modeled.

The autoregressive coefficient p in the SAR model was statistically insignificant,

| Wit mavtoregressive coefficient A was statistically significant. 49



Generalized Linear Model with Spatial
Correlation

» Generalized Linear Mixed Model
» Hierarchical Bayesian Model.

50



Generalized Linear Mixed Model
(GLMM)

» The generalized linear mixed model (GLMM) can accommodate spatial
random effects and provide a flexible means of modeling spatially
correlated counts.

» The spatial Poisson GLMM model can be specified as:

Ai = exp(Bo + 2K_1 Brxix + ;) (9.31)

Where ¢; is assumed to have conditional autoregressive (CAR) (Besag
1974 and 1975). A subclass of CAR called the intrinsic conditional
autoregressive (ICAR) is used here. The conditional distribution of the

random effects is: ¢;|¢p_;~N <“¢i' aé_)
» A more general CAR model is called the Besag York Mollié (BYM)
(1991) model. It is a lognormal Poisson model which includes both an

ICAR component for spatial smoothing (i.e., spatial autocorrelation) and
ortmagy random-effects component for non-spatial heterogeneity.
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Hierarchical Bayesian Model

» A more popular approach to modeling crash count with
spatial correlation in safety literature is the hierarchical
Bayesian model (HBM) with spatial random effects.

» HBM are flexible in configuring complicated models by
specifying a variety of components and prior
distributions in a hierarchical structure.

» HBM is capable of accounting for high data variance due
to unobserved heterogeneity, discovering geographic
patterns and trends, and increasing accuracy of model
estimates through “borrowing strengths” from
neighboring sites.

52




The Rationale Behind...

Safety literature tells us about three mechanisms of spatial effects:

1. interaction, clustering, spillover, externality, diffusion, attraction,
and copycat effects via some manners through which actions or
phenomena at a given location affect those of other locations;

o An interesting example of the spillover effect in road safety is the traffic crash
“migration effect”. the crash rate rises at sites that are untreated but that are
“neighbors” to treated sites.

2. varying degrees of measurement errors over space;

3. mis-specification of functional forms for the mean of the response
in the model.

However, “a thorough understanding of the mechanisms of spread
remains elusive due to limitations both with the data and development
in spatial models”.

Miaou & Song (2005) “Bayesian ranking of sites for
engineering safety improvements: Decision parameter,
treatability concept, statistical criterion, and spatial
dependence”, Accident Analysis and Prevention 37

(2005) 699-720 53



Structure of the hierarchical Bayesian Spatial-temporal Model



Q

At the first level of model hierarchy, the
number of crashes (V) at site i and the time
period ¢ 1s assumed to be a mutually
independent and Poisson distributed random
variable and is defined as:

Vit lie~Poisson(u;;)
fori=1,2,....landt=1.2,...,t.  (9.33)

The mean (u;;) of Poisson is modeled as:
Hit = Vithie (9.34)

The rate A;¢, as a non-negative real, can be
specified as:

Air = exp(ui + e;¢) (9.35)

where e;; 1s an exchangeable, unstructured
random error.
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Configuration And

Assumptions of &t

&;¢+ can take different forms.

When the exchangeable random error e;; 1s assumed to be normal,
gi~N (0, 082), the hierarchical model is the Poisson-lognormal model.

When exp(g;;)is assumed to be gamma, exp(g;;) ~Gamma(6,0), then
the hierarchical model 1s the Poisson-gamma model with the dispersion
parameter 6.

According to Miaou et al. (2003), the gamma distribution is preferred over
the lognormal distribution. When 6 increases, the amount of overdispersion
(due to spatial effects) decreases.

Non-informative inverse gamma and gamma distributions are assumed for
hyperprior 2 and @, respectively, such as Ga(0.5,0.0005).

Gelman has extensively discussed the choice of prior distributions for
variance parameters in hierarchical models (Gelman, 2006).
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The mean (u;¢) of Poisson 1s modeled as:

Uit = Vit A (9.34)

The rate A;¢, as a non-negative real, can be
specified as:

Ay = eXp(IBO +Z,I;/kaik +0,+¢, +5it)

(9.35)
Where log 1s the natural logarithm,

X, are kth explanatory covariate,

[s are the regression coefficients to be
estimated from the data,

O represents the time effect,

¢; represents the random spatial effect; e;; 1s
an exchangeable, unstructured random error.

All ¢;, 6; and €;; are mutually independent.
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Hierarchical Bayesian Model

» At the second level of hierarchy, the prior
distribution of
- spatial effect, ¢;,
> temporal, é;, and
> unknown coefficients B s
These are the components that represent the knowledge
of the analyst’s.

» (Third level of hierarchy) Their prior distributions
may contain new unknown parameters called
hyper-parameters whose distributions, also called

hyperpriors, constitute the third level of the
Cre® L1V,
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@ Modeling Spatial Effect ¢,

- ¢; represents the random spatial effect.

\ - Besag's Gaussian conditional autoregressive (CAR)
model (Besag 1974 and 1975) and its variants are
probably the most popular spatial models and the
CAR model 1s formulated as:

\ 9.3
P(¢p;ilp-;) « éexp {_%Zjeci wi;(¢; — p¢j)2} (9.37)

Where P(¢;|¢_;) is the conditional probability of ¢; given
¢_; and ¢_; represents all ¢ except ¢;.

o means ‘“proportional to”,

p 1s a parameter that determines the sign and magnitude of the
overall spatial dependence.

adz, controls variability of ¢ and is a fixed effect parameter
across all sites.

C. 1s a set of sites that are neighbors of site 7 or have influence
on site i and w; 1s a spatial weighting factor associated with the

pair (i, j),

59



(») _ Modeling Spatial Effect ¢;

(cont’d)

» Alternatively, Gaussian conditional autoregressive (CAR) can also be

formulated as _ _ 9
.. o
pil-i) xexp | == |di—p) —9,
¢ | j# T
i=1.2..... I

Ci ol
» Where Ci+ Z]ilcljﬂthen ¢ |¢l 1 N(pZ];tL( ]>¢];_¢>

»  When p 1s assumed to be 1, Equation 9.37 can be simplified as
Qi|b_i~N (“qbi' adz,i). aj, controls the variability of ¢, and its inverse is

precision (precision=1/variance).
Most safety literature (Aguero—Valverde and Jovanis, 2006, 2008, 2010
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Y Modeling Temporal Effect:d,

- » O; represents the time effect which 1s
assumed to be fixed with noninformative
normal priors.

» Miaou et al.(2003) suggested two types of
fixed effects for d;:

o fixed effects that vary by time ¢ (e.g., If the data are
described in yearly crash count, then use a year-wise fixed
effect model with §;=0 for the first year as the baseline); and

6t=l/)t

o order-one autoregressive (AR(1)) with the same coefficient
for all 7 s.

O = Yoi_q + wy
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X itk

Configuration And
Assumptions of

>

>

P

Covariates x;,, can be treated either as fixed effects or random

effects. The model that includes both fixed and random effects

of covariates 1s called a mixed effect model.

> For fixed effects, a non-informative prior is assumed (e.g., § ~ N(0,1000)
(Aguero-Valverde and Jovanis, 2006, 2008 and 2010), § ~ N(0,10000)
(Quddus, 2008)).

> For random effects, the prior for random effects follows a probabilistic
structure with hyperpriors whose probabilistic distribution needs to be specified.

For example, S, ~ N (uﬁk,, agk) and u B and aﬂzk are assumed to follow a non-

informative normal and inverse gamma distribution, respectively (Miaou et al.
(2003), Miaou & Song (2005)).

Most of the safety literature using hierarchical Bayesian
odels with random spatial effects treat s as fixed effects.
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Example 9.5 Spatial analysis of fatal and

injury crashes in Pennsylvania
(Aguero-Valverde et al., 2006)

Aguero-Valverde et al. developed spatial models of road

crash frequency for the State of Pennsylvania at the county
level.

The models include socioeconomic, transportation-related,
and environmental factors.

The results from full Bayesian (FB) hierarchical spatial
models are compared with the traditional negative binomial
(NB) model.

Conclusions:

> no evidence of spatial correlation is found in fatal crashes but
statistically significant spatial correlation in injury crashes.

> the effects of the covariates on fatal and injury crash risk are found to
be mostly consistent between the negative binomial and full Bayes

- models. 63



log(0) = e+ ) Byxijk + vi +ui + (9 + 81
k

Full Bayes model of injury crashes with spatial correlation (u;), time trend (¢),

and space x time interactions (;)

Variable Estimate Credible set 95%

Mean S.D. 2.50% 97.50%
Intercept 3.110 0.764 1.593 4.582
DVMT —0.092 0.013 —0.118 —0.067
Infrastructure mileage 0.323 0.051 0.227 0.425
Mileage density 0.131 0.022 0.086 0.174
Mileage of federal aid 0.026 0.007 0.013 0.040

roads (%)

Persons 0-14 (%) 0.047 0.020 0.008 0.088
Persons 15-24 (%) 0.015 0.012 —0.008 0.039
Persons 65 and over (%) 0.013 0.016 —0.018 0.044
Total precipitation 5.86E-05 2.27E—-04 —3.85E-04 5.01E-04
03 0.176 0.038 0.115 0.263
7 —0.015 0.004 —0.022 —0.008
"52 6.66E—-04 2.15E—-04 3.31E-04 0.001164

D, 3261.0; D(8), 3159.0; DIC, 3363.0; and pn, 102.1.

(7)
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Modeling Local Relationships in Crash Data

» The geographically weighted regression (GWR)
model is a more sophisticated modeling technique
to help understand local variations of the data
(Fotheringham et al., 2002).

» Site-specific parameters are useful in revealing
the influence of unobserved data heterogeneity
and are more accurate in prediction compared
with a global model in which the parameters do
not vary across the space.
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Geographically Weighted Regression
(GWR)

GWR can be formulated as:
Vi = Bo (1 V;) + zkxlfkﬁk (Ui v;) + € (9.40)

where B (u;, v;) (k =0, m) are a set of specific coefficients
to site (u;, v;) of point i; x; are explanatory variables; y;
are dependent variables; and, ¢; is the error term.
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Geographically Weighted Poisson
Regression (GWPR)
» The geographically weighted Poisson regression
(GWPR) and the geographically weighted negative

binomial regression (GWNBR) model are appropriate

and consistent with the state of practice in crash count
modeling.

» In GWPR or GWNBR, the log transformation of y; is:
Hi = exp (Bo(y, Vi) + (ko Vi)V; + By V)i + -+ + By, vi)xy,) (941)
» In GWPR or GWNBR, s can be formulated as:

B = (xW (i v)x) W (v
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Notes of GWPR

When calibrating GWR, it is assumed that the observations that are
closer to point i are more influential in the estimation of s than the
observations that are farther away (the first law of geography:
everything is related to everything else, but near things are more
related than distant things" (Tobler 1970)).

This weight determines how many points will be used to calibrate the
coefficients for point i and their contributions in the model calibration.

The degree of influence is commonly specified through a distance-
decayed weight function, W.

The Gaussian function and bi-square function (adaptive kernel) are
commonly used.

The selection of bandwidth is important, even more important than the
choice of kernel density.

In most of the safety literature on GWRP, either an adaptive kernel or a
|aI and-error procedure is adopted to determine the optimal bandwidth
ladoe 'a et al. 2010; Li et al. 2013; Xu et al., 2018).
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Example 9.6 Develop planning level models using

Geographically Weighted Poisson Regression
(Hadayeghi, A., et al., 2010)

The purpose is to investigate the spatial variations in the
relationship between the number of zonal crashes and the
transportation planning predictors using the Geographically
Weighted Poisson Regression (GWPR) modeling technique.

This study was based on 481 traffic analysis zones in 2001,
Toronto, CA.

The dependent variable of each developed model is the
number of zonal crashes per year.

Other data include one-day travel survey data, traffic volume,
and street network and land use data.

The model parameters were estimated using the maximum
ikelihood method for GWPR in the “GWRx3.0” package.
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Macro-level GWPR collision prediction models based on traffic and road network variables, total collisions.

Parameters GWPR model number
#1 #2 #3 #4 #5 #G #7 #8
In(A) —6.4, 8.10 1.06, 4.60 —3.23,6.92 —6.42, 7.41 —4.58,7.31 —3.81,5.88 —3.97,6.23 —2.839, 5.526
(1.09,2.48.1) (3.31,3.844.14) (1.2,233.3) (1.32,2.53,3.74) (1.55.2.67.3.74) (1.50,2.56,3.47) (1.41,2.423.47) (1.49,2.50,3.40)
]ni VKT —% 1.37 —(0.009. 0.38 —0.33. 0.89 —0.32.1.298 —0.261.17 —(0.224 0.979 —0.22 0.99 —0.165,.0.857
(0.12,033,0.47) (0.03,0.07,0.13) (0.14,0.27,0.38) (0.06,0.23,0.38) (0.07.0.22,035) (0.08,0.21,0.34) (0.09,0.21,0.34) (0.10,0.21,0.34)
Total arterial road 0.07,0.33
kilometers (0.17,0.22,0.26)
Total expressway -0.15,0.23
kilometers (0.05,0.08,0.12)
Total collector kilometers —0.02,017
(0.05,0.09,0.12)
Total laneway kilometers —0.023,0.48
(0.04,0.06,0.10)
Total local road kilometers —0.048, 0.016
(—0.02,—0.009,0.002)
Total ramp kilometers —0.29, 0.26
(0.01,0.07,0.13)
Total road kilometers —0.04,0.16 —0.060,0.175 —0.043, 0.156 —0.038,0.118
(0.03,0.04,0.06) (0.01,0.03,0.05) (0.01,0.03,0.05) (0.01,0.03,0.05)
Number of 4-legged —0.165, 0.487 —0.083,0.372 —0.098, 0.350 —0.069, 0.347
signalized intersections (0.08,0.14,0.21) (0.05,0.10,0.17) (0.05,0.10,0.16) (0.05,0.09,0.15)
Number of 3-legged —0.514, 0.564 —0.195,0.543 —0.23,0.474 —0.269,0.419
signalized intersections (0.04,0.15,0.23) (0.06,0.13,0.19) (0.06,0.12,0.18) (0.06,0.13,0.19)
Total number of signalized —0.067, 0.348
intersections (0.09,0.13,0.18)
Total rail kilometers -0.56,1.12
(—0.11,0.01,0.15)
Number of schools —0.26,0.24
(—0.06,0.00,0.05)
GWPFR AICc 16,304 13,404 14,602 8,137 9910 8,220 7,629 8.032
Global AlCc 27,410 20,431 24373 20,041 20,161 18,805 18,634 18,779

Minimum, Maximum (Lower Quartile, Median, Upper Quartile).

» Itis clear from the table that the signs of Traffic Exposure (e.qg.
VKT) coefficients for each TAZ are not always the same

(underlined in red).

» This is counterintuitive because traffic exposure is expected to

have a positive effect on the number of crashes; therefore, its
' should be positive.
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The figure depicts the local parameters of VKT for the
total crash. The parameters clearly demonstrate spatial
variations across the city.

Zonal VKT Coefficients for Total Model

B 04910 1.37 {110)
W 0291045 (75
M 025t00.39 (105)
B0 w025 (121)
(1020 (69)




Example: Modeling crash spatial
heterogeneity: Random parameter versus
geographically weighting (xu, p., et al., 2015)

» Modeling location-referenced crash data may need to consider:
o Spatial dependence between crash observations; and
- Spatial heterogeneity in the relationships

» This study developed four types of models and quantitatively
investigated spatial heterogeneity in regional safety modeling using
two approaches:
> negative binomial model (NB)

- Bayesian negative binomial model with conditional autoregressive prior
(NB-CAR)
> random parameter negative binomial model (RPNB)

> semi-parametric geographically weighted Poisson regression model (S-
GWPR).

Xu, P., Huang, H., 2015. Modeling crash spatial heterogeneity:

Prev. 1625

random parameter versus geographically weighting Accid. Anal.
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» The two methods have intrinsic differences:

> the local regression coefficients in RPNB are drawn
independently from some univariate distributions, and not
necessarily referred to specific locations,

> the local coefficients in GWPR are assumed to be a
function of the coordinates in geographical space.

» Based on a 3-year data set from the county of
Hillsborough, Florida.
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Models with total crashes frequency as the dependent variable.

Total crashes NB CAR RPNB S-GWPR

Mean Min Lwr Med Upr Max Mean Min Lwr Med Upr Max
Intercept 415 4.10 4.10 411 2.08 3.89 418 440 6.03
LnDVMT 0.62 0.63 0.68 0.40 0.67 0.69 0.71 0.85 0.68 0.15 0.56 0.65 0.76 1.38
s.d._LnDVMT 018
Inter_density 0.05 0.07 0.06 0.26 -2.13 -0.02 0.23 0.57 2.70
P_seglen25 —0.05 —0.03 -0.03 —0.21 -0.04 -0.03 -0.02 0.1 0.02 —0.55 -0.10 0.01 0.17 0.49
s.d._P_seglen25 014
P_seglen45 0.06 0.07 0.05 0.06
P_seglen55_65 -0.01 —0.02 -0.03 —0.08 —-4.70 -0.17 -0.04 0.13 1.06
POP_density 0.26 0.20 0.26 012 —0.81 0.04 0.15 0.25 1.09
MHINC -011 —0.08 -0.15 —0.36 -0.17 —0.15 -0.13 0.15 -0.16 -0.76 -0.30 -0.16 -0.01 034
s.d._MHINC 019
Over-dispersion 0.40 0.30 0.32
CAR effects 0.35

Note: the italicized bold numbers mean statistically significant at 90% significance level in the NB, CAR and RPNB; while the bold ones mean statistical significant at 95%
significance level; min, lwr, med, upr and max refer to the minimum, lower quartile, median, upper quartile and maximum of values in the local parameters, and all other
abbreviations are defined as in Table 1.

Measures of model goodness of fit.

Total crashes models Severe crashes models

Rﬁ MAD AIC Rﬁ MAD AIC
NB 0.59 35.14 18923 0.52 3.86 2259
CAR 0.75 28.42 - 0.77 2.59 -
RPNB 0.76 27.86 12385 0.69 3.08 1755
S-GWPR 0.80 25.23 10237 0.81 2.36 1428
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The authors concluded:

Both RPNB and S-GWPR successfully capture the spatially varying
relationship, but the two methods yield notably different sets of
results.

S-GWPR performs best with the highest value of R? as well as the
lowest mean absolute deviance and Akaike information criterion
measures. Whereas the RPNB is comparable to the CAR, in some
cases, it provides less accurate predictions.

A moderately significant spatial correlation is found in the residuals
of RPNB and NB, implying their inadequacy in accounting for the
spatial correlation.

Despite S-GWPR’s superior performance, the models calibrated in
the study are not spatially transferable because they produce a set
of local parameters for a specific geographic region.
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Thoughts about Future Research

» Transport applications of big data, cloud computing
and connected & autonomous vehicle technologies
that can be used to provide a more integrated spatial
environment.

» Standardize crash data and built environmental
data collection and processing such as crash data
assignment, area type classifications and
socioeconomics, land use, extent of multimodal
transportation infrastructure, area-wide operational
characteristics and strategies; and develop better
understanding of their safety and equity implications.
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Thoughts about Future Research
(cont'd)

CRASHTYPES

N Crash assignment acknow|edges that A= Disabling Injury / B = Evident Injury / C = Possible Injury / K = Fatal
boundary roads are a product of both
adjoining zones. CD T | tt T
o Crashes are assigned randomly, evenly to K C
WEST BOUND «
each zone.
> Road data (i.e., vehicle miles traveled - VMT) EAST BOUND I
are split between boundary zones. 9

» Avoiding duplicate data lends analysis
to target setting.

ROAD CENTERLINE

— | only

o Allows users to aggregate zones tolarger  —~ Ml |eeeas 2 only
geographies (e.g., counties). -—-3only
WESTBOUND ee— . """ Ay 8

» Integration produces a trivial amount of
“error.”
> No more than 1 or 2% of baseline conditions. <2> (3>

EAST BOUND P

ROAD CENTERLINE

Source: Macro-Level Safety Planning Analysis Chapter for
the Highway Safety Manual (NCHRP 17-81)




Thoughts about Future Research
(cont'd)

Transferability of results of spatial analysis is the creation of
common frameworks for the two famous problems (boundary
and MAUP).

» How and why were boundaries handled the way they were
(| e., Modifiable Area Unit Problem — MAUP — etc.)?

Keep it simple, repeatable while acknowledging reality on the ground.
> Preliminary investigation showed minimal differences between schemes.
> Consistent results across agencies in final models.
- Subsequent analysis shows similar results using different zone types.

» Why choose a specific areal unit (e.g., census block) for this
effort?

Consistent (and nested) geographic definitions.
Consistent data definitions.
Publicly available and easily accessible.

demand model process).

Existing component of transportation planning practice (i.e., Census informs agencies’
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Thoughts about Future Research
(cont'd)

» Spatial dependence and spatial heterogeneity
affect the coefficient in different directions: can we
distinguish them; is it necessary to separate their
effects; and how can we separate them?

» The determination of the spatial impacts of
implemented road safety measures would be
thoroughly studied.

» More thoughtful study design:

> Higher vehicle speed is an indicator of safer driving condition
or a contributing factor to crashes?

- Crashes involving pedestrian was revealed to be significantly
affected by more location-related factors, while pedestrian

W Was revealed to be significantly affected by more
nogramm slated factors.
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