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Quick Recap

» Important Issues
- RTM and Selection Bias

» Prediction and Estimation

» Comparison of Prediction and Estimation
> Difference and Ratio (Index)

» Naive Method and Method with
Comparison/Reference Group




Regression-to-the-mean
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FIGURE 7.1 Representation of the regression-to-the-mean (Lord and Kuo, 2012).




Site Selection Bias
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Before-After Studies

There are many variants of Before-After studies. They
can be regrouped under two tasks:

1. Predict what would have been the safety of an entity
in the “after” period, had the treatment not been
applied, and

2. Estimate what the safety of the treated entity in the
after period was.

An entity is a general term used to designate a road
section, intersection, ramp, driver, etc.

The analysis can be divided into four basic steps.




Before-After Studies

First, we need to define the notation that will be used for
performing the two tasks at hand.

Let:

T be the expected number of target crashes of a
specific entity in an after period would have been
had it not been treated; /7 is what must be

A be the expected number of target crashes of a

specific entity in an after period; /4 is what must
be




Before-After Studies

The effect of a treatment is judge by comparing 77 and / .
The two comparisons we are usually interested are the
following:

O = ;1 — A the reduction in the after period of the
expected number of target crashes (by kind
and severity).

it would have been without the treatment;

}/ the ratio of what was the treatment to what
T this is defined as the index of effectiveness.




Naive/Simple Before-After Studies

In its simplest form, an observational before-after study
consists of comparing the counts occurring in the before
period to its count in the after period. The term naive
stands for the fact that counts in the before period are
used as predictor of the expected crashes occurring in the
after period.

A Adjust for time periods (ry) and traffic flow (ry).
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Before-After Studies with Comparison Group

Let us define the following notations:

— / The ratio of the expected crash counts for
M the comparison group

— / The ratio of the expected crash counts for
K the treatment group

The hope is that v=1r, R — rK=rK

L

0 = e Odd’s ratio Time periods need to
be the same for both
the comparison and
treatment groups
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Empirical Bayes Method

» Premise: the safety of a site is estimated using
two sources of information:

> 1) information obtained from sites that have the same
characteristics (reference population)

> 2) information obtained from the actual site where the
EB method is being applied
» Reference population

- Method of moments (covered in PIARC RSM 2003 —
very rarely used now)

- Statistical model
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Empirical Bayes Method
Formulation:
Mg =yu+(L=y)y

where

Mean
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Dispersion parameter
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Empirical Bayes Method

In the context of safety estimation, the EB method is assumed to more accurately
estimate the long-term mean of a given site. Recall that the simplified assumption
states that crashes for a given site/observations follow a Poisson distribution (over
time) where the mean is gamma distributed (or other distributions).
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Empirical Bayes Method

Estimating £/ using a statistical model

1 =exp(x'B)

For the EB method, the most used model remains the NB
model, but recently other models have been proposed such
as the Sichel, PIG, and NB-L among others.

Last month, two papers have proposed a different approach
for estimating the EB estimate: 1) simulation-based EB
(random parameters) and 2) non-parametric EB method.
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Empirical Bayes Method

Formulation of the variance (based on NB):
2

Var{u = %

Varip,} = ( )ll'lEB

\ The EB Variance




Empirical Bayes Method

STEP 1: Develop statistical models.

Using data from the control group, develop one or
several statistical models.

From the model(s), estimate the dispersion parameter ¢ .

1 =exp(x'B)
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Empirical Bayes Method

STEP 2: Estimate H#gzand Var{u} ., for the before period.

(p+,) U, = expected annual number
of crashes for the before period

Hpp =
" ‘ _
u YV, = crash count during the

period “t” years (labeled as t,)

Varipg,§ = ( )luEB
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Empirical Bayes Method

STEP 3: Estimate r

— % (B) For each site, use the
characteristics for the after

period

r(4)=n, —eXP(Xﬁ)

B) = u, = exp(xB)
f ( ,Ll b ‘% For each site, use the
characteristics for the

before period



Empirical Bayes Method

STEP 4: Estimate the number of collision for the after
period.

T ="Fy X1, X Upp

[ = the number of years for the after period

a
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Empirical Bayes Method

STEP 5: Estimate A . (same as before)

STEP 6: Estimate Var(4) and Var(r) .

Var(A)=A1
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Empirical Bayes Method

STEP 7: Estimate © and @ using the output from STEP
4, STEP 5 and STEP 6.

Oo=mw—A

A
T [1 Var{r\/ r’ }
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Empirical Bayes Method

STEP 8: Estimate Var{d} and Var{6} .

Var{o} =Var{r}+Var{l}

[(Var{z / ) (Var{ﬂ / )}
[1 +Var{ﬂ%2}

Var{0} =




Empirical Bayes Method

Example Application

Example taken from “"Observational Before-After Study of
the Safety Effect of U.S. Roundabout Conversions
Using the Empirical Bayes Method” by Persaud et al.
(2001) in Transportation Research Record 1751, pp. 1-8.

The objective was to estimate the changes in motor vehicle
crashes following conversion of 23 intersections from stop
sign and traffic signal control to modern roundabouts.
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Empirical Bayes Method

Sites where a roundabout was built.

TABLE 1 Details of the Sample of Roundabout Conversions

Crash Count

Year Control  Single or AADT Months Before After
Jurisdiction Opened  Before® Multilane Before Afler Before After All  Injury All  Injury
Anne Arundel County, MD 1995 1 Single 15,345 17,220 56 38 34 9 14 2
Avon, CO 1997 a Multilane 18,942 30,418 22 19 12 0 3 0
Avon, CO 1997 2 Multilane 13,272 26,691 22 19 11 0 17 1
Avon, CO 1997 6 Multilane 22,030 31,525 22 19 44 4 44 1
Avon, CO 1997 6 Multilane 18.475 27,525 22 19 25 2 13 0
Avon, CO 1997 6 Multilane 18,795 31,476 22 19 48 4 18 0
Bradenton Beach, FL 1992 | Single 17,000 17,000 36 63 5 0 | 0
Carroll County, MD 1996 1 Single 12,627 15,990 56 28 30 8 4 |
Cecil County, MD 1995 1 Single 7.654 9,293 56 40 20 12 10 1
Fort Walton Beach, FL 1994 2 Single 15,153 17,825 21 24 14 2 4 0
Gainesville, FL 1993 6 Single 5.322 5322 48 60 4 | 13 3
Gorham, ME 1997 1 Single 11,934 12,205 40 15 20 2 4 0
Hilton Head, SC 1996 | Single 13.300 16,900 36 46 48 15 9 0
Howard County, MD 1993 1 Single 7,650 8,500 56 68 40 10 14 1
Manchester, VT 1997 | Single 13,972 15,500 66 31 2 0 | |
Manhattan, KS 1997 1 Single 4.600 4.600 36 26 9 4 0 0
Montpelier, VT 1995 2 Single 12,627 11,010 29 40 3 1 1 I
Vail, CO 1995 1 Multilane 15,300 17,000 36 47 16 n/a 14 2
Vail, CO 1995 4 Multilane 27,000 30,000 36 47 42 n/a 61 0
Vail, CO 1997 4 Multilane 18,000 20,000 36 21 18 n/a 8 0
Vail, CO 1997 4 Multilane 15,300 17,000 36 21 23 n/a 15 0
Washington County, MD 1996 | Single 7,185 9,840 56 35 18 6 2 0
West Boca Raton, FL 1994 1 Single 13.469 13,469 31 49 4 1 7 0

“1 = four-legged, one street stopped; 2 = three-legged, one street stopped: 4 = other unsignalized; 6 = signal
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Empirical Bayes Method

Sites where a roundabout was built.

TABLE 1 Details of the Sample of Roundabout Conversions

Crash Count

Year Control  Single or AADT Months Before After
Jurisdiction Opened  Before” Multilane Before Afler Before After All  Injury All  Injury
Anne Arundel County, MD 1995 1 Single 15,345 17,220 56 38 34 9 14 2
Avon, CO 1997 2 Multilane 18,942 30,418 22 19 12 0 3 0
Avon, CO 1997 2 Multilane 13,272 26,691 22 19 11 0 17 1
Avon, CO 1997 6 Multilane 22,030 31,525 22 19 44 4 44 1
Avon, CO 1997 6 Multilane 18.475 27,525 22 19 25 2 130
Avon, CO 1997 6 Multilane 18,795 31,476 22 19 48 4 18 0
Bradenton Beach, FL 1992 | Single 17,000 17,000 36 63 5 0 | 0
Carroll County, MD 1996 1 Single 12,627 15,990 56 28 30 8 4 |
Cecil County, MD 1995 1 Single 7.654 9,293 56 40 20 12 10 1
Fort Walton Beach, FL 1994 2 Single 15.153 17,825 21 24 14 2 4 0
Gainesville, FL 1993 6 Single 3.322 5322 48 60 4 | 13 3
Gorham, ME 1997 1 Single 11,934 12,205 40 15 20 2 4 0
Hilton Head, SC 1996 | Single 13.300 16,900 36 46 48 15 9 0
Howard County, MD 1993 1 Single 7,650 8,500 56 68 40 10 14 1
Manchester, VT 1997 | Single 13,972 15,500 66 31 2 0 | |
Manhattan, KS 1997 1 Single 4.600 4.600 36 26 9 4 0 0
Montpelier, VT 1995 2 Single 12,627 11,010 29 40 3 1 1 I
Vail, CO 1995 1 Multilane 15,300 17,000 36 47 16 n/a 14 2
Vail, CO 1995 4 Multilane 27,000 30,000 36 47 42 n/a 61 0
Vail, CO 1997 4 Multilane 18,000 20,000 36 21 18 n/a 8 0
Vail, CO 1997 4 Multilane 15,300 17,000 36 21 23 n/a 15 0
Washington County, MD 1996 | Single 7,185 9,840 56 35 18 6 2 0
West Boca Raton, FL 1994 1 Single 13.469 13,469 31 49 4 1 7 0

“1 = four-legged, one street stopped; 2 = three-legged, one street stopped: 4 = other unsignalized; 6 = signal
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Empirical Bayes Method

Sites used as reference group for calibrating NB regression
models.

TABLE 2 Details of the Data Set Used to Calibrate Regression Models

Intersection Number of Years Range of Minor Range of Major Total Injury
Class Jurisdiction Intersections of Data Road AADT Road AADT Crashes Crashes
Four-legged Maryland 18 10 365-3,133 8,625-52.144 597 177
Florida 9 6 1,064-3,487 15,017-39,558 228 79
Toronto 59 6 384—-8.487 5,755-52,598 1,317 357
All 86 365-8,487 5,755-52,598 2,142 613
Three-legged Maryland 3 10 858-1,992 21,294-40,535 177 64
Florida 3 6 722-2.006 16,012-25,905 64 27
Toronto 117 6 105-7,771 9,101-51,725 1,690 472

All 123 105-7,771 9,101-51,725 1,931 563




Empirical Bayes Method

STEP 1: Develop statistical models.

Recalibrated original regression model (functional form) by
Bonneson and McCoy:

T 0.256 T 0.831 .
Elm) = 0'692(1 030) (1 060) .

u =0.000379 x (major road AADT )0’256 x (minor road AADT)O'831 $=4.0

The model above is for rural 4-legged 2-stop controlled
intersections.

Other models for signalized and three-legged intersections
ere calibrated for the project (see paper and previous slide).

N
\ \ \
\
‘ \ !
%
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Empirical Bayes Method

STEP 2: Estimate H#gzand Var{u} ., for the before period.

TABLE 6 Data for Example Conversion

Before After
Conversion Conversion
Months (years) of crash data 56 (4.67) 38(3.17)
Count of total crashes 34 14
Major approaches AADT 10,654 11,956
Minor approaches AADT 4691 5,264

P (crashes/year) = 0.000379 x (major road AADT)"*° x (minor road AADT)"*"'

=0.000379 x (10,654)"% x (4,691)"%! = 4.58. $=4.0
P=u
my, = (k +xp) / (kIP + yp),
m, = Hgpg
my = (4.0 +34) / [(4/4.58) + 4.67] = 6.860. o,
b~ ‘b

1 1
T T T 686 =037 — Var{u},, =(1-0.37)x6.86 =4.33
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Empirical Bayes Method

STEP 3: Estimate r; "

P (crashes/year) = 0.000379 x (major road AADT)"*® x (minor road AADT)"*'  Before
=0.000379 x (10,654)"*° x (4,691)"*"' =4.58.

crashes/year = 0.000379 x (11,956)"*° x (5,264)"*! =5.19. After

R=5.19/4.58 =1.133,




Empirical Bayes Method

STEP 4: Estimate the number of collision for the after
period.

m,=Rxmy,=1.133 x 6.860 = 7.772 crashes/year.

B=7.772x3.17=24.63.

\ Number of years after

Var(B) = (my) x (R x v,)* 1 [(k/P) + v3]
=6.860 x (1.133 x 3.17)*/ (0.873 + 4.67) = 15.96
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Empirical Bayes Method

STEP 5: Estimate A . (same as before)

TABLE 7 Empirical Bayes Estimates for Five Maryland Conversions

After Period Count (A4) Empirical Bayes Estimate (B) Var(B)
14 36.71 30.63
14 24.63 15.96
2 14.38 9.40
10 14.33 8.55
4 15.16 6.76

Sum =) =44 Sum =7 =105.21 Sum = 71.30




Empirical Bayes Method

STEP 5: Estimate A . (same as before)

TABLE 7 Empirical Bayes Estimates for Five Maryland Conversions

After Period Count (A4) Empirical Bayes Estimate (B) Var(B)
14 36.71 30.63
14 24.63 15.96
2 14.38 9.40
10 14.33 8.55
4 15.16 6.76
Sum=Xi =44 Sum =7 =105.21 Sum = 71.30
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Empirical Bayes Method

STEP 6: Estimate Var(A) and Var(r) .

Var(A)=A4 - Var(4)=14

Hip X (rtf X1, )2

2N

Var(B) = (my) x (R x v,)* | [(k/P) + v3]
= 6.860 x (1.133 x 3.17)*/ (0.873 + 4.67) = 15.96

Var(r) =

33



Empirical Bayes Method

STEP 7: Estimate O and @ using the output from STEP

4, STEP 5 and STEP 6.

TABLE 7 Empirical Bayes Estimates for Five Maryland Conversions

After Period Count (4) Empirical Bayes Estimate (B) Var(B)
14 36.71 30.63
14 24.63 15.96
2 14.38 9.40
10 14.33 8.55
4 15.16 _6.76
Sum=A=44 Sum=n=10521 Sum =71.30

0=10521-44=01.21.

0 = (44/105.21) / [1 + (71.30/105.21%)] = 0.421.
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Empirical Bayes Method

STEP 8: Estimate Var{o} and Var{6} .

Var(d) = 71.30 + 44 = 115.30.

Var(0) = 0.421° [(44/44%) + (71.30/105.21%)] / [1 + (71.30/105.21%)]* = 0.0050.

P :



Empirical Bayes Method

TABLE 8 Estimates of Safety Effect for Groups of Conversions

Count of
Crashes Crashes Expected
During During After Period Index of Percent
Period After Without Conversion Effectiveness Reduction in
Group Characteristic Before Conversion (Standard Deviation) (Standard Deviation) Crashes
Conversion/Jurisdiction All Injury All Injury All Injury All Injury
Single Lane, Urban. Stop Controlled
Bradenton Beach, FL 1 0 9.9 (3.6) 0 (0
Fort Walton Beach, FL 4 0 16.9 (3.9) 2.7(L.1)
Gorham, ME 4 0 6.8 (1.4) 09 (04) 1
Hilton Head, SC 9 0 42.8 (6.0) 82(1.9) FI nal Overa II Resu |tS
Manchester, VT 1 1 1.7 (0.7) 0 (0)
Manhattan, KS 0 0 42 (1.2) 1.2 (0.5)
Montpelier, VT il 1 43 (1.8) 1.1(0.6)
West Boca Raton, FL 7 0 8.1 (3.0) 2.6(1.3)
Entire group (8) 27 2 94.6 (9.0) 16.6 (2.6) 0.28 (0.06) 0.12 (0.08) 72 88
Single Lane, Rural, Stop Controlled
Anne Arundel County, MD 14 2 246 (4.0) 6.2(1.7)
Carroll County, MD 4 1 15.2 (2.6) 3.2(0.9)
Cecil County, MD 10 1 143 (2.9) 5.6(1.4)
Howard County, MD 14 1 36.7 (5.5) T7.(2:1)
Washington County, MD 2 0 144 (3.1 4.2(1.3)
Entire group (5) 4 5 105.2 (8.4) 269 (3.4) 0.42(0.07) 0.18 (0.09) 58 82
Multilane, Urban, Stop Controlled
Avon, CO 3 0 19.9 (4.9) 0 (0
Avon, CO 17 1 122 (3-1) 0 (0)
Vail, CO 4 — 19.1 (4.4) —
Vail, CO 6l — 50.9 (7.6) —
Vail, CO 8 — 98 (2.1) —
Vail, CO 15 — 11.8 (2.3) —
Entire group (6) 118 123.7(11.0) n/a 0.95(0.10) n/a 5 n/a
Urban, Signalized
Avon, CO 44 1 49.8 (7.0) 54(1.7)
Avon, CO 13 0 301 (5.7) 2.3(1.0)
Avon, CO 18 0 521 (7.0) 5.3(1.7)
Gainesville, FL 11 3 4.8 (1.5 1.3(0.5)
Entire group (4) 86 4 131.7 (10.9) 15.0(2.7) 0.65(0.09) 0.26(0.14) 35 74

All conversions (23) 275 12 454.6 (19.8) 58.5(5.1) 0.60 (0.04) 0.20(0.06) 40 80




Empirical Bayes Method

» Caution

- The EB method will be biased if the characteristics
between the treatment and reference groups are very
different (i.e., sample mean, dispersion and distribution
of the observed populations — see below)

- In practice, if an observation meets one or more
treatment criteria, it will not be included in the reference
group. Thus, this means that the characteristics will most
likely be different.

Good Not Good
Treatment Reference Treatment Reference

weDistribution Different Distributions
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Full Bayes Method

With the advancements in computing power and the application of the
Markov Chain Monte Carlo (MCMC) simulation, developing Full Bayes (FB)
models is now very easy to perform.

The main advantage of using the Bayes method is that the treatment and
control groups can be combined into one dataset for the before and after
periods, and the effect of the treatment estimated accordingly.

Furthermore, the EB method assumes that the covariate effect on crashes
is known with certainty, whereas the Bayes method assumes that the
covariates are represented by a distribution (the posterior values to be
exact).
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Full Bayes Method

With the full Bayes method, the analyst needs to develop a crash-frequency
model where the coefficients are estimated using the Bayes estimation
method. With this method, all the data, those from before and after periods
as well as those from the treatment and reference/control groups are used
together. The overall functional form is as presented below:

Ujp = exp(xitﬁit + €;)

where u;; is the mean of site 7 and time t; x;; is a vector of covariates for site
1 and time t; B;; is a vector of covariates for site i and time t; and, exp(¢;) is
the error that can follow a gamma or lognormal distribution.
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Full Bayes Method

ﬁ: +ﬁln‘iiDzr +ﬁlz+ﬁ3,+ﬁ4[r_f::]1[f >f::] \'.

M, =eXpi '
\+B T+ BT (1=t )I[t >0, ]+ Bx,, +...+ Bx, )

Where T, =1 if the ith is a treatment site and zero otherwise; ¢ is the fth in the study period,;
f,; 1s the year in which the countermeasure or treatment was installed (for a site in a control
group, this is defined as the same year as that for the treatment group); and, I[7 >, =1 if ¢

belongs to the after period or zero otherwise.
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Full Bayes Method

The previous equation can be re-arranged by separating it between the
before and after time periods and treatment and control groups:

Control group

p=exp( B +BInAADT + Bt + Bx.; +...+ Bex;; )

ﬂ:r.Cc«.:ro:.

Hir comseor 4 = €XP\( B = Bito;) + Biln AADT, +( B+ By ) 1+ X, +.. 4 B )
Treatment group
Hir reszmmece 3 = CXP ‘. 'i ﬁ‘ + ﬁ: )+ ﬁlln ""L'iDI;r +| ﬁs . ﬁi )7+ [3-.1’-: T T ﬁ‘:x;-: jl

.'"{,@ + 05— G+ s '|r:_.}+,q1n-4.-1DT,r+|ﬂ;+ﬁ_;+ﬁ5+,85|r".

= exp| |
\+4.x; +...+ Bex; )

[1.'(. reamers.d
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Full Bayes Method

Then, sum the estimated crashes for the before and after time periods and
treatment and control groups:

ﬂ; - Z ﬂr.:-:-a::-:-f.:.B Ju.?':i = T ‘u

Calculate the effects using the following 5-step process:

Step 1—calculate R, Step 2—predict Step 3—estimate 0

MCB (s

Step 4—estimate 6  Step 5—determine the significance of 0 and 6

6 =1 — UTa Estimate the 2.5-, 5-, and 10-percentile from the posterior
distribution of the index and the difference. Then, compare
the values with the nominal condition if the expected
reduction (or increase) is statistically significant.
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Sample Size

Make use of the basic principle of inferential statistics that of the
normal distribution

P( 9—1-0‘(9)3939+1-0(9))z65%
P( é—Z-G(é)SHSé+2-O‘(é))z95%
P( é—3-a(é)SHSé+3-a(é))z99.9%

Variance of the variable being studied

Size of the effect of interest

Level of significance (related to type I error)
Power of a test (related to type II error)

43



Sample Size

Its square root is either standard deviation or standard error

Standard Deviation: the measure of how variable individual
observations are in a sample

Standard Error: the measure of how variable the mean or
proportion is from one sample to another

_sp

JN

SE

The expected size of an effect should be assumed
This is usually based on the results of previous or pilot studies
Example

— A treatment is thought to reduce the expected number of
crashes by 10% (i.e., 8 =0.9)

N\
b
Y
\ N\ 44
\ A\




Sample Size

e The significance level tells us how likely it is that an observed
difference is due to chance when the true difference is O.

H,: 8, = 6 (no difference)

HA: 91 = 92 > O
H, is True Correct Decision Type 1 error

1-a: Confidence level  a: Significance level
H, is False  Type Il error Correct Decision

B 1-B: Power of a test

e Sample size can be determined by considering the significance level
only.

* However, in order to detect the specific effect of a treatment, the

45



Sample Size

Power is the probability that it will correctly lead to the rejection of
a false null hypothesis.

We can think of power as the probability of detecting a true effect.

Two different aspects of power analysis. One is to calculate the
necessary sample size for a specified power. The other aspect is to
calculate the power for given a specific sample size.

Generally, a test with a power greater than 0.8 (or B<=0.2) is
considered statistically powerful.
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Sample Size Calculations

General Approach

First, let us define x; and x,; as the number of crashes in the before and
after periods, and t; and f, as the before and after time periods (say in
years). Then, let u, = x;,/t, and u, = x,/t; be defined as the number of
crashes per unit of time (i.e., Poisson mean over time). Using the meth-
odology proposed by Hauer (2008), one can calculate or examine the
sample size based on this relationship d > 0, where d = u;, — u,. |

d _
= Mo — Ha = Zy2  Significance level only

SE) [ (/8 + 3/ 2)

d _ My — Mg

SE(d) \/(xb/tg + X /£2)

= Zy2 +Zg Significance and Power




Sample Size Calculations
d My — Mg

SE@) (/8 + 3/ B)

= Zq2  Significance level only

d —
- o = Zy2 +Zg  Significance and Power

SE(d) \/(xb/t% + X /12)

TABLE 7.3 Combination of significance and power (Kelsey et al., 1986).

Significance («) Power (1 — 3) Z,2+Zg
0.01 (Z,/2-0.005 = 2.575) 0.80 3.417
0.90 3.857
0.95 4221
0.99 4.902
0.05 (Zg.025 = 1.960) 0.80 2.802
0.90 3.241
0.95 3.605
0.99 4.286
0.10 (Zg.05 = 1.645) 0.80 2.802
0.90 3.241
0.95 3.605
0.99 4.286




On a certain kind of road on which there are 1.5 reported crashes/km-year an
intervention is contemplated. The question is how many kilometres of road
are needed so that one can be 95% confident that in a before-after study a
10% reduction in expected crash frequency is detected if 3 years of ‘before’
and 1 year of ‘after’ data will be used.

Let, x;, X, = crash counts for ¢, and ¢, years on n kilometres of road
Subscript 1 and 2 represents ‘before’ and ‘after’ period
Then, x;=1.5*3*n=4.5n
X,=(1.5)*(0.9)*1*n=1.35n

(x/ne)-(x,/ne,) _ (L9)-(135)
Jx,/(nc,)? +x,/(nc,)>  V4.5/9n+1.35/n

This yields n=330 km.
Therefore, x,=495 crashes/year and x,=446 crashes/year are required.

\\
iy

\

Sourcer,

Accid Anal Prev 40(4): 1634-5.
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Sample Size Calculations
for Before-After Studies

Naive Method

Using a Comparison Group

Empirical Bayes Method

P

50



Naive Method

e The number of entities (or accidents) for the treatment group
e The duration of the ‘before’ and ‘after’ periods

P(|é-9|gl-a(é)):65% P(|é—0|sz-a(é))=95%

When G(é) =(.1, we need 200 ‘before’ accidents
~g 0) = 0.01, we need 20,000 ‘before’ accidents
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Naive Method
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Naive Method

A treatment is thought to reduce the expected number
of crashes by 10% (i.e.,& =0.9). If the before and after period
are one year in duration, what is the number of crashes need for
the before period for O'(é) =0.05?

2
ZK‘(j) = 0'9(/)1029'9 ~ 700 crashes

e Option 1: Increase the ‘before’ and ‘after’ periods to 4 years

e Option 2: Increase the ‘before’ period to 3 years, and the ‘after’
period to 5.4 years
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Using a Comparison Group

The sample size needed when the study includes a control group, is

governed by the terms az{é’} or Var{f} and Var{w}

/7 +1 X Var(w)
2 k() [ 2ui) @
/ /

Number of crashes in  Number of crashes in
treatment group control group

Variance of odd ratios

odd ratios (usually close to 1)

This is estimated from the control
and treatment groups
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Using a Comparison Group

Taking the same example as before with a{é} =0.05, now
assume the control group contains 5,000 crashes for the before period
with Var(a)) —0.00]1 and ®=1.0

The comparison group contributes to the overall variance

| My +1° Va’”(f’) ~0.9°| —=10.001|=0.0011
S w 2000

o> {0} = 0.0025 = +0.0011=0.0014

5 2
O/r, +0 ZK(j)—09/1+09 =1,222 crashes

— =0.0014
> x(j) 0.0014
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Empirical Bayes Method

Mg = WX p+(1-w)xy

Hrp = Estimate of the expected number of crashes for an entity of interest

H = Expected number of crashes based on expected on similar entities
3% = number of crashes on the entity of interest
w = Weight factor =

J l+ul/¢

e The sample size issue arises when [/ is estimated from a statistical
model (a negative binomial model)

e Larger sample size reduces the bias in the dispersion parameter
estimate (see next two slides)

e Given the characteristics of crash data, i.e. Low mean and
overdispersion, models should be developed with at least 100
abservations. Ideally, more than 1,000 observations should be used.

A\
A h
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Empirical Bayes Method

TABLE 6.4 Recommended sample size (Lord, 2006).

Population sample mean Minimum sample size
5.00 200

4.00 250

3.00 359

2.00 500

1.00 1000

0.75 1335

0.50 2000

0.25 4000

NB models estimated using the MLE
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Empirical Bayes Method

TABLE 6.5 Recommended minimum sample size for Bayesian Poisson-lognormal
models (Miranda-Moreno et al., 2008).

Population sample mean Minimum sample size
>2.00 20

1.00 100

0.75 500

0.50 1000

0.25 3000

NB/PLN models estimated using the Bayesian method

(Note: if using the FB method, there is no need to use the EB)
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