Before-After Studies

Part 1
December 22, 2021

Instructor: Dominique Lord
Texas A&M University

e (-]




HIGHWAY
SAFETY ANALYTICS
AND MODELING

DOMINIQUE LORD
XIAO QIN
SRINIVAS R. GEEDIPALLY

Textbook

The material presented in this series of lectures
are taken from this textbook and other sources
based on lectures given by the authors.

The textbook is available on Amazon and the
Elsevier website below among other places.

------ ier com/books/highway-safety-analytics-and-modeling/lord/978-0-12-816818-9




Textbook

Datasets for examples and updates/corrections can be find in the following link:

& c O (ﬁ dlord.engr.tamu.edu/highway-safety-analytics-and-modeling/ o &8 fr) = e :

= Apps @) Imported From IE Reading list

DOMINIQUE LORD RESEARCH NEWS PEOPLE CONTACT US

DOMINIQUE LORD :‘FVI ENGINEERING

TEXAS A&M UNIVERSITY

Highway Safety Analytics and Pages
Modeling

Dominique Lord

Last Updated: May 23th, 2021 Graduate Students

HIGHWAY Highway Safety Analytics and

SAFETY ANALYTICS Modeling
AND MODELING

HSID Evaluation

Media Interviews

A —



BEFORE-AFTER STUDIES

» Why before-after studies?

> As opposed to cross-sectional studies, the before-after
study has lower within-subject variability (i.e., the variation

associated with multiple measurements observed over time
for one subject)

> Hence, the analyst has a better control about the effects of
an intervention on safety and crash risk.

» Types of studies
> Naive or Simple before-after studies
- Before-after studies with control group
- Empirical Bayes approach (control group)
> Full Bayes
» Important Issues to account for
- Regression-to-the-mean
- Selection bias




Regression-to-the-mean

The regression-to-the-mean phenomenon is commonly
associated to random events and consists of the general
tendency of extreme values to regress to median values.

Crash data have been shown to exhibit this

characteristic.

Consequently, the RTM can have a significant effect on
the evaluation of treatments, and this occurs exclusively

for before-after studi
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Regression-to-the-mean

Table 11.2. Accident count at 1142 intersections - 1974/1975.
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* In addition, 2 intersections had 13 accidents, one had 16,




Regression-to-the-mean

Table 11.3. Accident counts at 1072 intersections with up to 9 accidents in 1974-77.
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Regression-to-the-mean

Average Accidents per Intersection

1974 1975 1976 1977 1978
Year
Figure 11.1. How accident counts regress to the mean.
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Regression-to-the-mean
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FIGURE 7.1 Representation of the regression-to-the-mean (Lord and Kuo, 2012).




Regression-to-the-mean

h=h

RTM

E[n1x] =17

(1, 1) P, +(i—p)ﬂ

K

FIGURE 7.2 Relationship between E[Y>|Y;] and Y; (Lord and Kuo, 2012).

E[Y2[Y1]=pY1 + (1 - p)u

When the correlation coefficient is equal to 1, no RTM exist as E[Y,|Y;]=Y;. On the
other hand, when the correlation coefficient is not equal to 1, RTM is observed in the
data. Smaller values of r are associated with larger RTM effects because E[Y,|Y,] is
gser to J and farther away from Y.
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Site Selection Bias

Site selection bias refers to sites that are solely selected based on
high crash count experience.

This bias obviously affects the outcome of before-after studies.
Ideally, the evaluation of different alternatives should be performed
using a randomized trial (a mix of sites with different long-term
averages).

Unfortunately, sites used for evaluating different alternatives are
often selected based on the crash counts.

For instance, Warrant 7 from the MUTCD indicates that traffic signal
control should be contemplated on a site where more than 5
crashes occurred in a 12-month period.

This Warrant is applicable only if this control can be used to reduce
the number of collisions at that given site. (Discussed further later).
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Site Selection Bias

Figure 5-A5 Selection bias

unsafe sites undetected
unsafe sites detected as being hazardous
normal sites detected as being hazardous
normal sites undetected
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Before-After Studies

There are many variants of Before-After studies. They
can be regrouped under two tasks:

1. Predict what would have been the safety of an entity
in the “after” period, had the treatment not been
applied, and

2. Estimate what the safety of the treated entity in the
after period was.

An entity is a general term used to designate a road
section, intersection, ramp, driver, etc.

The analysis can be divided into four basic steps.
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Before-After Studies

First, we need to define the notation that will be used for
performing the two tasks at hand.

Let:

T be the expected number of target crashes of a
specific entity in an after period would have been
had it not been treated; /7 is what must be

A be the expected number of target crashes of a
specific entity in an after period; A is what must
be

Technically, we should be using ” on top of the term since
e gre estimates. However, for simplicity reason, we will

A
TN 15




Before-After Studies

The effect of a treatment is judge by comparing 77 and / .
The two comparisons we are usually interested are the
following:

O = ;1 — A the reduction in the after period of the
expected number of target crashes (by kind
and severity).

it would have been without the treatment;

}/ the ratio of what was the treatment to what
T this is defined as the index of effectiveness.
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Before-After Studies

Example: suppose that a treatment has been implemented
in 1992. Now, suppose that if the treatment would not have
been implemented, one would have expected 360.6 crashes
(or 7 =360.6) in 1995 and 1996. We know that the
estimated number of crashes that occurred in 1995 and
1996 was 295 (or 4 =295 ). Estimate the change in
safety:

17




Before-After Studies

Example: suppose that a treatment has been implemented
in 1992. Now, suppose that if the treatment would not have
been implemented, one would have expected 360.6 crashes
(or 7 =360.6 ) in 1995 and 1996. We know that the
estimated number of crashes that occurred in 1995 and
1996 was 295 (or A =295 ). Estimate the change in
safety:

_A
O=7w—4A 9—/2
0 =360.6—-295.0 g =295.0
5 656 360.6
o 6 =0.82

uction of 65.6 in target crashes

A 18% reduction in target crashesw




Before-After Studies

Using the assumption that the crash counts are Poisson
distributed, the variance of 77 and A are given as
follows:

Var {ﬂ} =A Usually, it is assumed that observed
crashes are Poisson distributed for any
given site.

Var {72'} — Will depend on the method used for
predicting the value (e.g., Poisson-
gamma).
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Before-After Studies

The estimation of the safety of a treatment is done
through a 4-step process. This step is done for each
entity.

STEP 1: Estimate A and predict 77 . There are many
ways to estimate or predict these values. Some will be
shown in this lecture (and textbook).

STEP 2: Estimate Var(4) and Var(x) . These estimates
depend on the methods chosen. Often, / is assumed to
be Poisson distributed, thus Var(A)=A1.

If a statistical model is used: _
Same as (¢ for Poisson

2
T .
Var(r)=>=— +—  or Poisson-gamma model
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Before-After Studies

The estimation of the safety of a treatment is done
through a 4-step process.

STEP 3: Estimate © and @ using A and 7 from STEP1
and Var(rz)from STEP 2.

O=m—A
A
T [1 +Var{rx}/ 722}

21



Before-After Studies

The estimation of the safety of a treatment is done
through a 4-step process.

STEP 3: Estimate © and @ using A and 7 from STEP1
and Var(rz)from STEP 2.

Oo=mw—A

9 A
- {(I +Var{rx}/ 7Z'2D
/

N\
{ \ \
N\ AN
AN
A\

action factor when fewer than 500 observations are used.
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Before-After Studies

The estimation of the safety of a treatment is done
through a 4-step process.

STEP 4: Estimate Var{o} and Var{6} .

Var{o} =Var{rx}+Var{i}

[(Var{/l / ) (Var{ﬂ / ﬂ
[1 +Var{ﬂ%2}

Var{f} =

23



Before-After Studies

The safety estimation of a treatment is done through a 4-step
process.

When you have more than one site:

Var{l} =) Var{A,}

Z Var{r,}
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Naive/Simple Before-After Studies

In its simplest form, an observational before-after study
consists of comparing the counts occurring in the before
period to its count in the after period. The term naive
stands for the fact that counts in the before period are
used as predictor of the expected crashes occurring in the
after period.

A

@ 4

Time
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Naive Before-After Studies

Limitations:

» Traffic, weather, road user behavior, vehicle fleet
changes over time

» Besides the treatment of interest, various other
treatments or programs may be implemented at
the same time

» PDO counts may change over time

» The probability of crashes being reported may
be changing over time

» Entities selected for treatment may be selected
because of unusual crash experience (selection

bias)
Ioes=aQt account for RTM

_ )




Naive Before-After Studies
Disclaimer 1:

“The noted change in safety reflects not only the effect of
...(name of treatment)... but the effect of factors such as
traffic, weather, vehicle fleet, driver behavior, cost of
vehicle repairs, inclination to report crashes and so on. It
is not known what part of the changes can be attributed

to ...(name of treatment)... and part due to other
influences”

Disclaimer 2:

“The noted change in safety may be in part due to the

spontaneous regression-to-the-mean and not due to...
name of treatment).”
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Naive Before-After Studies

Let A(1), A(2), ... A (n) represent the crash counts
occurring on site j for the before period.

Let k(1), k(2), ... K (n) represent the crash counts
occurring on site j for the after period.

Let the “ratio of duration” to be:

Duration of after period for entity j

Duration of before period for entity j

28



Naive Before-After Studies

STEP 1 & STEP 2

Estimates of Coefficients Estimates of Variances

A=A Var{l}y=) 4,

T = Z’”dj’fj Var{r} = Zrdi.lcj

= _ 2
T = VQ Va r{ﬂ/}— ; Z K,
If ry is the same

29



Naive Before-After Studies
STEP 3 & STEP 4
Var{o} =Var{rx}+Var{i}

A
T [1 +Var{r}/ 72'2:|

0 {(Var{/l / ) (Var{ﬂ / ﬂ

G =

Var{6} =




Naive Before-After Studies
Example R.I.D.E. program*

One year before the program was implemented, there were 173
alcohol-related crashes that occurred in one of the five police
districts.

In the year after its implementation, 144 alcohol-related collisions
occurred in the same district.

Estimate the change in safety.

*Reduce Impaired Driving Everywhere (Ontario)
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Naive Before-After Studies
Example R.I.D.E. program

One year before the program was implemented, there were 173
alcohol-related crashes that occurred in one of the five police
districts.

In the year after its implementation, 144 alcohol-related collisions
occurred in the same district.

Estimate the change in safety.

A =144 Var{l} =144

=173 Var{z} =173

O =173-144 =29 Var{o}=173+144 =317

Var{0) =0.83>x0.0126 = 0.0087




Naive Before-After Studies

Exercise 7.1

Using the Before—After Dataset, conduct a before—after study using
the naive method. Assume a treatment was installed at the beginning
of Year 6 (i.e., after period is 3 years). The data were collected over
8 years for 15 sites.

First, calculate the ratio ry

Fr—375 =1(0L6

Estimate m, 4, Var(w), Var(2)

Site ID rq ™ A Var(w) Var(A)
1 0.6 7.2 5 4.3 2
2 0.6 9 2 54 9
3 0.6 9.6 5 5.8 b
4 0.6 9.6 B 5.8 b
5 0.6 15.6 : 94 9
6 0.6 8.4 5 5.0 5
7 0.6 15 12 9.0 12
8 0.6 114 9 6.8 9
9 0.6 114 16 6.8 16
10 0.6 10.8 14 6.5 14
11 0.6 17.4 8 10.4 8
12 0.6 15.6 12 94 12
13 0.6 3.6 11 2.2 11
14 0.6 8.4 8 5.0 8
15 0.6 18.6 12 11.2 12

Sum 171.6 140 103.0 140




Naive Before-After Studies

Calculate 6

0=m— A
0 =171.6 — 140
9 = J1.6

There is a reduction of 31.6 in the expected number of crashes.
Calculate ¢ (adjust for a sample size below 500)
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Naive Before-After Studies

Exercise 7.1 (cont’d)
B A
a1+ Var(m)/*]

. 140
 171.6[1 +103.0/171.67]

0 = 0.82

There is a reduction of 18% in the expected number of crashes.

Calculate Var(é) and SD(6)

Var(6) = Var(w) + Var(A)
Var(6) = 103.0 + 140

Var(o) = 243
SD(6) = V6
SD(8) = v/243.0
SD(8) = 15.6

T

35



Naive Before-After Studies

The reduction is 31.6 = 1.96 x 15.6, which is statistically significant at
the 5% level.
Calculate Var(#) and SD(#)

] (vmne) - ()

{1 + vﬂr(w)/nzr

0.822 {(140/1402) + (103'0/171.62)]
Var(6) =

2

Var(6) = 0.007

SD(6) = v/0.007
SD(f) = 0.084

The reduction is 0.82 £1.96 x 0.084, which is statistically significant
at the 5% level.
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Naive Before-After Studies

Exercise 7.2

Redo Exercise 7.1, but only include sites that experienced three or
more crashes in the before period. Use the last 3 years before and the
last 3 years after (i.e., r; = 1).

First, estimate m, A, Var(w), Var(2)

Site ID rq ™ A Var () Var(2)
1

2 1 10.0 2 10.0 9
3 1 11.0 2 11.0 5
4

5

6

7 1 13.0 12 13.0 12
8

9 1 11.0 16 11.0 16
10

11 1 20.0 8 20.0 8
12 1 20.0 12 20.0 12
13

14

—
a1

1 22.0) 12 22.0 12
107.0 74 107 74



Naive Before-After Studies
Calculate 6

0 =33.0

There is a reduction of 33.0 in the expected number of crashes.
Calculate ¢ (adjust for a sample size below 500)

#=0.69

There is a reduction of 31% in the expected number of crashes, which
is much larger than the reduction observed in Exercise 7.1. This shows
the effects of the site selection bias.

Calculate Var(é) and SD(o)

Var(o) = 181.0
SD(8) = 13.5

The reduction is 33.0 £ 1.96 x 13.5, which is statistically significant at

the 5% level.
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Naive Before-After Studies

Calculate Var(8) and SD(6)

Var(6)=0.011
SD(6) = 0.103

The reduction is 0.69 =1.96 x 0.103, which is statistically significant
at the 5% level.
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Before-After Studies

Accounting for change in traffic flow.

Baoth pertods ol same duration;

Tratfic same in hoth periods; n =K
Remainmg faclors same in both periods,
I — . 2 0
Traffic same in both periods; - ‘
Remaining factors same in both periads.™ ~ T,F |

R

‘ Remaining factors same in both periods. n=r r K ‘
- — 1 .

- — “




Before-After Studies

Accounting for change in traffic flow.
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Before-After Studies

Adjustment factor for change in traffic flow:

[
VAT

T =7, le'fXK'

Note: f(ﬂOW) — IBOF'BI



Before-After Studies with Traffic Flow Factors

STEP 1 & STEP 2

Estimates of Coefficients Estimates of Variances

A=A Var{A} =4

T = ra’l/}fK Var{m}=r; [f; X K+ K7 X Var{lftf}}

/

Described on next slide
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Before-After Studies

Estimation of r,;

(4
i f(B)

Varir,} = x [ Vafier T vaefore]

Where cvis the percent of coefficient of variation (of the
traffic flow). In practice, the percent coefficient of variation
can be very difficult to obtain. Hence, if it is not available,
values between 0.10 and 0.20 could be used in the equation
above. It is recommended to conduct a sensitivity analysis
to estimate how sensitive the cvis for different values.
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Before-After Studies with Traffic Flow Factors

STEP 3 & STEP 4

Oo=mr—A
Var{o} =Var{r}+Var{l}
g_ A

T [1 +Var{rx}/ 722]




Before-After Studies

Example: Assume 572 vehicles were counted during a
two-hour count for the before period and 637 were
counted for the after period on a rural long-distance
highway. Now assume that the functional relationship
between crashes and flow is given by f( flow)= g,F**.

Compute 7,y and Vari{r, }, and assume the percent cv
is 0.12 for both periods.

46



Before-After Studies

Coefficient of Variation
Example: Assume 572 vehicles were counted during a
two-hour count for the before period and 637 were
counted for the after period on a rural long-distance
highway. Now assume that the functional relationship
between crashes and flow is given by £ ( flow)= 8,F"*.

Compute 7, andV ar{r,}, and assume the percent cv
is 0.12 for both periods.

. =(637 ~1.114% =1.090

0.8
i 5 72)

Var{r, } =1.09" x0.8" x| 0.12* +0.12” | = 0.022
7

2 2 2
, X IB X |:Cvaﬁer T vaefore :|

47



Before-After Studies

Continuing with the previous example. Now, assume that a road
section has been resurfaced.

In the two-year ‘before’ period, 30 wet-pavement crashes were
recorded on this section.

In the two-year ‘after’ period, 40 wet-pavement crashes were
reported.

As before, 572 vehicles were counted during a two-hour count for the
before period and 637 were counted for the after period. (F below)

The function relationship is still the same: f ( flow) = B,F."

In addition, there were 50 wet-pavement days for the before period
and 40 wet-pavement days for the after period.

Estimate O, @ and the standard deviation of these estimates.

48



Before-After Studies

STEP 1: Estimate 4 and 7 .
A =40
r, =1.114" =1.090
r, =40/50=0.8
7 =0.8x1.090x30 = 26.16




Before-After Studies

STEP 2: Estimate Va7 A }and Var{r} .

Var{A} = 40

Var{m} = (4%0)2 1.090% x30+30° x0.022 |
Var{r}=35.4




Before-After Studies

STEP 3: Estimate 6 and @4 .

0=26.16—40=-13.84

40
g 26.16

1 .35.4
1+ 46.162_

0 =1.45




Before-After Studies

STEP 4: Estimate Var{o }tandVar{0} .

Var{o} =35.4+40="75.4

1.45° [( %0) * (35%6.162 ﬂ

Var{0} =

2
35.4
[” 46.162}

Var{f} =~ 0.144




Before-After Studies with Comparison Group

Comparison groups are used to capture changes that
change over time (described previously). The two main
assumptions are:

a) The sundry factors that affect safety have changed from
the before to the after period in the same manner on
both treatment and the comparison group

b) This change in the sundry factors affects the treatment
and the comparison group in the same way.

r. = the comparison ratio; the ratio of the expected
number of “after” to the expected number of “before”
target crashes of the comparison group
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Before-After Studies with Comparison Group

Crash Counts and Expected Values

A

Treatment | Comparison
Group Group
Before
K U
After
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Before-After Studies with Comparison Group

Let us define the following notations:

— / The ratio of the expected crash counts for
M the comparison group

— / The ratio of the expected crash counts for
K the treatment group

The hope is that v=1r, R — rK=rK

L

0 = e Odd’s ratio Time periods need to
be the same for both
the comparison and
treatment groups
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Before-After Studies with Comparison Group

STEP 1 & STEP 2

Estimates of Coefficients Estimates of Variances

A=A Var{A} =1

r=r.=(w/u)/(1+1/v)

RV U

Var{r}/r’ =1/ u+1/v+Var{w}
/

Using 0.001 is good for most cases.

Var{r} =1’ [1 [k +Var{r}/ rf]
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Before-After Studies with Comparison Group

STEP 3 & STEP 4

Oo=mr—A
Var{o} =Var{r}+Var{l}
g A

T [1 Var{r)/ n’ }




Before-After Studies with Comparison Group

Exercise 7.3

Redo Exercise 7.1, but consider the 25 sites that were included in the
comparison group. Use 5 years before and 3 years after.

(Note: the value of the following parameters shows the summation
over 15 sites.)

First, calculate r,

14
s = —
w
250
o = e
405
re = 0.64
Estimate 7, 4, Var(A)
Site ID re 7r A Var(4)
1 0.64 7.7 5 5
2 0.64 9.6 9 9
3 0.64 10.2 5 5
4 0.64 10.2 5 5
5 0.64 16.6 9 9
6 0.64 9.0 5 5
7 0.64 16.0 12 12
8 0.64 12.2 9 9
9 0.64 12.2 16 16
0.64 11.5 14 14
0.64 18.5 8 8
0.64 16.6 12 12
0.64 3.8 11 11
0.64 9.0 8 8
0.64 19.8 12 12
182.9 140 140 58




Before-After Studies with Comparison Group

Calculate Var(m)
Var(ry) /77 = 1/u+ 1/v + Var(w)
Var(ry) /17 = 1/405 +1/259 + 0.001
Var(ry) /7 = 0.0073

Var(m) = 7 [1/k + Var(rs) /1]
Var(m) = 182.9%[1/286 + 0.0073]
Var(mw) = 362.2
Calculate ¢
0=42.9

P :
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Before-After Studies with Comparison Group

There is a reduction of 42.9 in the expected number of crashes.
Calculate # (adjust for a sample size below 500)

0=0.77

There is a reduction of 23% in the expected number of crashes. This
value is larger than the reduction observed in Exercise 7.1. The data
from the comparison group shows a small reduction in the number of

crashes as well, which explains why ¢ decreased from 82% to 77%.
Calculate Var(6) and SD(6)

Var(6) = 502.2
SD(5) = 22.4

The reduction is 429 £1.96 x 22.4, which is not statistically signifi-
cant at the 5% level (almost at the boundary).
Calculate Var(f) and SD(6)

Var(#)=0.010
SD(#) = 0.101

The reduction is 0.77 £1.96 x 0.101, which is statistically significant
at the 5% level.
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