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 The crash severity model is to use statistical methods for 
identifying factors that are significantly associated with the 
consequence of a traffic crash, and their relationships. 

 The response variable is the person who sustains the most 
severe injury in a crash in the KABCO scale (i.e., killed, 
incapacitating injury, non-incapacitating injury, possible 
injury, and no injury). 

 A variety of models have been developed to account for 
data issues and methodological limitations.

 The common modeling approaches include logistic, probit 
and their variations. 

 The impact of a factor on the injury severity levels can be 
estimated through its marginal effect or odds ratio. 



 Learn the characteristics of crash injury severity 
data.

 Gain the knowledge about data limitations and 
modeling challenges.

 Understand the assumptions, property and 
limitations of models for crash injury severity 
levels.

 Develop crash injury severity models and perform 
analysis.

 Interpret the modeling results.



Recall: Definition (most common)

Values shown above can be used to evaluate highway safety interventions in 
terms of lives/injuries saved. 
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 Researchers and safety professionals rely heavily 
on crash data as they are the most relevant and 
informative resource for analyzing traffic injuries.

 However, the causes of an injury are very 
complicated because they involve a sequence of 
events and several factors (i.e., driver, vehicle, 
environment), as discussed in Chapter 2. (see 
next slide) 

 Crash injury severity modeling helps describe, 
identify, and evaluate the factors contributing to 
various levels of injury severity.
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In a crash report, there are different methods/codes to measure or define 
injuries (still subjective as it is governed by the opinion of the police officer). 
In some reports, they classify the injury as the first injury outcome in the 
sequence of events (“first harmful event”), whereas, in other reports, they 
defined it as the “most harmful event.” For example,

Vehicle swerved to avoid an animal (driver not injured)

Vehicle runs off the traveled-way (driver not injured)

Vehicle hits a break-away pole (speed limit sign) (driver slightly injured by 
glass, say Type B) 

Vehicle goes down the embankment/sideslope and hit the bottom ditch hard 
(driver is severely injured, say Type A, from the external forces) 

Vehicle goes up the backslope and hits a tree (at low speed), the final resting 
place (driver does not sustain additional injuries)
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 Unlike crash count, which is a nonnegative integer, injury severity has a 
finite number of outcomes (e.g., killed, injury type A, injury type B, 
injury type C, no injury) that are categorized on the KABCO scale.

 Crash injury severity data usually are imbalanced on the KABCO scale, 
where the number of fatal or severe injuries is substantially fewer than the 
number of less severe and no injury crashes.

 Crash-severity models can be classified as nonordinal (e.g., multinomial 
logit (MNL) and multinomial probit) or ordered probabilistic (e.g., ordered 
probit and order logistic) if an ordinal structure for the response variable is 
assumed.

 Crash severity models can also be categorized as fixed or random
parameter models according to the parameter assumptions.

 Model variations are available if restrictions such as irrelevant and 
independent alternatives (IIA), proportional odds, or homogeneity are 
relaxed.
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 This imbalance of data in each injury category presents a challenge for 
classification algorithms. In predictive modeling, imbalanced data 
introduce a bias toward the majority that causes less accurate 
predictions of severe crashes (minority).

 A common method of treating imbalanced data is to combine similar 
injury types (i.e., K, A, B, and C) into one category on a new scale (i.e., 
injury and noninjury) to gain more balanced data.

 Other methods for handling imbalanced data include resampling 
techniques that aim to create a balanced injury scale data.

 Resampling involves oversampling less-representative classes (the 
Synthetic Minority Over-sampling Technique (SMOTE)), undersampling 
overly-representative classes, or using ensemble methods (e.g., 
Bootstrap aggregating).
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 An ordinal scale quantitatively categorizes crashes from the highest to 
lowest levels of injury severity (i.e., KABCO).

 Recognizing this ordinal structure within data is important because it 
aids in the selection of an appropriate methodology.

 Utilizing the intrinsic ordinal information preserved in the data may lead 
to the estimation of fewer parameters.

 Additionally, the potential dependency between adjacent categories 
may share unobserved effects. If such a correlation exists but is not 
accounted for, it can lead to biased parameter estimates and incorrect 
inferences.

 Nevertheless, the ordinality assumption should be exercised with 
caution, as it can be overly restrictive for models under certain 
circumstances, such as when lower severity crashes are underreported.
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 Differences in drivers’ risk-taking behaviors, 
physiological attributes, and other factors lead to 
unobserved heterogeneity among road users 
involved in crashes.

 Data heterogeneity affects the model parameters 
among injury observations. Large effects, when 
unaccounted for, could lead to biased parameter 
estimates and incorrect statistical inferences.
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 It has been well-documented that crashes with lower severity 
levels are less likely to be reported to governmental authorities 
compared to more severe crashes.

 For example, people involved in a reportable property damage 
only collision (above the minimum reportable threshold) may not 
be interested in seeing their vehicle insurance premiums go up 
and would therefore directly pay for the damages themselves or 
worse, flee from the crash scene (which is more common than 
we think).

 There is a lot of variation in the extent of underreporting, which 
can depend on the study location and severity levels.
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 For instance, about three decades ago, Hauer and Hakkert (1988) 
stated that approximately 20% of severe injuries, 50% of minor 
injuries, and up to 60% of no-injury crashes were not reported.

 Elvik and Mysen (1999) reported underreporting rates of 30%, 75%, 
and 90% for serious, slight, and very slight injuries, respectively.

 According to Blincoe et al. (2002), up to 25% of all minor injuries and 
almost 50% of no-injury crashes were likely to be nonreported.

 The underreporting is a more significant issue in low and middle-
income countries than in high-income countries.

 Some studies have proposed methods to minimize this bias even if the 
underreporting rate is unknown (see Kumara and Chin (2005); 
Yamamoto et al. (2008); Ma (2009) Ye and Lord (2011); Patil et al. 
(2012)). (see references in textbook)
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 Furthermore, there is a possibility of inconsistency in the classification 
of a crash outcome into no injury or possible injury levels; and/or an 
arbitrary crash threshold for the vehicle or property damages exceeding 
a certain amount.

 Developed by the National Safety Council (NSC) in 1966,  the KABCO 
scale was adopted by the states to report injury severity at the scene of 
a crash; but KABCO Injury classification scale and definitions vary by 
state (FHWA: 
https://safety.fhwa.dot.gov/hsip/spm/conversion_tbl/pdfs/kabco_ctable
_by_state.pdf)

 The 4th edition of the Model Minimum Uniform Crash Criteria (MMUCC) 
was the first major change to the KABCO scale since its inception and 
states were required to adopt this new definition for serious injury 
reporting by 04/15/2019.  
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 This edition not only changed injury severity names but also provided clear examples 
of specific injuries for each severity level. The new edition also brought significant 
clarity to a serious injury ’A’, with the following guidance:

 “A suspected serious injury is any injury other than fatal which results in one or more 
of the following:
◦ Severe laceration resulting in exposure of underlying tissues/muscle/organs or resulting in significant loss of 

blood,
◦ Broken or distorted extremity (arm or leg),
◦ Crush injuries,
◦ Suspected skull, chest or abdominal injury other than bruises or minor lacerations,
◦ Significant burns (second and third degree burns over 10% or more of the body),
◦ Unconsciousness when taken from the crash scene, and
◦ Paralysis.”
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 KABCO or AIS (Abbreviated Injury Scale)
◦ The Abbreviated Injury Scale (AIS) is an anatomically-based injury severity scoring system 

that classifies each injury by body region on a 6-point scale. AIS is the system used to 
determine the Injury Severity Score (ISS) of the multiply injured patient.

◦ The AIS is an internationally accepted standard developed by the Association for the 
Advancement of Automotive Medicine (AAAM) in 1969 and most recently updated in 2015.

◦ The AIS classifies individual injuries by body region (e.g., head, face, neck, abdomen, spine) 
as follows:
AIS 1 – Minor
AIS 2 – Moderate
AIS 3 – Serious
AIS 4 – Severe
AIS 5 – Critical
AIS 6 – Maximal (unsurvivable)
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 The distribution of both KABCO and Maximum Abbreviated 
Injury Scale (MAIS) varies. MAIS was found to be more 
consistent between states than KABCO.



 Small Sample size
◦ Will affect the proportion (see unbalanced data above)
 See next slide for minimum values.

 Endogeneity
◦ An endogenous variable is an explanatory variable whose value is 

determined or influenced by one or more variables in the model.
◦ Carson and Mannering (2001) studied the endogeneity problem by 

exploring the effectiveness of ice-warning signs in reducing the 
frequency of ice-related crashes.

◦ An indicator variable for the presence of an ice warning sign is typically 
used when developing a crash-frequency model.

◦ As ice-warning signs are more likely to be placed at locations with high 
numbers of ice-related crashes, this indicator variable may be 
endogenous (the explanatory variable will change as the dependent 
variable changes).
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In terms of the values of all three criteria, the multinomial logit and mixed logit are 
more sensitive to small sample sizes than the ordered probit model. This is especially 
noticeable for the sample sizes equal to 100 and 500. Nonetheless, for a sample size 
below 500, all models perform poorly. 
According to the three criteria, the minimum sample size for the ordered probit, 
multinomial logit, and mixed logit models should be 2000, 5000 and 10,000, 
respectively.



 Utility is a measure of relative satisfaction such as a consumer will 
choose a product with the combination of quality and price to 
achieve the maximum utility; or a traveler will choose the 
combination of mode and destination that provides the most utility.

 In the context of safety, we are looking for a combination of factors 
that lead to the worst injuries.

 The utility function usually favors the maximum utility (e.g., high 
injury severity levels) and is usually a linear form of covariates as 
follows:
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Where Uni is the utility value of crash n with injury severity level i; xnki is the 
kth variable related to injury level i; βi0 is the constant for injury level i; and, 
βki is the estimable coefficients for the covariates.

(4.1)



 Utility maximization is the process of choosing the alternative with the 
maximum utility value. 

 In a binary outcome model with injury and no injury, if U(injury)>U(no 
injury), then the probability of injury Pr (injury)=1; and if U(injury)<U(no 
injury), then Pr (injury)=0. This is a deterministic choice that can be 
depicted in Fig. 4.1.
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 Because it is impossible that the utility of each crash injury outcome 
can be specified with certain, a random un-specificable error term is 
added to the end.

where Vni represents the deterministic portion of Uni.

 Reasons for adding a disturbance term:
◦ Variables have been omitted from the function (some important data may not be 

available), 
◦ The functional form may be incorrectly specified (it may not be linear), 
◦ Proxy variables may be used (variables that approximate missing variables in the 

database), 
◦ Variations in i that are not accounted for (i may vary across observations).

(4.2)
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 In a probabilistic model, we are looking for a 
combination of factors that lead to the worst 
injuries, or highest utility. 

 Treating the dependent variable with multiple 
responses as ordinal or as nominal significantly 
impacts which methodologies should be 
considered.
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 The name comes from probability and unit. The purpose of the 
model is to estimate the probability that an observation t with 
particular characteristics will fall into a specific category (1 or 0).

 Likelihood function:
 Maximum likelihood estimate:
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𝑦௧ ൌ ቊ1    𝑖𝑓 𝑈௧∗ ൐ 0
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑈௧∗ ൌ 𝑥௧ᇱ𝛽 ൅ 𝜀௧Where

𝑃௥ 𝑦௧ ൌ 1|𝑥௧ ൌ 𝑃௥ 𝑈௧∗ ൐ 0 ൌ 𝑃௥ 𝑥௧ᇱ𝛽 ൅ 𝜀௡ ൐ 0 ൌ Φ 𝑥௧ᇱ𝛽

Where 𝜀௧~𝑁 0,1

ℒ 𝛽 ൌ Φ 𝑥௧ᇱ𝛽 ௬೟ 1 െΦ 𝑥௧ᇱ𝛽 ଵି௬೟



 The problem with the multinomial probit is that 
the outcome probabilities are not closed form 
and estimation of the likelihood functions requires 
numerical integration.

 The difficulties of extending the probit formulation 
to more than two discrete outcomes have lead 
researchers to consider other disturbance term 
distributions.
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 From a model estimation perspective, a desirable property of an assumed distribution 
of disturbances (s) is that the maximums of randomly drawn values from the 
distribution have the same distribution as the values from which they were drawn. 
Because of this property, the highest utility value of all other options in a multinomial 
case can be defined as                       .

 The normal distribution does not posses this property (the maximums of randomly 
drawn values from the normal distribution are not normally distributed).  

 Distributions of the maximums of randomly drawn values from some underlying 
distribution are referred to as extreme value distributions (Gumbel, 1958).  

 Extreme value distributions are categorized into three families: Type 1, Type 2, and 
Type 3.

 The most common extreme value distribution is Type 1, or the Gumbel distribution. 
Based on the error distributional assumption of the Gumbel distribution (Type 1 
extreme value), the most known discrete choice model is the MNL model.
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 To derive an estimable model of discrete 
outcomes with I denoting all possible outcomes 
for observation n, and Pn(i) being the probability 
of observation n having discrete outcome i (i  I) 
Pn(i) = P(Uin  UIn)  I  i .

 Estimable models are developed by assuming a 
distribution of the random disturbance term, s.

(4.3)   Pr , Pr ,ni ni ni nj nj ni ni ni njP V V j i V V j i              
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 The most common extreme value distribution is the Type 1 distribution (sometimes 
referred to as the Gumbel distribution).  It has the desirable property that 
maximums of randomly drawn values from the extreme value Type 1 distribution 
are also extreme value Type 1 distributed.  

 The probability density function of Gumbel distribution is,

 When Gumbel is assumed  and εnis are independent, the cumulative distribution 
over all j≠i is the product of individual cumulative distributions as:

 Since εnis is not given, the choice probability is the integral of Pni | εnis over all 
values of εnis weighted by its density as:

   exp xxf x e e     exp xF x e 

 exp| ni ni njV V
ni ni j i

P e 
     




    exp expni ni nj nini
V V

ni nij i
P e e e d  

       


 

(4.4)

(4.5)
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If level I is the reference level, the model becomes

Note that in crash severity modeling, the lowest injury severity level (i.e., “no 
injuries” or “property damage only” (PDO)) is usually set to be the reference 
level instead of level I (in R code, it’s “reflevel” argument in “mlogit”).

This results in a closed-form expression known as the MNL model, 
formulated as:

(4.6)

(4.7)



If there are two injury outcome (injury (I) and no injury (O)), the 
probability of injury) can be written as a Logit (logistic) Model.

Probability of Injury

Difference between (VI-VO)

𝑃ሺ𝐼ሻ ൌ
𝑒௏಺

𝑒௏಺ ൅ 𝑒௏೚ ൌ
1

1 ൅ 𝑒ሺ௏ೀି௏಺ሻ
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 Binary Logit Example

◦ 𝑙𝑜𝑔𝑖𝑡𝑃 ൌ 𝑙𝑜𝑔 ௣
ଵି௣

ൌ 𝜷𝒙

◦ The parameter vector  is readily estimated using standard maximum likelihood 
methods and the steps are as follows:

1. 𝐿 ൌ Pr 𝑦1,𝑦2, …𝑦𝑛 ൌ ∏ 𝑃𝑖௬௜ሺ1 െ 𝑃𝑖ሻଵି௬௜௜ = ∏ ௉௜
ଵି௉௜

௬௜ 1 െ 𝑃𝑖௜

2. 𝐿𝐿 ൌ ∑ 𝑙𝑜𝑔௜
௉௜

ଵି௉௜
+ ∑ 𝑙𝑜𝑔௜ 1 െ 𝑃𝑖 ൌ ∑ 𝛽𝑥𝑖𝑦𝑖௜ െ ∑ log ሺ1 ൅ exp ሺ𝜷𝑋𝑖ሻ௜

3. డ௅௅
డ𝜷

ൌ 0; solve a series of k equations for k estimable parameter vector β.

 A more general form: If in is defined as being equal to 1 if the observed 
discrete outcome for observation n is i and zero otherwise, the likelihood 
function is:  

1 1

in
N I

n= i=

L  P i   
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 P is probability of an event


௉

ଵି௉
ൌ ௉௥௢௕௔௕௜௟௜௧௬ ௢௙ ௘௩௘௡௧

௉௥௢௕௔௕௜௟௜௧௬ ௢௙ ௡௢ ௘௩௘௡௧
 is the odds (O) of such an event, 

 P ൌ ை
ைାଵ

; an odds of 3 means P (event)=0.75

 Odds ratio (OR) is defined as the ratio of the odds of event A in the presence 
of B and the odds of A in the absence of B. An odd ratio is used to compared 
two dichotomous (binary) variables (the variables have only two categories or 
levels), say odds (injury crash|x=1) vs. odds (injury crash|x=0) if x is seatbelt 
use.

 exp ሺ𝛽𝑥) is the odds ratios if x is an indicator variable

 Marginal effects డ௣
డ௫భ

ൌ ఉభ௘ഁೣ

ଵା௘షഁೣ
మ is a way of presenting results as differences in 

probabilities, which is more informative than odds ratios. It is about derivatives.
 Marginal effects for continuous variables apply to a small change in x when 

effects are non-linear. They are not changes by 1 unit, strictly speaking.
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 Elasticity is computed from the partial derivative for each observation n (n
subscripting omitted):

Where P(i) is the probability of outcome i ; and xki is the value of variable k
for outcome i.  

 Elasticity values are interpreted as the percent effect that a 1% change 
in xki has on the outcome probability P(i):  

◦ If the computed elasticity value is less than one, the variable xki is said to be inelastic 
and a 1% change in xki will have less than a 1% change in outcome i's selection 
probability.  

◦ If the computed elasticity is greater than one it is said to be elastic and a 1% change in 
xki will have more than a 1% change in outcome i's selection probability.

   
 ki

P i ki
x

ki

 P i xE
 x P i


 



   1
ik

P i
x ki kiE P i  x    
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1. The values are point elasticity's and as such are valid only for small 
changes xik and considerable error may be introduced when an elasticity is 
used to estimate the probability change caused by a doubling of xki.  

2. Elasticities are not applicable to indicator variables
◦ Some measure of the sensitivity of indicator variables is made by computing a pseudo-

elasticity.  The equation is

where In is the set of alternate outcomes with xk in the function determining the outcome, 
and I is the set of all possible outcomes.
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 Yves Croissant. mlogit: Multinomial Logit Models. https://cran.r-
project.org/web/packages/mlogit/
◦ Random utility model and the multinomial logit model. https://cran.r-

project.org/web/packages/mlogit/vignettes/c3.rum.html
◦ Logit models relaxing the iid hypothesis (including The nested logit model). 

https://cran.r-project.org/web/packages/mlogit/vignettes/c4.relaxiid.html
 Estimation of multinomial logit models in R : The mlogit Packages 

by Yves Croissant (71 pages) (http://www2.uaem.mx/r-
mirror/web/packages/mlogit/vignettes/mlogit.pdf)

 mlogit: Multinomial logit model (Estimation by maximum likelihood 
of the multinomial logit model, with alternative-specific and/or 
individual specific variables)  
https://www.rdocumentation.org/packages/mlogit/versions/1.1-
1/topics/mlogit
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Exercise 4.1: 
Coefficient 
Estimates for 
MNL*
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Akaike information criterion (AIC) = 2k-2LL = 2*36+2*8897.7=72+17797.4=17,869.4
McFadden’s R2 =1-LLmod/LL0; 
Where LLmod log likelihood value for the fitted model and LL0 for the null model which 
includes only an intercept as predictor.

*: Only partial variables are 
displayed due to the space. 
Total number of variables is 
k=36 (1 intercept variable 
and 17 variables for each of 
the two levels: B/C and 
K/A).



1. Determine the functional form:

In this functional form, yn is the crash injury severity with three levels: PDO (i = 1), B or C (i
= 2); and K or A (i = 3).  Xβ is a vector of explanatory variables that determines the severity 
of crash observation n (n=1,10000), and βi is a vector of coefficients for injury severity level i.
2. Estimate the coefficients using the R “mlogit” package:
“crash_mnl <- mlogit.data(data_model_ch4, shape = "wide", choice = "INJSVR")
multi_logit <- mlogit(INJSVR ~ 0 | YOUNG + OLD + FEMALE + ALCFLAG + DRUGFLAG 
+ SAFETY + DRVRPC_SPD + DRVRPC_RULEVIO + DRVRPC_RECK + 
TRFCONT_SIGNAL + TRFCONT_2WAY + TRFCONT_NONE + TOTUNIT + 
ROADCOND_SNOW + ROADCOND_ICE + ROADCOND_WET + LGTCOND_DARK, data 
= crash_mnl)”

3. summarize your findings. In the MNL model, the coefficient estimates are 
explained as the comparison between injury level i and the base level PDO (i=1). 
As can be seen in the table, if a driver was influenced by drugs, his or her chance 
of getting injured increases drastically, with respective probabilities of level B or C 
and level K or A being 4.49 (e1.5013) times and 12.95 (or e2.561) times that of PDO. The 
exponentiated value of the logit coefficients is also called odds ratio.
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 To determine if the estimated parameter is significantly different from zero, the t-statistic 
is:

 The likelihood ratio test: -2[LL(R) – LL(U)]
◦ where LL(R) is the log-likelihood at convergence of the "restricted" model and LL(U) is the log-

likelihood at convergence of the "unrestricted" model.  
◦ This statistic is 2 distributed with degrees of freedom equal to the difference in the numbers of 

parameters between the restricted and unrestricted model (the difference in the number of 
parameters in the R and the U parameter vectors). 

 Overall model fit is the 2 statistic or McFadden’s R2 (it is similar to R2 in regression models 
in terms of purpose but should not be explained as R2).  The 2 statistic is:

◦ where LL() is the log-likelihood at convergence with parameter vector  and LL(0) is the 
initial log-likelihood (with all parameters set to zero, only keep the intercept).

◦ To account for the estimation of potentially insignificant parameters a corrected 2 is 
estimated as:

where K is the number of parameters estimated in the model.
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 Independence of Irrelevant Alternatives (IIA) property
◦ This problem arises when only some of the functions, which determine possible outcomes, share 

unobserved elements (that show up in the disturbances).  
◦ If all outcomes shared the same unobserved effects, the problem would self correct because in the 

differencing of outcome functions common unobserved effects would cancel out.  
◦ Small-Hsaio test.

 Omitted variables
◦ the omitted variable is correlated with other variables included in the model, 
◦ the mean values of the omitted variable vary across alternate outcomes and outcome specific 

constants are not included in the model, or 
◦ the omitted variable is correlated across alternate outcomes or has a different variance in different 

outcomes.  
Because one or more of these conditions are likely to hold, omitting relevant variables is a serious 
specification problem.

 Presence of an irrelevant variable.  
◦ Estimates of parameter and choice probabilities remain consistent in the presence of an irrelevant 

variable but the standard errors of the parameter estimates will increase (loss of efficiency).
 Disturbances that are not independently and identically distributed 

(IID).  
◦ Dependence among a subset of possible outcomes causes the IIA problem resulting in inconsistent 

parameter estimates and outcome probabilities.  
◦ Having disturbances with different variances (not identically distributed) also results in inconsistent 

parameter estimates and outcome probabilities. 44



 It is a property of MNL models, but not for all discrete choice or 
discrete outcome models.

 If adding a new mode, mode shares will be taken from the other 
available modes.

 However, the ratio of the probabilities of the two alternatives is 
not affected by the utility of any other alternative in the choice 
set. In other words, this ratio is not influenced by any change in 
the utility of a third (“irrelevant”) alternative.

 Because the ratio P(i)/P(j)=exp(Ui-Uj) is unaffected by the third 
alternative. 
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Can we increase the bus ridership by painting the 
bus with a different color?

UWM UWM
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 Clearly, the bus share should not have been changed. What 
is wrong?

 The problem is with the underlying assumption in the logit 
model. The logit model requires that alternatives be 
independent (i.e. εred and εblue be independent). This is not 
the case in this example. 

 Obviously, the errors of the perceived utility from alternative 
of the red bus is dependent on the error from the blue bus, 
and vice versa. This does not justify the use of logit model.

 Note: when the alternatives are distinctly different and 
independent, the logit model shall work well.
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 To overcome the IIA problem, the idea behind a 
nested logit model is to group alternate outcomes 
suspected of sharing unobserved effects into nests 
(this sharing sets up the disturbance term correlation 
that violates the derivation assumption).  

 Because the outcome probabilities are determined by 
differences in the functions determining these 
probabilities (both observed and unobserved), shared 
unobserved effects will cancel out in each nest 
providing that all alternatives in the nest share the 
same unobserved effects.
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 Mathematically, McFadden (1981) has shown the GEV disturbance 
assumption leads to the following model structure for observation n
choosing outcome i

Where
Pn(i) is the unconditional probability of observation n having discrete outcome i,
's are vectors of characteristics that determine the probability of discrete outcomes,
's are vectors of estimable parameters, 
Pn(ji) is the probability of observation n having discrete outcome j conditioned on the outcome being in 

outcome category i, 
J is the conditional set of outcomes (conditioned on i), I is the unconditional set of outcome categories, 

LSin is the inclusive value (logsum), and i is an estimable parameter.

(4.8a)

(4.8b)

(4.8c)
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 In order to be consistent with McFadden’s generalized extreme value derivation 
of the model, the parameter estimate for ϕi in the nested logit model must be 
between zero and one. 

 If ϕi equals to one or is not significantly different from one, there is no 
correlation between the severity levels in the nest, meaning the model reduces 
to the multinomial logit model. 

 If ϕi equals to zero, a perfect correlation is implied among the severity levels in 
the nest, indicating a deterministic process by which crashes result in particular 
severity levels. 

 The t test can be used to test if ϕi is significantly different from 1. Because ϕi is 
less than or equal to one, this is a one-tailed t test (half of the two-tailed t-test). 

 It is important to note that the typical t-test implemented in many commercial 
software packages are against zero instead of one. Thus, the t value must be 
calculated manually. The IIA assumption for a MNL model can also be tested 
with the Hausman-McFadden (1984) test which has been widely implemented in 
commercial statistical software. 
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Usually done in a sequential fashion.
1. Estimate the conditional model using only the observations in the sample 

that are observed having discrete outcomes J.  In the example illustrated 
in the Figure this is a binary model of commuters observed taking the 
arterial or the freeway.

2. Once these estimation results are obtained, the logsum is calculated 
(this is the denominator of one or more of the conditional models) for all 
observations, both those selecting J and those not (for all commuters in 
our example case). 

3. These computed logsums (in our example there is just one logsum) are 
used as independent variables in the functions.  Note that not all 
unconditional outcomes need to have a logsum in their respective 
functions (the example shown in the Figure would only have a logsum
present in the function for the non-freeway choice).  
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Exercise 4.2: 
Coefficient 
Estimates for 
NL
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1. Establish the nested structure of crash severities. :

2. Determine the functional form based on Eq. 4.8 (a), (b) and (c). For 
example, Pn(j|i) is the probability of crash n having injury outcome  B or C conditioned on the 
injury outcome being in category not a K or A injury. I is the unconditional set of outcome 
categories (for example, the upper three branches in the figure: no K/A injury and K/A injury). 
LSni is the inclusive value (logsum).

3. Estimate the coefficients using the R “mlogit” package:
nested_logit <- mlogit(INJSVR ~ 0|YOUNG + OLD + FEMALE + ALCFLAG + DRUGFLAG + SAFETY + 
DRVRPC_SPD + DRVRPC_RULEVIO + DRVRPC_RECK + TRFCONT_SIGNAL + TRFCONT_2WAY + 
TRFCONT_NONE + TOTUNIT + ROADCOND_SNOW + ROADCOND_ICE + ROADCOND_WET + 
LGTCOND_DARK, data = crash_mnl, nests = list(KA = c("3"), non_KA = c("1", "2")), un.nest.el = TRUE). 

4. summarize your findings. The AIC value of the NL model (17871.11) is greater than that 
of MNL model (17869.32), indicating inferior performance. The inclusive value is 0.7161 and its 
t-value is -0.474. Apparently, the log-sum coefficient is not significantly different from 1. When 
the inclusive value is equal to one or not significantly different from 1, there is no correlation 
between the severity levels in the nest. We can conclude that for this dataset, the MNL model 
is more appropriate. 55

B, C, or PDO K or A

B or C PDO



◦ More aggregate – cannot include specific accident 
characteristics (driver characteristics, vehicle 
characteristics, restraint usage, alcohol consumption, 
etc.).  
◦ Without detailed accident information, the approach 

potentially introduces a heterogeneity problem.
◦ Heterogeneity could result in varying effects of X  that 

could be captured with random parameters. 
◦ Mixed logit may be appropriate.
 Relaxes possible IIA problems with a more general error-term structure.
 Can test a variety of distribution options for β .
 Estimated with simulation based maximum likelihood.
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This model is similar to the random parameter model for the crash-frequency 
model. This means that the coefficients are allowed to vary across 
observations. 

where 𝑓 𝜷|𝝋  is a density function of 𝜷 and 𝝋 is a vector of parameters 
which specify the density function, with all other terms as previously 
defined. 

(4.9)

In a statistics term, the weighted average of several functions is called 
a mixed function, and the density that provides the weights is called the 
mixing distribution. Mixed logit is a mixture of the standard logit function 
evaluated at different 𝜷 with f(𝜷) being the mixing distribution.



 The injury severity level probability is a mixture of logits. When all 
parameters β are fixed, the model reduces to the multinomial logit 
model. 

 When β is allowed to vary, the model is not in a closed form, and the 
probability of crash observation n having a particular injury outcome i
can be calculated through integration. 

 Simulation-based maximum likelihood methods such as Halton draws 
are usually used.

 The choice of the density function of β depends on the nature of the 
coefficient and the statistical goodness of fit. 
◦ The lognormal distribution is useful when the coefficient is known to have the same sign for 

each observation. 
◦ Triangular and uniform distributions have the advantage of being bounded on both sides. 
◦ Furthermore, triangular assumes that the probability increases linearly from the beginning to 

the mid-range and then decreases linearly to the end. 
◦ A uniform distribution assumes the same probability for any value within the range. 
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 Random coefficient: 𝑈௡௝ ൌ 𝛽௡ᇱ 𝑥௡௝ ൅ 𝜀௡௝ where 𝛽௡ can be decomposed into mean 
𝛼 and deviations 𝜇௡ such as ሺ𝛼ᇱ𝑥௡௝ ൅ 𝜇௡ᇱ 𝑥௡௝ሻ and 𝜀௡௝ is a random term that is iid
extreme value.

 Error components: 𝑈௡௝ ൌ 𝛼ᇱ𝑥௡௝ ൅ 𝜇௡ᇱ 𝑧௡௝ ൅ 𝜀௡௝ where 𝑥௡௝ and 𝑧௡௝ are vectors of 
observable variables relating to alternative j. 𝛼 is a vector of fixed parameters 
and 𝜇 is random with zero mean, and 𝜀௡௝ is iid extreme value. So, the random 
portion of utility is (𝜇௡ᇱ 𝑧௡௝ ൅ 𝜀௡௝) which can be correlated over alternatives 
depending on 𝑧.

 Error-component and random-coefficient specifications are formally equivalent; 
but a researcher thinks about the model affects the specification of the mixed 
logit.   

 It is important to know that the mixing distribution, whether driven by random 
parameters or by error components, captures variance and correlations in 
unobserved factors. But there is a limit on how much one can learn about 
things that are not seen. 
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Exercise 4.3: 
Coefficient 
Estimates for 
ML
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1. Determine the density function in the R “mlogit” package, random parameter object 
“rpar” contains all the relevant information about the distribution of random parameters.  
Currently, the normal ("n"), log-normal ("ln"), zero-censored normal ("cn"), uniform ("u") and 
triangular ("t") distributions are available. For illustration, normal distribution is chosen as the 
density function of random parameter β. 

2. Estimate the coefficients using the R “mlogit” package:
crash_data_mixed <- mlogit.data(data_mixed_ch4, shape = "long", choice = "INJSVR", chid.var = "ID", 
alt.var = "OUTCOME")
mixed_logit <- mlogit(INJSVR ~ OLD_2 + OLD_3 + FEMALE_2 + FEMALE_3 + ALCFLAG_2 + ALCFLAG_3 
+ DRVRPC_SPD_2 + DRVRPC_SPD_3 + ROADCOND_SNOW_2 + ROADCOND_SNOW_3 + 
LGTCOND_DARK_2 + LGTCOND_DARK_3, data = crash_data_mixed, rpar = c(FEMALE_2 = 'n’, 
FEMALE_3 = 'n', ALCFLAG_3 = 'n', DRVRPC_SPD_3  = 'n', ROADCOND_SNOW_2 = 'n’, 
ROADCOND_SNOW_3 = 'n', LGTCOND_DARK_3 = 'n'),panel = FALSE, correlation = FALSE, R = 100, 
halton = NA). 

Note: rpar argument names random coefficients (‘n’ for a normal distribution); halton=NA means default halton
draws are applied. (if interested, read  “Halton Sequences for Mixed Logit” by Kenneth Train at 
https://eml.berkeley.edu/wp/train0899.pdf) 

3. Summarize the findings. The ML model can account for the data heterogeneity by 
treating coefficients as random variables. the snowy surface parameter for truck K or A injuries 
is fixed (-10.830); and for severity B or C, it is normally distributed with a mean of -0.8892 and 
a standard deviation of 1.8159, meaning that 31% of truck crashes occurring on snowy 
pavement have an increased possibility of B or C injuries. It is plausible that people often drive 
more slowly and cautiously on snowy roads but that the slick conditions still have a tendency to 
cause accidents.
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 In Milton et al. (2008), the application of the mixed logit model (also called the random parameters logit model) 
is undertaken by considering injury-severity proportions for individual roadway segments.

 For all of the random parameters, the normal distribution was found to provide the best statistical fit (among 
normal, lognormal, triangular and uniform).
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“the constant for the property-damage only proportion is normally distributed with mean −0.355 and standard deviation 
1.776. ….This variability is likely capturing the unobserved heterogeneity in the roadway segments that could include factors
such as visual noise and other physical and environmental factors. ….The average daily traffic (ADT) per lane is normally 
distributed with a mean 0.0403 and standard deviation 0.515. … 46.9% of the distribution is less than 0 and 53.1% is greater 
than 0…. a complex interaction among traffic volume, driver behavior and accident-injury severity.”

Milton, J. C., Shankar, V. N., & Mannering, F. L. (2008). Highway 
accident severities and the mixed logit model: an exploratory empirical 
analysis. Accident Analysis & Prevention, 40(1), 260-266.



 In Milton et al. (2008), the application of the mixed logit model (also called the random parameters logit model) 
is undertaken by considering injury-severity proportions for individual roadway segments.
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“The percentage of trucks…had a mean of−0.129 and standard deviation 0.1143, being less than 0 for 87.1% of the roadway 
segments and greater than 0 for 12.9% of the segments…in a small proportion of roadway segments, the truck percentage 
increases the proportion of possible injury accidents, while in a majority of roadway segments, the proportion tends to 
decrease. Note that this variable implies that for 87.1% of roadway segments increasing truck percentages make the 
severity proportions more likely to be minor (property damage only) or major (injury)... 75.2% of the roadway segments 
negative values (an increasing number of trucks decreases the likelihood of accidents resulting in injury) and 24.8% positive
values (an increasing number of trucks increases the likelihood of accidents resulting in injury).The net effect of these two
truck variables points to a fairly complex picture of the effect of trucks on accident-injury severities.”
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 The primary rationale for using ordered discrete choice models for modeling 
crash severity is that there is an intrinsic order among injury severities, with 
fatality being the highest order and property damage being the lowest. 
Including the ordinal nature of the data in the statistical model defends the data 
integrity and preserves the information.

 Second, the consideration of ordered response models avoids the undesirable 
properties of the multinomial model such as the independence of irrelevant 
alternatives in the case of a multinomial logit model or a lack of closed-form 
likelihood in the case of a multinomial probit model.

 Third, ignoring the ordinality of the variable may cause a lack of efficiency (i.e., 
more parameters may be estimated than are necessary if the order is ignored).

 Although there are many positives to the ordered model, the disadvantage is 
that imposing restrictions on the data may not be appropriate despite the 
appearance of a rank. Therefore, it is important to test the validity of the 
ordered restriction.

65



 Ordered probability models are derived by defining an 
unobserved variable, Z, (Z = X + ) that is used as a basis for 
modeling the ordinal ranking of data.

 Observed ordinal data, y, for each observation are defined as,
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(4.11)

where the μs are estimable thresholds, along with the 
parameter vector β. The model is estimated using 
maximum likelihood estimation 
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The ordinal logit/probit model applies a latent continuous variable, 𝑧௡, as a 
basis for modeling the ordinal nature of crash severity data, and 𝑧௡ is 
specified as a linear function of Xn:

𝑧௡ ൌ 𝜷ᇱ𝑿𝒏 ൅ 𝜀௡

Where 𝑿𝒏 is a vector of explanatory variables determining the discrete ordering 
(i.e., injury severity) for n th crash observation, 𝜷 is a vector of estimable 
parameters, and 𝜀௡ is an error term that accounts for unobserved factors 
influencing injury severity.

(4.10)



If  is assumed to be normally distributed across observations with N(0,1), 
an ordered probit model results with the ordered selection probabilities 
being

Where Φ (.) is the cumulative 
standard normal distribution. 
Note threshold 𝜇଴ is set equal to 0 
without loss of generality (this 
implies that one need only 
estimate I-2 thresholds.

(4.12)
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 The difficulty arises 
because the areas 
between the shifted 
thresholds may yield 
increasing or 
decreasing 
probabilities after 
shifts to the left or 
right, especially for 
the intermediate 
categories (i.e., y=2, 
y=3, and y=4).
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 The difficulty arises because 
the areas between the 
shifted thresholds may yield 
increasing or decreasing 
probabilities after shifts to 
the left or right, especially for 
the intermediate categories 
(i.e., y=2, y=3, and y=4).

 The change depends on 
the location of the 
thresholds. 

 A trade-off is inherently being 
made between recognizing 
the ordering of responses 
and losing the flexibility in 
specification offered by 
unordered probability 
models. 
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𝑃 𝑢 ൌ 𝑖 ൌ Φ 𝜇௜ െ 𝛽𝑋 െ Φ 𝜇௜ିଵ െ 𝛽𝑋
Where 𝜇௜ and 𝜇௜ିଵ represent the upper and lower thresholds 
for outcome i. 
The likelihood function is:

𝐿 𝑢 𝛽, 𝜇 ൌෑෑ Φ 𝜇௜ െ 𝛽𝑋௡ െ  Φ 𝜇௜ିଵ െ 𝛽𝑋௡ ఋ೔೙

ூ

௜ୀଵ

ே

௡ୀଵ

𝐿𝐿 𝑢 𝛽, 𝜇 ൌ෍෍𝛿௜௡𝐿𝑁 Φ 𝜇௜ െ 𝛽𝑋௡ െ  Φ 𝜇௜ିଵ െ 𝛽𝑋௡
௜௡

where 𝛿௜௡ ൌ 1 if the observed discrete outcome for observation n is i, and zero otherwise. 
Maximize the LL is subject to the constraint 0≤1 ≤2… ≤I-2
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 Ordered logit can also be conceptualized as a latent 
variable model.

 Let Z be a continuous random variable that depends on a set of 
explanatory variables X, Z = X + , that is used as a basis for 
modeling the ordinal ranking of data.

 Similarly, we do not observe Z directly. Instead, there is 
a set of cut points or thresholds us that are used to 
transform Z into Y.  If we assume that  follows a 
standard logistic distribution, it follows the 
cumulative logit, also known as ordered or ordinal logit 
model. 
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 Recall 4.11, 
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Where εn follows logistic distribution whose CDF is:

𝑃𝑟 𝜀௡ ൐ 𝜇௜ െ 𝒙௡ᇱ 𝜷 ൌ 1 െ 𝐹 𝜀௡ ൌ ଵ
ଵା௘௫௣ ఓ೔ି𝒙೙ᇲ 𝜷

.So,

Model can be specified as a set of I-1 equations
𝑙𝑜𝑔 ௉೙೔

ଵି௉೙೔
ൌ 𝒙𝒏ᇱ 𝜷 െ𝜇௜    i=1, …, I-1 (4.13)



 The fact that you can calculate odds ratios highlights 
a key assumption of ordered logit:
 “Proportional odds assumption”
 Also known as the “parallel regression assumption”
 Which also applies to ordered probit

 Model assumes that variable effects on the odds of 
lower vs. higher outcomes are consistent; or 
regression parameters have to be the same for 
different response outcomes.

 If this assumption doesn’t seem reasonable, consider 
multinomial logit, generalized ordered logistic and 
proportional odds model.
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Consider a model of three injury levels - no injury, injury, and fatality. Suppose that one of the 
factors is airbag. A negative parameter of the airbag indicator (1 if it was deployed and zero 
otherwise) becomes greater and hence, shifts values to the right on the X-axle. Thus, the 
model constrains the effect of the seatbelt to simultaneously decrease the probability of a 
fatality and increase the no injury probability. But we know for a fact that the activation of an 
airbag may cause injury and/or decrease no injury; but unfortunately, ordered models cannot 
account for this bi-directional possibility because the shift in thresholds is constrained to move 
in the same direction.
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Exercise 4.4: 
Coefficient 
Estimates for 
OP
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 This exercise uses the same dataset as Exercise 4.1. In this exercise, an ordinal probit and an ordinal logistic 
regression model are respectively applied in order to recognize the ordinality of injury level, the dependent 
variable. 

 First, determine the functional form: Eq. 4.12 for the ordinal probit model and Eq. 4.15 for the ordinal logistic 
model. In both equations, the µs are estimable thresholds, along with the parameter vector β.

 Second, estimate the coefficients using the R “ordinal” package: 

crash_data_ordinal <- data_model_ch5
op_model <- clm(as.factor(INJSVR) ~ YOUNG + OLD + FEMALE + ALCFLAG + DRUGFLAG + SAFETY + 
DRVRPC_SPD + DRVRPC_RULEVIO + DRVRPC_RECK

+ TRFCONT_SIGNAL + TRFCONT_2WAY + TRFCONT_NONE
+ TOTUNIT + ROADCOND_SNOW + ROADCOND_ICE + ROADCOND_WET + LGTCOND_DARK,
data = crash_data_ordinal, link = "probit")

 Note that the response (INJSVR) should be a factor, which will be interpreted as an ordinal response with 
levels ordered as in the factor. Replace “probit” with “logit” if you want to run an ordinal logit model. Other 
distribution options are: "cloglog", "loglog", "cauchit", "Aranda-Ordaz", "log-gamma".

 Third, present the model results of the coefficients and finally, summarize the findings. 
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 A generalized ordered logistic model (gologit) provides results 
similar to those that result from running a series of binary 
logistic regressions/ cumulative logit models.

 The ordered logit model is a special case of the gologit model 
where the coefficients β are the same for each category.

 A gologit model and an MNL model, whose variables are freed 
from the proportional odds constraint, both generate many more 
parameters than an ordered logit model.

 The partial proportional odds model (PPO) is in between, as 
some of the coefficients β are the same for all categories and 
others may differ.

 A PPO model allows for the parallel lines/ proportional odds 
assumption to be relaxed for those variables that violate the 
assumption.
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𝑃𝑟ሺ𝑦𝑛 ൐ 𝑖ሻ ൌ
𝑒𝑥𝑝ሺ𝐱𝑛′ 𝛃𝒊 െ 𝜇𝑖ሻ

1 ൅ 𝑒𝑥𝑝ሺ𝐱𝑛′ 𝛃𝒊 െ 𝜇𝑖ሻ
, 𝑖 ൌ 1, … ሺ𝐼 െ 1ሻ 

In the gologit model, the probability of crash injury 
for a given crash can be specified as (I-1) set of 
equations:

Where μi is the cut-off point for the ith cumulative 
logit. Note that Equation 4.16 is different from 
Equation 4.14 in that βi is a single set of coefficients 
that vary by category i. 
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(4.16)



In the PPO model formulation, it is assumed that some explanatory 
variables may satisfy the proportional odds assumption while some 
may not. The cumulative probabilities in the PPO model are calculated 
as follows:

Where xn is a (p×1) vector of independent variables of crash n, β is a 
vector of regression coefficients, and each independent variable has a 
β coefficient. Tn is a (q×1) vector (q≤p) containing the values of crash 
n on the subset of p explanatory variables for which the proportional 
odds assumption is not assumed, and γi is a (q×1) vector of 
regression coefficients. So, γi represents deviation from the 
proportionality βi and  is an increment associated only with the ith
cumulative logit, i=1,⋯,(I-1).
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An alternative but simplified way to think about the 
PPO model is to have two sets of explanatory 
variables: x1, the coefficients of which remain the 
same for all injury severities and x2, the coefficients 
of which vary across injury severities. 
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 Although the generalized ordered logit model relaxes the 
proportional odds assumption by allowing some or all of the 
parameters to vary by severity levels, the set of explanatory 
variables is invariant over all severity levels.

 The sequential logit/probit regression model should be 
considered when the difference in the set of explanatory 
variables at each severity level is important.

 Sequential logit/probit regression allows different regression 
parameters for different severity levels. A sequential logit/probit 
model supposes (I-1) latent variables given as (I-1) sets of 
equations.

 Sequential logistic regression not only accounts for the inherent 
order of dependent variables but also allows different sets of 
regression parameters to be independently considered in the 
model specification. 
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where zni is a continuous latent variable that determines whether the injury 
severity is observed as i or higher, βi’s are the vectors of estimated parameters, 
and εni’s are error terms that are independent of xn.

(4.19)



 The sequential model is a type of hierarchical model where lower 
stages mean lower injury severity. 

 For example, stage 1 of the KABCO scale may be KABC versus O; 
stage 2 may be KAB versus C and stage 3 may be KA versus B. This 
change in definition matters when explaining the model results. 
Moreover, the hierarchical structure can be arranged from low to high 
or from high to low, which can also be called “forward” or “backward.”

 It is important to know that the sequential model uses a subpopulation 
of the data to estimate the variant set of βi. The subpopulation 
decreases as the stages progresses forward or backward. In the 
forward format, all data are used in the first stage to estimate β1, but 
only the crashes with injury type C or higher are used in the second 
stage to estimate β2. Crashes with injury type B or higher are used in 
the second stage to estimate β3.
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 Jung et al. (2010) applied the sequential logit model to 
assess the effects of rainfall on the severity of single-
vehicle crashes on Wisconsin interstate highways. 
◦ The sequential logit regression model outperformed the ordinal logit 

regression model in predicting crash severity levels in rainy weather when 
comparing goodness of fit, parameter significance, and prediction 
accuracies.

◦ The sequential logit model identified that stronger rainfall intensity 
significantly increases the likelihood of fatal and incapacitating injury crash 
severity, while this was not captured in the ordered logit model.

 Yamamoto et al. (2008) also reported superior 
performance and unbiased parameter estimates with 
sequential binary models as compared with traditional 
ordered probit models, even when underreporting was a 
concern.
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Where 
P1=probability of PDO;
P2=probability of possible injury; and 
P3 = probability of fatal/incapacitating/non-incapacitating injury

DCD is defined as the minimum safe stopping distance (SSD) 
OCC: Average 5-min OCC (%)

Stage 1

Stage 2

Stage 1

Stage 2

Reference: Soyoung Jung, Xiao Qin, David Noyce (2012). Injury Severity of Multi-Vehicle Crash 
in Rainy Weather, ASCE, Journal of Transportation Engineering, 138(1), pp. 1-12.
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 To properly interpret model results, we need to be wary of the data 
formats as they can be structured differently because of different 
methods.

 The dependent variable can be treated as individual categories, 
categories higher than level i, or categories lower than level i. 

 Independent variables can be continuous, indicator (1 or 0) or 
categorical.

 Categorical variables should be converted to dummy variables, with a 
dummy variable assigned to each distinct value of the original 
categories.

 The coefficient of a dummy variable can be interpreted as the log-odds 
for that particular value of dummy minus the log-odds for the base 
value which is 0 (e.g., the odds of being injured when drinking and 
driving is 10 times of someone who is sober).
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 The key concepts of marginal effect and elasticity are 
fundamental to understanding model estimates. The 
marginal effect is the unit-level change in y for a single-
unit increase in x if x is a continuous variable.

 In a simple linear regression, the regression coefficient of x 
is the marginal effect,        .

 Due to the nonlinear feature of logit models, the marginal 
effect of any continuous independent variable is:              .

 Such marginal effects are called instantaneous rates of 
change because they are computed for a variable while 
holding all other variables as constant.
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 Elasticity can be used to measure the magnitude of the 
impact of specific variables on the injury-outcome 
probabilities.

 For a continuous variable, elasticity is the % change in y 
given a 1% increase in x. It is computed from the partial 
derivative with respect to the continuous variable of each 
observation n and the formula is                       .

 For indicator or dummy variables (those variables taking 
on values of 0 or 1), a pseudo elasticity of an indicator 
variable with respect to an injury severity category 
represents the percent change in the probability of that 
injury severity category when the variable is changed from 
zero to one.
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