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 The crash severity model is to use statistical methods for 
identifying factors that are significantly associated with the 
consequence of a traffic crash, and their relationships. 

 The response variable is the person who sustains the most 
severe injury in a crash in the KABCO scale (i.e., killed, 
incapacitating injury, non-incapacitating injury, possible 
injury, and no injury). 

 A variety of models have been developed to account for 
data issues and methodological limitations.

 The common modeling approaches include logistic, probit 
and their variations. 

 The impact of a factor on the injury severity levels can be 
estimated through its marginal effect or odds ratio. 



 Learn the characteristics of crash injury severity 
data.

 Gain the knowledge about data limitations and 
modeling challenges.

 Understand the assumptions, property and 
limitations of models for crash injury severity 
levels.

 Develop crash injury severity models and perform 
analysis.

 Interpret the modeling results.



 Injury severity has a finite number of outcomes that are categorized on the 
KABCO scale

 KABCO scale and AIS scale
 Imbalanced observations across at different scales
 Reporting inconsistency and underreporting
 Non-ordinal or ordered probabilistic if an ordinal structure for the response 

variable is assumed; fixed or random parameter models, depending on the 
assumption for model coefficient estimation

 Sample size for injury severity models
 Utility, utility function and random utility function
 Probit model and logistic regression model: model assumption, model 

estimation and model results interpretation (e.g., probability, odds, odds 
ratio, marginal effect, elasticity)

 Model variations are available if restrictions such as irrelevant and 
independent alternatives (IIA), proportional odds are relaxed
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Can we increase the bus ridership by painting the 
bus with a different color?

UWM UWM
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 Clearly, the bus share should not have been changed. What 
is wrong?

 The problem is with the underlying assumption in the logit 
model. The logit model requires that alternatives be 
independent (i.e. εred and εblue be independent). This is not 
the case in this example. 

 Obviously, the errors of the perceived utility from alternative 
of the red bus is dependent on the error from the blue bus, 
and vice versa. This does not justify the use of logit model.

 Note: when the alternatives are distinctly different and 
independent, the logit model shall work well.
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 To overcome the IIA problem, the idea behind a 
nested logit model is to group alternate outcomes 
suspected of sharing unobserved effects into nests 
(this sharing sets up the disturbance term correlation 
that violates the derivation assumption).  

 Because the outcome probabilities are determined by 
differences in the functions determining these 
probabilities (both observed and unobserved), shared 
unobserved effects will cancel out in each nest 
providing that all alternatives in the nest share the 
same unobserved effects.
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 Mathematically, McFadden (1981) has shown the GEV disturbance 
assumption leads to the following model structure for observation n
choosing outcome i

Where
Pn(i) is the unconditional probability of observation n having discrete outcome i,
's are vectors of characteristics that determine the probability of discrete outcomes,
's are vectors of estimable parameters, 
Pn(ji) is the probability of observation n having discrete outcome j conditioned on the outcome being in 

outcome category i, 
J is the conditional set of outcomes (conditioned on i), I is the unconditional set of outcome categories, 

LSin is the inclusive value (logsum), and i is an estimable parameter.

(4.8a)

(4.8b)

(4.8c)
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 In order to be consistent with McFadden’s generalized extreme value derivation 
of the model, the parameter estimate for ϕi in the nested logit model must be 
between zero and one. 

 If ϕi equals to one or is not significantly different from one, there is no 
correlation between the severity levels in the nest, meaning the model reduces 
to the multinomial logit model. 

 If ϕi equals to zero, a perfect correlation is implied among the severity levels in 
the nest, indicating a deterministic process by which crashes result in particular 
severity levels. 

 The t test can be used to test if ϕi is significantly different from 1. Because ϕi is 
less than or equal to one, this is a one-tailed t test (half of the two-tailed t-test). 

 It is important to note that the typical t-test implemented in many commercial 
software packages are against zero instead of one. Thus, the t value must be 
calculated manually. The IIA assumption for a MNL model can also be tested 
with the Hausman-McFadden (1984) test which has been widely implemented in 
commercial statistical software. 
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 Done in a sequential fashion.
◦ Estimate the conditional model using only the 

observations in the sample that are observed having 
discrete outcomes J.  

◦ Once these estimation results are obtained, the 
logsum is calculated (this is the denominator of one or 
more of the conditional models) for all observations, 
both those selecting J and those not.

 The full information maximum likelihood (FIML) 
estimation (Greene, W., Econometric Analysis, 
2000). 
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Exercise 4.2: 
Coefficient 
Estimates for 
NL*

*: partial results 
shown here
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1. Establish the nested structure of crash severities. :

2. Determine the functional form based on Eq. 4.8 (a), (b) and (c). For 
example, Pn(j|i) is the probability of crash n having injury outcome  B or C conditioned on the 
injury outcome being in category not a K or A injury. I is the unconditional set of outcome 
categories (for example, the upper three branches in the figure: no K/A injury and K/A injury). 
LSni is the inclusive value (logsum).

3. Estimate the coefficients using the R “mlogit” package:
nested_logit <- mlogit(INJSVR ~ 0|YOUNG + OLD + FEMALE + ALCFLAG + DRUGFLAG + SAFETY + 
DRVRPC_SPD + DRVRPC_RULEVIO + DRVRPC_RECK + TRFCONT_SIGNAL + TRFCONT_2WAY + 
TRFCONT_NONE + TOTUNIT + ROADCOND_SNOW + ROADCOND_ICE + ROADCOND_WET + 
LGTCOND_DARK, data = crash_mnl, nests = list(KA = c("3"), non_KA = c("1", "2")), un.nest.el = TRUE). 

4. summarize your findings. The AIC value of the NL model (17871.11) is greater than that 
of MNL model (17869.32), indicating inferior performance. The inclusive value is 0.7161 and its 
t-value is -0.474. Apparently, the log-sum coefficient is not significantly different from 1. When 
the inclusive value is equal to one or not significantly different from 1, there is no correlation 
between the severity levels in the nest. We can conclude that for this dataset, the MNL model 
is more appropriate. 14

B, C, or PDO K or A

B or C PDO



◦ More aggregate – cannot include specific accident 
characteristics (driver characteristics, vehicle 
characteristics, restraint usage, alcohol consumption, 
etc.).  
◦ Without detailed accident information, the approach 

potentially introduces a heterogeneity problem.
◦ Heterogeneity could result in varying effects of X that 

could be captured with random parameters. 
◦ Mixed logit may be appropriate.
 Relaxes possible IIA problems with a more general error-term structure.
 Can test a variety of distribution options for β .
 Estimated with simulation based maximum likelihood.
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Similar to the random parameter model for crash-frequency. This means that 
the coefficients are allowed to vary across observations. 

where 𝑓 𝜷|𝝋  is a density function of 𝜷 and 𝝋 is a vector of parameters 
which specify the density function, with all other terms as previously 
defined. 

(4.9)

In a statistics term, the weighted average of several functions is called 
a mixed function, and the density that provides the weights is called the 
mixing distribution. Mixed logit is a mixture of the standard logit function 
evaluated at different 𝜷 with f(𝜷) being the mixing distribution.



 The injury severity level probability is a mixture of logits. When all 
parameters β are fixed, the model reduces to the multinomial logit 
model. 

 When β is allowed to vary, the model is not in a closed form, and the 
probability of crash observation n having a particular injury outcome i
can be calculated through integration. 

 Simulation-based maximum likelihood methods such as Halton draws 
are usually used.

 The choice of the density function of β depends on the nature of the 
coefficient and the statistical goodness of fit. 
◦ The lognormal distribution is useful when the coefficient is known to have the same sign for 

each observation. 
◦ Triangular and uniform distributions have the advantage of being bounded on both sides. 
◦ Furthermore, triangular assumes that the probability increases linearly from the beginning to 

the mid-range and then decreases linearly to the end. 
◦ A uniform distribution assumes the same probability for any value within the range. 
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 Random coefficient: 𝑈௡௝ ൌ 𝛽௡ᇱ 𝑥௡௝ ൅ 𝜀௡௝ where 𝛽௡ can be decomposed into mean 
𝛼 and deviations 𝜇௡ such as ሺ𝛼ᇱ𝑥௡௝ ൅ 𝜇௡ᇱ 𝑥௡௝ሻ and 𝜀௡௝ is a random term that is iid
extreme value.

 Error components: 𝑈௡௝ ൌ 𝛼ᇱ𝑥௡௝ ൅ 𝜇௡ᇱ 𝑧௡௝ ൅ 𝜀௡௝ where 𝑥௡௝ and 𝑧௡௝ are vectors of 
observable variables relating to alternative j. 𝛼 is a vector of fixed parameters 
and 𝜇 is random with zero mean, and 𝜀௡௝ is iid extreme value. So, the random 
portion of utility is (𝜇௡ᇱ 𝑧௡௝ ൅ 𝜀௡௝) which can be correlated over alternatives 
depending on 𝑧.

 Error-component and random-coefficient specifications are formally equivalent; 
but a researcher thinks about the model affects the specification of the mixed 
logit.   

 It is important to know that the mixing distribution, whether driven by random 
parameters or by error components, captures variance and correlations in 
unobserved factors. But there is a limit on how much one can learn about 
things that are not seen. 
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Exercise 4.3: 
Coefficient 
Estimates for 
ML*

*: partial results shown 
here
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1. Determine the density function in the R “mlogit” package, random parameter object 
“rpar” contains all the relevant information about the distribution of random parameters.  
Currently, the normal ("n"), log-normal ("ln"), zero-censored normal ("cn"), uniform ("u") and 
triangular ("t") distributions are available. For illustration, normal distribution is chosen as the 
density function of random parameter β. 

2. Estimate the coefficients using the R “mlogit” package:
crash_data_mixed <- mlogit.data(data_mixed_ch4, shape = "long", choice = "INJSVR", chid.var = "ID", 
alt.var = "OUTCOME")
mixed_logit <- mlogit(INJSVR ~ OLD_2 + OLD_3 + FEMALE_2 + FEMALE_3 + ALCFLAG_2 + ALCFLAG_3 
+ DRVRPC_SPD_2 + DRVRPC_SPD_3 + ROADCOND_SNOW_2 + ROADCOND_SNOW_3 + 
LGTCOND_DARK_2 + LGTCOND_DARK_3, data = crash_data_mixed, rpar = c(FEMALE_2 = 'n’, 
FEMALE_3 = 'n', ALCFLAG_3 = 'n', DRVRPC_SPD_3  = 'n', ROADCOND_SNOW_2 = 'n’, 
ROADCOND_SNOW_3 = 'n', LGTCOND_DARK_3 = 'n'),panel = FALSE, correlation = FALSE, R = 100, 
halton = NA). 

Note: rpar argument names random coefficients (‘n’ for a normal distribution); halton=NA means default halton
draws are applied. (if interested, read  “Halton Sequences for Mixed Logit” by Kenneth Train at 
https://eml.berkeley.edu/wp/train0899.pdf) 

3. Summarize the findings. The ML model can account for the data heterogeneity by 
treating coefficients as random variables. the snowy surface parameter for truck K or A injuries 
is fixed (-10.830); and for severity B or C, it is normally distributed with a mean of -0.8892 and 
a standard deviation of 1.8159, meaning that 31% of truck crashes occurring on snowy 
pavement have an increased possibility of B or C injuries. It is plausible that people often drive 
more slowly and cautiously on snowy roads but that the slick conditions still have a tendency to 
cause accidents.
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 In Milton et al. (2008), the application of the mixed logit model (also called the random parameters logit model) 
is undertaken by considering injury-severity proportions for individual roadway segments.

 For all of the random parameters, the normal distribution was found to provide the best statistical fit (among 
normal, lognormal, triangular and uniform).
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“the constant for the property-damage only proportion is normally distributed with mean −0.355 and standard deviation 
1.776. ….This variability is likely capturing the unobserved heterogeneity in the roadway segments that could include factors
such as visual noise and other physical and environmental factors. ….The average daily traffic (ADT) per lane is normally 
distributed with a mean 0.0403 and standard deviation 0.515. … 46.9% of the distribution is less than 0 and 53.1% is greater 
than 0…. a complex interaction among traffic volume, driver behavior and accident-injury severity.”

Milton, J. C., Shankar, V. N., & Mannering, F. L. (2008). Highway 
accident severities and the mixed logit model: an exploratory empirical 
analysis. Accident Analysis & Prevention, 40(1), 260-266.



 In Milton et al. (2008), the application of the mixed logit model (also called the random parameters logit model) 
is undertaken by considering injury-severity proportions for individual roadway segments.
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“The percentage of trucks…had a mean of−0.129 and standard deviation 0.1143, being less than 0 for 87.1% of the roadway 
segments and greater than 0 for 12.9% of the segments…in a small proportion of roadway segments, the truck percentage 
increases the proportion of possible injury accidents, while in a majority of roadway segments, the proportion tends to 
decrease. Note that this variable implies that for 87.1% of roadway segments increasing truck percentages make the 
severity proportions more likely to be minor (property damage only) or major (injury)... 75.2% of the roadway segments 
negative values (an increasing number of trucks decreases the likelihood of accidents resulting in injury) and 24.8% positive
values (an increasing number of trucks increases the likelihood of accidents resulting in injury).The net effect of these two
truck variables points to a fairly complex picture of the effect of trucks on accident-injury severities.”
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 The primary rationale for using ordered discrete choice models for 
modeling crash severity is that there is an intrinsic order among injury 
severities, with fatality being the highest order and property damage 
being the lowest. Including the ordinal nature of the data in the 
statistical model defends the data integrity and preserves the 
information.

 Second, the consideration of ordered response models avoids the 
undesirable properties of the multinomial model such as the IIA in the 
case of a multinomial logit model or a lack of closed-form likelihood in 
the case of a multinomial probit model.

 Third, ignoring the ordinality of the variable may cause a lack of 
efficiency (i.e., more parameters may be estimated than are necessary 
if the order is ignored).

 Although there are many positives to the ordered model, the 
disadvantage is that imposing restrictions on the data may not be 
appropriate despite the appearance of a rank. Therefore, it is important 
to test the validity of the ordered restriction.
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 Ordered probability models are derived by defining an unobserved variable 
Z that is used as a basis for modeling the ordinal ranking of data.

 Observed ordinal data, y, for each observation are defined as,
 A high indexing of zn is expected to result in a high level of observed injury 

yn in the case of a crash. The observed discrete injury severity variable yn is 
stratified by thresholds as follows: 
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
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  

(4.11)

Where 's are estimable parameters 
(referred to as thresholds) that define 
y, and y corresponds to integer 
ordering, and I is the highest integer 
ordered response.
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The ordinal logit/probit model applies a latent continuous variable, 𝑧௡, as a 
basis for modeling the ordinal nature of crash severity data, and 𝑧௡ is 
specified as a linear function of Xn:

𝑧௡ ൌ 𝜷ᇱ𝑿𝒏 ൅ 𝜀௡

Where 𝑿𝒏 is a vector of explanatory variables determining the discrete ordering 
(i.e., injury severity) for n th crash observation, 𝜷 is a vector of estimable 
parameters, and 𝜀௡ is an error term that accounts for unobserved factors 
influencing injury severity.

(4.10)



 is assumed to be normally distributed across observations with N(0,1), 
resulting in an ordered probit model

(4.12)
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If  is assumed to be normally distributed across observations with N(0,1), 
an ordered probit model results with the ordered selection probabilities 
being

Note threshold 𝜇ଵ is set equal to 
0 without loss of generality 
(this implies that one need only 
estimate I-2 thresholds.
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𝜇ଵ=0 



 The difficulty arises because the 
areas between the shifted 
thresholds may yield increasing 
or decreasing probabilities after 
shifts to the left or right, 
especially for the intermediate 
categories (i.e., y=2, y=3, and 
y=4).

 The change depends on the 
location of the thresholds. 

 A trade-off is inherently being 
made between recognizing the 
ordering of responses and 
losing the flexibility in 
specification offered by 
unordered probability models. 
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𝑃 𝑢 ൌ 𝑖 ൌ Φ 𝜇௜ െ 𝛽𝑋 െ Φ 𝜇௜ିଵ െ 𝛽𝑋
Where 𝜇௜ and 𝜇௜ିଵ represent the upper and lower thresholds 
for outcome i. 
The likelihood function is:

𝐿 𝑢 𝛽, 𝜇 ൌෑෑ Φ 𝜇௜ െ 𝛽𝑋௡ െ  Φ 𝜇௜ିଵ െ 𝛽𝑋௡ ఋ೔೙

ூ

௜ୀଵ

ே

௡ୀଵ

𝐿𝐿 𝑢 𝛽, 𝜇 ൌ෍෍𝛿௜௡𝐿𝑁 Φ 𝜇௜ െ 𝛽𝑋௡ െ  Φ 𝜇௜ିଵ െ 𝛽𝑋௡
௜௡

where 𝛿௜௡ ൌ 1 if the observed discrete outcome for observation n is i, and zero otherwise. 
Maximize the LL is subject to the constraint 0≤1 ≤2… ≤I-2
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 Ordered logit can also be conceptualized as a latent 
variable model.

 Let Z be a continuous random variable that depends on a set of 
explanatory variables X, Z = X + , that is used as a basis for 
modeling the ordinal ranking of data.

 If we assume that  follows a standard logistic 
distribution, it follows the cumulative logit, also known 
as ordered or ordinal logit model. 
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 Recall 4.11, 
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

Where εn follows logistic distribution whose CDF is:

𝑃𝑟 𝜀௡ ൐ 𝜇௜ െ 𝒙௡ᇱ 𝜷 ൌ 1 െ 𝐹 𝜀௡ ൌ ଵ
ଵା௘௫௣ ఓ೔ି𝒙೙ᇲ 𝜷

.So,

Model can be specified as below
𝑙𝑜𝑔 ௉೙೔

ଵି௉೙೔
ൌ 𝒙𝒏ᇱ 𝜷 െ𝜇௜    i=1, …, I-1 (4.13)



 The fact that you can calculate odds ratios highlights 
a key assumption of ordered logit:
 “Proportional odds assumption”
 Also known as the “parallel regression assumption”
 Which also applies to ordered probit

 Model assumes that variable effects on the odds of 
lower vs. higher outcomes are consistent; or 
regression parameters have to be the same for 
different response outcomes.

 If this assumption doesn’t seem reasonable, consider 
multinomial logit, generalized ordered logistic and 
proportional odds model.
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Consider a model of three injury levels - no injury, injury, and fatality. Suppose that one of the 
factors is airbag. A negative parameter of the airbag indicator (1 if it was deployed and zero 
otherwise) becomes greater and hence, shifts values to the right on the X-axle. Thus, the 
model constrains the effect of the seatbelt to simultaneously decrease the probability of a 
fatality and increase the no injury probability. But we know for a fact that the activation of an 
airbag may cause injury and/or decrease no injury; but unfortunately, ordered models cannot 
account for this bi-directional possibility because the shift in thresholds is constrained to move 
in the same direction.
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Exercise 4.4: 
Coefficient 
Estimates for 
OP and OL*

*: partial results 
shown here
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 This exercise uses the same dataset as Exercise 4.1. In this exercise, an ordinal probit and an ordinal logistic 
regression model are respectively applied in order to recognize the ordinality of injury level, the dependent 
variable. 

 First, determine the functional form: Eq. 4.12 for the ordinal probit model and Eq. 4.15 for the ordinal logistic 
model. In both equations, the µs are estimable thresholds, along with the parameter vector β.

 Second, estimate the coefficients using the R “ordinal” package: 

crash_data_ordinal <- data_model_ch5
op_model <- clm(as.factor(INJSVR) ~ YOUNG + OLD + FEMALE + ALCFLAG + DRUGFLAG + SAFETY + 
DRVRPC_SPD + DRVRPC_RULEVIO + DRVRPC_RECK

+ TRFCONT_SIGNAL + TRFCONT_2WAY + TRFCONT_NONE
+ TOTUNIT + ROADCOND_SNOW + ROADCOND_ICE + ROADCOND_WET + LGTCOND_DARK,
data = crash_data_ordinal, link = "probit")

 Note that the response (INJSVR) should be a factor, which will be interpreted as an ordinal response with 
levels ordered as in the factor. Replace “probit” with “logit” if you want to run an ordinal logit model. Other 
distribution options are: "cloglog", "loglog", "cauchit", "Aranda-Ordaz", "log-gamma".

 Third, present the model results of the coefficients and finally, summarize the findings. 
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 A generalized ordered logistic model (gologit) provides results 
similar to those that result from running a series of binary 
logistic regressions/ cumulative logit models.

 The ordered logit model is a special case of the gologit model 
where the coefficients β are the same for each category.

 A gologit model and an MNL model, whose variables are freed 
from the proportional odds constraint, both generate many more 
parameters than an ordered logit model.

 The partial proportional odds model (PPO) is in between, as 
some of the coefficients β are the same for all categories and 
others may differ.

 A PPO model allows for the parallel lines/ proportional odds 
assumption to be relaxed for those variables that violate the 
assumption.
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𝑃𝑟ሺ𝑦𝑛 ൐ 𝑖ሻ ൌ
𝑒𝑥𝑝ሺ𝐱𝑛′ 𝛃𝒊 െ 𝜇𝑖ሻ

1 ൅ 𝑒𝑥𝑝ሺ𝐱𝑛′ 𝛃𝒊 െ 𝜇𝑖ሻ
, 𝑖 ൌ 1, … ሺ𝐼 െ 1ሻ 

In the gologit model, the probability of crash injury 
for a given crash can be specified as (I-1) set of 
equations:

Where μi is the cut-off point for the ith cumulative 
logit. Note that Equation 4.16 is different from 
Equation 4.14 in that βi is a single set of coefficients 
that vary by category i. 
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In the PPO model formulation, it is assumed that some explanatory 
variables may satisfy the proportional odds assumption while some 
may not. The cumulative probabilities in the PPO model are calculated 
as follows:

Where xn is a (p×1) vector of independent variables of crash n, β is a 
vector of regression coefficients, and each independent variable has a 
β coefficient. Tn is a (q×1) vector (q≤p) containing the values of crash 
n on the subset of p explanatory variables for which the proportional 
odds assumption is not assumed, and γi is a (q×1) vector of 
regression coefficients. So, γi represents deviation from the 
proportionality βi and  is an increment associated only with the ith
cumulative logit, i=1,⋯,(I-1).

39

𝑃𝑟 𝑦௡ ൐ 𝑖 ൌ ௘௫௣ 𝒙೙ᇲ 𝜷ା𝑻೙ᇲ 𝜸𝒊ିఓ೔
ଵା௘௫௣ 𝒙೙ᇲ 𝜷ା𝑻೙ᇲ 𝜸𝒊ିఓ೔

, 𝑖 ൌ 1, … 𝐼 െ 1 (4.17)



An alternative but simplified way to think about the 
PPO model is to have two sets of explanatory 
variables: x1, the coefficients of which remain the 
same for all injury severities and x2, the coefficients 
of which vary across injury severities. 
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 Although the generalized ordered logit model relaxes the 
proportional odds assumption by allowing some or all of the 
parameters to vary by severity levels, the set of explanatory 
variables is invariant over all severity levels.

 The sequential logit/probit regression model should be 
considered when the difference in the set of explanatory 
variables at each severity level is important.

 Sequential logit/probit regression allows different regression 
parameters for different severity levels. A sequential logit/probit 
model supposes (I-1) latent variables given as (I-1) sets of 
equations.

 Sequential logistic regression not only accounts for the inherent 
order of dependent variables but also allows different sets of 
regression parameters to be independently considered in the 
model specification. 
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42

where zni is a continuous latent variable that determines whether the injury 
severity is observed as i or higher, βi’s are the vectors of estimated parameters, 
and εni’s are error terms that are independent of xn.

(4.19)



 The sequential model is a type of hierarchical model where lower 
stages mean lower injury severity. 

 For example, stage 1 of the KABCO scale may be KABC versus O; 
stage 2 may be KAB versus C and stage 3 may be KA versus B. This 
change in definition matters when explaining the model results. 
Moreover, the hierarchical structure can be arranged from low to high 
or from high to low, which can also be called “forward” or “backward.”

 It is important to know that the sequential model uses a subpopulation 
of the data to estimate the variant set of βi. The subpopulation 
decreases as the stages progresses forward or backward. In the 
forward format, all data are used in the first stage to estimate β1, but 
only the crashes with injury type C or higher are used in the second 
stage to estimate β2. Crashes with injury type B or higher are used in 
the second stage to estimate β3.
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 Jung et al. (2010) applied the sequential logit model to 
assess the effects of rainfall on the severity of single-
vehicle crashes on Wisconsin interstate highways. 
◦ The sequential logit regression model outperformed the ordinal logit 

regression model in predicting crash severity levels in rainy weather when 
comparing goodness of fit, parameter significance, and prediction 
accuracies.

◦ The sequential logit model identified that stronger rainfall intensity 
significantly increases the likelihood of fatal and incapacitating injury crash 
severity, while this was not captured in the ordered logit model.

 Yamamoto et al. (2008) also reported superior 
performance and unbiased parameter estimates with 
sequential binary models as compared with traditional 
ordered probit models, even when underreporting was a 
concern.
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Where 
P1=probability of PDO;
P2=probability of possible injury; and 
P3 = probability of fatal/incapacitating/non-incapacitating injury

DCD is defined as the minimum safe stopping distance (SSD) 
OCC: Average 5-min OCC (%)

Stage 1

Stage 2

Stage 1

Stage 2

Reference: Soyoung Jung, Xiao Qin, David Noyce (2012). Injury Severity of Multi-Vehicle Crash 
in Rainy Weather, ASCE, Journal of Transportation Engineering, 138(1), pp. 1-12.
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 To properly interpret model results, we need to be wary of the data 
formats as they can be structured differently because of different 
methods.

 The dependent variable can be treated as individual categories, 
categories higher than level i, or categories lower than level i. 

 Independent variables can be continuous, indicator (1 or 0) or 
categorical.

 Categorical variables should be converted to dummy variables, with a 
dummy variable assigned to each distinct value of the original 
categories.

 The coefficient of a dummy variable can be interpreted as the log-odds 
for that particular value of dummy minus the log-odds for the base 
value which is 0 (e.g., the odds of being injured when drinking and 
driving is 10 times of someone who is sober).
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 The key concepts of marginal effect and elasticity are 
fundamental to understanding model estimates. The 
marginal effect is the unit-level change in y for a single-
unit increase in x if x is a continuous variable.

 In a simple linear regression, the regression coefficient of x 
is the marginal effect,        .

 Due to the nonlinear feature of logit models, the marginal 
effect of any continuous independent variable is:              .

 Such marginal effects are called instantaneous rates of 
change because they are computed for a variable while 
holding all other variables as constant.
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 Elasticity can be used to measure the magnitude of the 
impact of specific variables on the injury-outcome 
probabilities.

 For a continuous variable, elasticity is the % change in y 
given a 1% increase in x. It is computed from the partial 
derivative with respect to the continuous variable of each 
observation n.

 For indicator or dummy variables (those variables taking 
on values of 0 or 1), a pseudo elasticity of an indicator 
variable with respect to an injury severity category 
represents the percent change in the probability of that 
injury severity category when the variable is changed from 
zero to one.
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