Cross-sectional Studies Part 2

January 19, 2021

Instructor: Srinivas Geedipally Texas A&M Transportation Institute

Srinivas-g@tti.tamu.edu

- Study types:
 - Observational
 - Experimental
- Data Types:
 - Time-series
 - Cross-sectional
 - Panel

Time series models

TABLE 6.1Appropriate regression model for time-series crash count data (Quddus,
2018).

Aggregation level	Sample mean	Recommended model
Highly aggregated	>50	ARIMA
Disaggregated	10-20	Poisson INAR(1), NBINGARCH, or GLARMA
Highly disaggregated	<10	NBINGARCH, or GLARMA

Cross-sectional and Panel data models

- Data and modeling issues
- Data aggregation

FIGURE 6.1 Percentage of zero responses when changing the time scale (Lord and Geedipally, 2018).

Most common assumption – linear relationship.

 $\mu_i = \exp(\mathbf{x}'_i \mathbf{\beta}) = \exp(\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}).$

- No logical reason, except for simplicity.
- May not truly represent the complexity of the process.
- Nonlinear functions better characterize the relationships.

$$\mu_i = \exp(\beta_0 + \beta_1 LN(F)) \times CMF_R \times \cdots$$

$$CMF_R = 1 + \beta_2 (0.147V)^4 \frac{(1.47V)^2}{32.2R^2}$$

TABLE 6.2Functional form for different variables (Hauer, 2015).

Exposure variables	Influential variables			
1 Power: X^{β_1}	5 Exponential: $e^{\beta_1 X}$			
2 Polynomial: $\beta_1 X + \beta_2 X^2 + \beta_3 X^3 \dots$	6 Linear: $1 + \beta_1 X$			
3 Logistic: $1/(1+\beta_1 e^{\beta_2 X}) - 1/(1+\beta_1)$	7 Quadratic: $1 + \beta_1 X + \beta_2 X^2$			
4 Weibull: $1 - e^{-(X/\beta_1)^{\beta_2}}$				
$\mu_{i} = e^{\beta_{0}} \times L \times F^{\beta_{1}} \times CMF_{R} \times CMF_{LW} \times CMF_{SW} \times CMF_{SN}$ $CMF_{R} = 1 + \beta_{2}(0.147V)^{4} \frac{(1.47V)^{2}}{32.2R^{2}}$				
$CMF_{LW} = e^{\beta_3 t}$	(LW - 12)			
	7			

The functional form can be known by developing a scatterplot.

FIGURE 6.2 Relationship between cross street entering volumes and crash frequency.

Flow-only models

- Traffic flow is the only variable.
- Applicable for average conditions for each transportation element.
- Used when limited information about the geometric design features is available.
- Typically used in the network screening process to identify hazardous sites.

Road Segments

Intersections

$$\mu_{rs} = \beta_0 \times L \times AADT^{\beta_1}$$

$$\mu_{rs} = \beta_0 \times L^{\beta_1} \times AADT^{\beta_2}$$

$$\mu_{int} = \beta_0 \times AADT_{maj}^{\beta_1} \times AADT_{min}^{\beta_2}$$
$$\mu_{int} = \beta_0 \times (AADT_{maj} + AADT_{min})^{\beta_1} \times \left(\frac{AADT_{min}}{AADT_{maj}}\right)^{\beta_2}$$
$$\mu_{int} = \beta_0 \times (AADT_{maj} + AADT_{min})^{\beta_1}$$
$$\mu_{int} = \beta_0 \times (AADT_{maj} \times AADT_{min})^{\beta_1}$$
$$\mu_{int} = \beta_0 \times (AADT_{maj} \times AADT_{min})^{\beta_1}$$

$$\mu_{int} = (AADT_{maj} \times e^{\beta_0 + \beta_1 \times AADT_{min}}) + (AADT_{min} \times e^{\beta_2 + \beta_3 \times AADT_{maj}})$$

FIGURE 2.2 Entering flows in vehicles per day (AADT).

Flow-only models

								Horizontal
SITEID	Crashes	LENGTH	AADT	LaneWID	ShoulderWID	Speed limit	Intersections	curves
1	0	0.913	12660	12	8	55	6	2
2	2	0.613	9640	12	8	40	2	0
3	7	2.918	4020	13	2	55	4	0
4	5	0.814	4580	12	2	50	0	1
5	12	1.729	4580	11	2	55	2	2
6	0	0.2	6220	12	2	55	1	2
6362	6	0.43	4360	12	6	35	6	0

 $\mu_i = e^{-8.605} \times L \times AADT^{1.11}$

12

- Data that represent a given set of baseline conditions.
- Reflect the nominal conditions agencies most often used (e.g., 12-ft lanes and 6-ft shoulders).
- Model is calibrated using a database that include only sites that have characteristics equal to base conditions.
- This functional form is the one that has been adopted by the Highway Safety Manual (AASHTO) and the FHWA among others.

13

Example: HSM Chapter 11

The base conditions of the SPF for undivided roadway segments are:

- Lane width (LW): 12 feet
- Shoulder width: 6 feet
- Shoulder type: Paved
- Sideslopes: 1V:7H or flatter
- Lighting: None
- Automated speed enforcement: None

SITEID	Crashes	LENGTH	AADT	LaneWID	ShoulderWID	Horizontal curves
1	2	0.613	9640	12	8	0
2	0	0.23	3480	12	8	0
3	6	1.352	4800	12	8	0
4	0	0.157	6100	12	8	0
5	1	0.652	4380	12	8	0
599	0	0.121	5340	12	8	0

Observations reduced from 6362 to 599

Exercise 6.1

	Flow-only Model for Average Conditions			Flow-only Model for Baseline Conditions		
Variable	Estimate	Std. Error	<i>P-</i> value	Estimate	Std. Error	P-value
Intercept (β_0)	-8.605	0.433	<.0001	-10.635	1.332	<.0001
Ln(AADT) (β_1)	1.112	0.050	<.0001	1.358	0.157	<.0001
Dispersion	0.768	0.042	<.0001	0.836	0.150	<.0001
AIC		6362			599	

Functional Forms – Flow-only models with CMFs Exercise 6.1

Functional Forms – Model with covariates

- Database contains each safety-related variable (e.g., lane width, median width) that has a representative range of values.
- Each variable is included in the model and their coefficients are calibrated using regression analysis.

Functional Forms – Model with covariates

 $\mu_{i} = e^{\beta_{0}} \times L \times F^{\beta_{1}} \times CMF_{R} \times CMF_{LW} \times CMF_{SW} \times CMF_{SN}$

$$CMF_R = 1 + \beta_2 (0.147V)^4 \frac{(1.47V)^2}{32.2R^2}$$

$$CMF_{LW} = e^{\beta_3(LW - 12)}$$

$$CMF_{SW} = e^{\beta_4(SW-8)}$$

$$CMF_{SN} = e^{\beta_5(SN-40)}$$

Selection rules

- Forward
- Backward
- Bidirectional

Variable	First Iteration			
	Estimate	Std. Error	p-value	
Intercept (β_0)	-6.029	0.723	<.0001	
Ln(AADT) (β_1)	1.047	0.046	<.0001	
Lane Width (β_2)	-0.074	0.044	0.0922	
Shoulder Width (β_3)	-0.029	0.007	<.0001	
Railroad Crossing Presence (β_4)	-0.045	0.158	0.7763	
Posted Speed Limit (β_5)	-0.024	0.003	<.0001	
Minor Intersection Density (β_6)	0.037	0.005	<.0001	
Horizontal Curve Density (β_7)	0.026	0.012	0.026	
Dispersion	0.600	0.036	<.0001	
AIC		6187		

Variable	Second Iteration				
	Estimate	Std. Error	p-value		
Intercept (β_0)	-6.036	0.723	<.0001		
Ln(AADT) (β_1)	1.047	0.046	<.0001		
Lane Width (β_2)	-0.073	0.044	0.0949		
Shoulder Width (β_3)	-0.029	0.007	<.0001		
Railroad Crossing Presence (β_4)					
Posted Speed Limit (β_5)	-0.024	0.003	<.0001		
Minor Intersection Density (β_6)	0.037	0.005	<.0001		
Horizontal Curve Density (β_7)	0.026	0.012	0.0262		
Dispersion	0.600	0.036	<.0001		
AIC		6185			

Variable	Third Iteration		
	Estimate	Std. Error	p-value
Intercept (β_0)	-6.964	0.464	<.0001
Ln(AADT) (β_1)	1.054	0.046	<.0001
Lane Width (β_2)			
Shoulder Width (β_3)	-0.031	0.007	<.0001
Railroad Crossing Presence (β_4)			
Posted Speed Limit (β_5)	-0.024	0.003	<.0001
Minor Intersection Density (β_6)	0.036	0.005	<.0001
Horizontal Curve Density (β_7)	0.027	0.012	0.0247
Dispersion	0.603	0.036	
AIC		6186	

Crash Variance

 $Var(y) = \mu + \alpha \mu^2$

 $\alpha \rightarrow 0$ means the data are Poisson distributed

Confidence Intervals

$$\begin{bmatrix} \hat{\mu} \\ e^{1.96\sqrt{Var(\hat{\eta})}}, \hat{\mu}e^{1.96\sqrt{Var(\hat{\eta})}} \end{bmatrix}$$
$$\begin{bmatrix} 0, \left| \hat{\mu} + \sqrt{19}\sqrt{\hat{\mu}^2 Var(\hat{\eta})} + \frac{\hat{\mu}^2 Var(\hat{\eta}) + \hat{\mu}^2}{\phi} + \hat{\mu} \right| \end{bmatrix}$$

Sample Size

TABLE 6.5 Recommended minimum sample size for Bayesian Poisson-lognormal models (Miranda-Moreno et al., 2008).

Population sample mean	Minimum sample size
≥2.00	20
1.00	100
0.75	500
0.50	1000
0.25	3000

Outlier Analysis

- Cook's distance
- Cumulative Residual (CURE) plots
- Standardized residuals

Outlier Analysis

Standardized residuals

Predicted Value

Outlier Analysis

Study Designs

Observational study types

- Cross-sectional study
- Cohort study
- Case-control study

Other Study Types

- Cohort studies
 - Cohorts are first identified
 - Followed at intervals through time
 - Whitlock et al. (2003) investigated the relationship between driver injury and socioeconomic status
 - In 2004, they investigated relationship of injury with marital status

Other Study Types

- Case-control studies
 - Alternatives to before-after studies
 - Controls are often matched to cases
 - One-to-one matching
 - Frequency matching (e.g., four controls per one case)

Other Study Types

- Randomized control trials
 - Performed under controlled conditions
 - Experimental group has the intervention
 - Control group has placebo or no intervention

Thank you

