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The material presented in this series of lectures 
are taken from this textbook and other sources 
based on lectures given by the authors.

The textbook is available on Amazon and the 
Elsevier website below among other places.

https://www.elsevier.com/books/highway-safety-analytics-and-modeling/lord/978-0-12-816818-9
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Datasets for examples and updates/corrections can be find in the following link:
https://dlord.engr.tamu.edu/highway-safety-analytics-and-modeling/



 Why before-after studies?
◦ As opposed to cross-sectional studies, the before-after 

study has lower within-subject variability (i.e., the variation 
associated with multiple measurements observed over time 
for one subject)
◦ Hence, the analyst has a better control about the effects of 

an intervention on safety and crash risk.
 Types of studies
◦ Naïve or Simple before-after studies
◦ Before-after studies with control group
◦ Empirical Bayes approach (control group)
◦ Full Bayes

 Important Issues to account for
◦ Regression-to-the-mean
◦ Selection bias

4



Regression-to-the-mean

The regression-to-the-mean phenomenon is commonly 
associated to random events and consists of the general 
tendency of extreme values to regress to median values.
Crash data have been shown to exhibit this 
characteristic.
Consequently, the RTM can have a significant effect on 
the evaluation of treatments, and this occurs exclusively 
for before-after studies.
When the crash frequency is abnormally high during in a 
given period, it tends to decrease during the subsequent 
period and draws closer to the site’s long-term average 
(or vice-versa).
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Regression-to-the-mean
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Regression-to-the-mean
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Regression-to-the-mean
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Regression-to-the-mean
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Regression-to-the-mean

When the correlation coefficient is equal to 1, no RTM exist as E[Y2|Y1]=Y1. On the 
other hand, when the correlation coefficient is not equal to 1, RTM is observed in the 
data. Smaller values of r are associated with larger RTM effects because  E[Y2|Y1] is 
closer to μ and farther away from Y1.
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Site Selection Bias
Site selection bias refers to sites that are solely selected based on 
high crash count experience. 
This bias obviously affects the outcome of before-after studies. 
Ideally, the evaluation of different alternatives should be performed 
using a randomized trial (a mix of sites with different long-term 
averages).
Unfortunately, sites used for evaluating different alternatives are 
often selected based on the crash counts.
For instance, Warrant 7 from the MUTCD indicates that traffic signal 
control should be contemplated on a site where more than 5 
crashes occurred in a 12-month period.
This Warrant is applicable only if this control can be used to reduce 
the number of collisions at that given site. (Discussed further later).
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Site Selection Bias

High Long-term average High crash count
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Site Selection Bias
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Before-After Studies
There are many variants of Before-After studies. They 

can be regrouped under two tasks:
1. Predict what would have been the safety of an entity 

in the “after” period, had the treatment not been 
applied, and

2. Estimate what the safety of the treated entity in the 
after period was.

An entity is a general term used to designate a road 
section, intersection, ramp, driver, etc.

The analysis can be divided into four basic steps.
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Before-After Studies
First, we need to define the notation that will be used for 
performing the two tasks at hand.
Let:




be the expected number of target crashes of a 
specific entity in an after period would have been 
had it not been treated;     is what must be 
predicted.



be the expected number of target crashes of a 
specific entity in an after period;      is what must 
be estimated.


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Technically, we should be using ^ on top of the term since 
those are estimates. However, for simplicity reason, we will 
not use it.



Before-After Studies
The effect of a treatment is judge by comparing     and     . 
The two comparisons we are usually interested are the 
following:

   

 
the ratio of what was the treatment to what 
it would have been without the treatment; 
this is defined as the index of effectiveness.

 

the reduction in the after period of the 
expected number of target crashes (by kind 
and severity).
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Before-After Studies
Example: suppose that a treatment has been implemented 
in 1992. Now, suppose that if the treatment would not have 
been implemented, one would have expected 360.6 crashes 
(or               ) in 1995 and 1996. We know that the 
estimated number of crashes that occurred in 1995 and 
1996 was 295 (or                ). Estimate the change in 
safety:

360.6 

295 
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Before-After Studies
Example: suppose that a treatment has been implemented 
in 1992. Now, suppose that if the treatment would not have 
been implemented, one would have expected 360.6 crashes 
(or               ) in 1995 and 1996. We know that the 
estimated number of crashes that occurred in 1995 and 
1996 was 295 (or                ). Estimate the change in 
safety:

360.6 295.0
65.6

  



 
 


295.0
360.6

0.82

 










360.6 

295 

A reduction of 65.6 in target crashes
A 18% reduction in target crashes
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Before-After Studies

Using the assumption that the crash counts are Poisson 
distributed, the variance of     and      are given as 
follows: 

 

{ }Var  

{ }Var  

Will depend on the method used for 
predicting the value (e.g., Poisson-
gamma).

Usually, it is assumed that observed 
crashes are Poisson distributed for any 
given site.
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Before-After Studies
The estimation of the safety of a treatment is done 
through a 4-step process. This step is done for each 
entity.

STEP 1: Estimate      and predict      . There are many 
ways to estimate or predict these values. Some will be 
shown in this lecture (and textbook).



STEP 2: Estimate            and            . These estimates 
depend on the methods chosen. Often,     is assumed to 
be Poisson distributed, thus                  .

( )Var  ( )Var 


( )Var  

2

( )Var 




If a statistical model is used:
Same as       for Poisson 
or Poisson-gamma model


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Before-After Studies
The estimation of the safety of a treatment is done 
through a 4-step process.

STEP 3: Estimate      and     using      and      from STEP1 
and            from STEP 2.


( )Var 

 

   

21 { } /Var


  


  
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Before-After Studies
The estimation of the safety of a treatment is done 
through a 4-step process.

STEP 3: Estimate      and     using      and      from STEP1 
and            from STEP 2.


( )Var 

 

   

21 { } /Var


  


  

Correction factor when fewer than 500 observations are used.
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Before-After Studies
The estimation of the safety of a treatment is done 
through a 4-step process.

STEP 4: Estimate             and               .{ }Var { }Var 

{ } { } { }Var Var Var   

   2
2 2

2

2

{ } { }

{ }
{ }1

Var Var

Var
Var

   




   
   
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Before-After Studies
The safety estimation of a treatment is done through a 4-step 
process.

When you have more than one site:

i 
i 

{ } { }iVar Var 
{ } { }iVar Var 
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Naïve/Simple Before-After Studies
In its simplest form, an observational before-after study 
consists of comparing the counts occurring in the before 
period to its count in the after period. The term naïve 
stands for the fact that counts in the before period are 
used as predictor of the expected crashes occurring in the 
after period.  

Time 25



 Traffic, weather, road user behavior, vehicle fleet 
changes over time

 Besides the treatment of interest, various other 
treatments or programs may be implemented at 
the same time

 PDO counts may change over time
 The probability of crashes being reported may 

be changing over time
 Entities selected for treatment may be selected 

because of unusual crash experience (selection 
bias)

 Does not account for RTM
26

Limitations:



Naïve Before-After Studies
Disclaimer 1: 
“The noted change in safety reflects not only the effect of 
…(name of treatment)… but the effect of factors such as 
traffic, weather, vehicle fleet, driver behavior, cost of 
vehicle repairs, inclination to report crashes and so on. It 
is not known what part of the changes can be attributed 
to …(name of treatment)… and part due to other 
influences”

Disclaimer 2:
“The noted change in safety may be in part due to the 
spontaneous regression-to-the-mean and not due to… 
(name of treatment).”  
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Naïve Before-After Studies

Let λ(1), λ(2), … λ (n) represent the crash counts 
occurring on site j for the before period.
Let κ(1), κ(2), … κ (n) represent the crash counts  
occurring on site j for the after period.
Let the “ratio of duration” to be:

djr  Duration of after period for entity j

Duration of before period for entity j
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Naïve Before-After Studies

j 
2{ } dj jVar r 

STEP 1 & STEP 2

Estimates of Coefficients

{ } jVar  

dj jr 

Estimates of Variances

d jr   2{ } d jVar r  
If rd is the same
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Naïve Before-After Studies

STEP 3 & STEP 4
ˆ ˆˆ   { } { } { }Var Var Var   

   2
2 2

2

2

{ } { }

{ }
{ }1

Var Var

Var
Var

   




   
   

21 { } /Var


  


  
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Naïve Before-After Studies
Example R.I.D.E. program*
One year before the program was implemented, there were 173 
alcohol-related crashes that occurred in one of the five police 
districts.
In the year after its implementation, 144 alcohol-related collisions 
occurred in the same district. 
Estimate the change in safety.

31

*Reduce Impaired Driving Everywhere (Ontario)



Naïve Before-After Studies

144 

173 

173 144 29   

 2
144
173 0.83

1731 173

  


{ } 144Var  

{ } 173Var  

{ } 173 144 317Var    

2{ } 0.83 0.0126 0.0087Var    
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Example R.I.D.E. program
One year before the program was implemented, there were 173 
alcohol-related crashes that occurred in one of the five police 
districts.
In the year after its implementation, 144 alcohol-related collisions 
occurred in the same district. 
Estimate the change in safety.



Naïve Before-After Studies
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Naïve Before-After Studies
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Naïve Before-After Studies
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Naïve Before-After Studies
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Naïve Before-After Studies
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Naïve Before-After Studies
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Naïve Before-After Studies
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Before-After Studies
Accounting for change in traffic flow.
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Before-After Studies
Accounting for change in traffic flow.
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Before-After Studies
Adjustment factor for change in traffic flow:

( )
( )tf

f Ar f B

d tfr r   

Note:   1
0f flow F 
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 

STEP 1 & STEP 2

Estimates of Coefficients

{ }Var  

Estimates of Variances

d tfr r  2 2 2ˆ{ } { }d tf tfVar r r Var r       

Before-After Studies with Traffic Flow Factors
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Described on next slide



Before-After Studies
Estimation of rtf

( )
( )

avg
tf

avg

f Ar f B

2 2 2 2{ }tf tf after beforeVar r r cv cv      
Where cv is the percent of coefficient of variation (of the 
traffic flow). In practice, the percent coefficient of variation 
can be very difficult to obtain. Hence, if it is not available, 
values between 0.10 and 0.20 could be used in the equation 
above. It is recommended to conduct a sensitivity analysis 
to estimate how sensitive the cv is for different values.

44



STEP 3 & STEP 4
   

{ } { } { }Var Var Var   

   2
2 2

2

2

{ } { }

{ }
{ }1

Var Var

Var
Var

   




   
   

21 { } /Var


  


  

Before-After Studies with Traffic Flow Factors
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Before-After Studies
Example: Assume 572 vehicles were counted during a 
two-hour count for the before period and 637 were 
counted for the after period on a rural long-distance 
highway. Now assume that the functional relationship 
between crashes and flow is given by                         .
Compute       and                 , and assume the percent cv 
is 0.12 for both periods.

  0.8
0f flow F

t fr { }t fV a r r
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Before-After Studies
Coefficient of Variation

 0.8 0.8637 1.114 1.090572tfr   

2 2 2 2{ } 1.09 0.8 0.12 0.12 0.022tfVar r       

Example: Assume 572 vehicles were counted during a 
two-hour count for the before period and 637 were 
counted for the after period on a rural long-distance 
highway. Now assume that the functional relationship 
between crashes and flow is given by                         .
Compute       and                 , and assume the percent cv 
is 0.12 for both periods.

  0.8
0f flow F

t fr { }t fV a r r
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2 2 2 2{ }tf tf after beforeVar r r cv cv      



Before-After Studies
Continuing with the previous example. Now, assume that a road 
section has been resurfaced.
In the two-year ‘before’ period, 30 wet-pavement crashes were 
recorded on this section.
In the two-year ‘after’ period, 40 wet-pavement crashes were 
reported.
As before, 572 vehicles were counted during a two-hour count for the 
before period and 637 were counted for the after period. (F below)
The function relationship is still the same:                          .
In addition, there were 50 wet-pavement days for the before period 
and 40 wet-pavement days for the after period.
Estimate    ,     and the standard deviation of these estimates.

  0.8
0f flow F

 
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Before-After Studies

40 

STEP 1: Estimate     and      . 

0.81.114 1.090tfr  

0.8 1.090 30 26.16    

40 / 50 0.8dr  
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Before-After Studies

{ } 40Var  

STEP 2: Estimate                 and                  .{ }V a r  { }V a r 

 2 2 240{ } 1.090 30 30 0.02250
{ } 35.4

Var

Var





     

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Before-After Studies

26.16 40 13.84    

STEP 3: Estimate       and      . 

2

40
26.16

35.41 26.16
1.45






   


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Before-After Studies

{ } 35.4 40 75.4Var    

STEP 4: Estimate                 and                 .{ }V a r  { }V a r 

   2
2

2

2

35.411.45 40 26.16{ }
35.41 26.16

{ } 0.144

Var

Var





   
   


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Before-After Studies with Comparison Group

Comparison groups are used to capture changes that 
change over time (described previously). The two main 
assumptions are:

a) The sundry factors that affect safety have changed from 
the before to the after period in the same manner on 
both treatment and the comparison group

b) This change in the sundry factors affects the treatment 
and the comparison group in the same way.

rc = the comparison ratio; the ratio of the expected 
number of “after” to the expected number of “before” 
target crashes of the comparison group

53



Before-After Studies with Comparison Group

Treatment 
Group

Comparison 
Group

Before

After









Crash Counts and Expected Values
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Before-After Studies with Comparison Group

Let us define the following notations: 

cr 


tr 


The ratio of the expected crash counts for 
the comparison group 

The ratio of the expected crash counts for 
the treatment group 

The hope is that
t cr r

c

t

r
r 

c tr r    

Odd’s ratio Time periods need to 
be the same for both 
the comparison and 
treatment groups
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 

2{ } / 1/ 1/ { }t tVar r r Var    

STEP 1 & STEP 2

Estimates of Coefficients

{ }Var  

( / ) / (1 1/ )
/

t c

t

r r
r

  
 

  


Estimates of Variances

tr 
2 2{ } 1/ { } /t tVar Var r r     

Before-After Studies with Comparison Group
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Using 0.001 is good for most cases.



STEP 3 & STEP 4
   

{ } { } { }Var Var Var   

   2
2 2

2

2

{ } { }

{ }
{ }1

Var Var

Var
Var

   




   
   

Before-After Studies with Comparison Group

21 { } /Var


  


  
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Before-After Studies with Comparison Group
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Before-After Studies with Comparison Group
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Before-After Studies with Comparison Group
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