
Part 2

October 27, 2021

Instructor: Dominique Lord
Texas A&M University

d-lord@tamu.edu



2

The material presented in this series of lectures 
are taken from this textbook and other sources 
based on lectures given by the authors.

The textbook is available on Amazon and the 
Elsevier website below among other places.

https://www.elsevier.com/books/highway-safety-analytics-and-modeling/lord/978-0-12-816818-9



Crash process: drivers, roadways, and vehicles

http://cyberlaw.stanford.edu/blog/2013/12/human-error-cause-
vehicle-crashes
https://www.fhwa.dot.gov/publications/publicroads/95winter/p95wi1
4.cfm

Initially discussed in earlier 
lecture



Crash process: Economic and Social Costs

Values shown above can be used to evaluate highway safety interventions in 
terms of lives/injuries saved. 



Crash process: Economic and Social Costs

10-mile section converted from a 
4-lane rural undivided arterial to a 
4-lane divided freeway with 
frontage roads.

Done for safety reason only:
Crashes saved: $300M+
Building freeway: $100M



Each time a vehicle enters an intersection, a highway segment, or any 
other type of entity (a trial) on a given transportation network, it will 
either crash or not crash.
For purposes of consistency a crash is termed a “success” while failure 
to crash is a “failure.” For the Bernoulli trial, a random variable, 
defined as X, can be generated with the following probability model: if 
the outcome “w” is a particular event outcome (e.g., a crash), then X
(ω) = 1 whereas if the outcome is a failure then X (ω) = 0. Thus, the 
probability model becomes:

Crash process: analytical framework

X 1 0

P(x=X) p q

where p is the probability of success (a crash) and q=(1-p) is the 
probability of failure (no crash). 



It can be shown that if there are N independent trials (vehicle passing 
through an intersection, road segment, etc.), the count of successes 
over the number of trials give rise to a Bernoulli distribution.
We’ll define the term Z as the number of successes over the N trials. 
Under the assumption that all trials are characterized by the same 
failure process (this assumption is revisited later), the appropriate 
probability model that accounts for a series of Bernoulli trials is known 
as the binomial distribution, and is given as:

Where,
n = 0, 1, 2, … , N (the number of successes or crashes)

Crash process: analytical framework
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Poisson Approximation
For typical motor vehicle crashes where the event has a very low 
probability of occurrence and a large number of trials exist (e.g., 
million entering vehicles, vehicle-miles-traveled, etc.), it can be shown 
that the binomial distribution is approximated by a Poisson 
distribution.
Under the Binomial distribution with parameters N and p, let p=λ/N , 
so that a large sample size N will be offset by the diminution of p to 
produce a constant mean number of events λ for all values of p. Then 
as N -› ∞, it can be shown that:

Where,
n = 0, 1, 2, … , N (the number of successes or crashes)
λ = the mean of a Poisson distribution
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Poisson Approximation

The approximation illustrated in Equation (2) works well when the 
mean λ and  p are assumed to be constant.
In practice however, it is not reasonable to assume that crash 
probabilities across drivers and across road segments (intersections, 
etc.) are constant.
Specifically, each driver-vehicle combination is likely to have a 
probability that is a function of driving experience, attentiveness, 
mental workload, risk adversity, vision, sobriety, reaction times, vehicle 
characteristics, etc.
Furthermore, crash probabilities are likely to vary as a function of the 
complexity and traffic conditions of the transportation network (road 
segment, intersection, etc.). All these factors and others will affect to 
various degrees the individual risk of a crash.



Poisson Approximation
These and other characteristics affecting the crash process create 
inconsistencies with the approximation illustrated in Equation (2).
Outcome probabilities that vary from trial to trial are known as Poisson 
trials (note: Poisson trials are not the summation of independent 
Poisson distributions; this term is used to designate Bernoulli trials with 
unequal probability of events). 
The process described above almost always lead to overdispersion 
(95%+) when the characteristics of the count data are examined, 
Var(Y) >> E(Y), as detailed by Barbour et al. (1992).
The next two overheads show equations that can be used to see if the 
process can be approximated by a Poisson process and, if it is, whether 
or not the process exhibits overdispersion.
If it exhibits overdispersion, then several statistical distributions or 
models described further below can be used for analyzing crash data.

See Barbour et al. (1992) Poisson Approximation. Clarendon Press, New York, 
NY for additional information.



Poisson Approximation

The equation below is used for determining if the unequal event of 
independent probabilities can be approximated by a Poisson process.

Where,
dTV = total variance between the two probabilities measured 
L(Z) and Po(λ);
L(Z) = count data generated by unequal probability of events
Po(λ) = count data generated by unequal events of
independent probabilities with λ=E(Z).

Equation 3

See Barbour et al. (1992) Poisson Approximation. Clarendon Press, New York, 
NY for additional information.
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Poisson Approximation

The equation below is used for determining if the unequal event of 
independent probabilities leads to overdispersion, VAR(Z) > E(Z).
If

Then

For any r > 2, where
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Crash Data as Poisson Process
Given the characteristics described in the previous slides, it is often 
assumed that crash data on a given site (or entity) follow a Poisson 
distribution. In other words, if one were to count data over time for one 
site, the data are assumed to be Poisson distributed. (note: the main 
assumption is that nothing has changed.)

Example:

Time t1 2 3 4 t t+1

3 7 0 3 Yt Crash Count

Poisson assumption:
Where,  |
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λ = Mean of the Poisson distribution
y = Crash count (0, 1, 2, …)



Crash Data as Poisson Process
If we observed crash data say at 100 sites (hence, 100 Poisson 
distributions), which are assumed to have the same characteristics (e.g., 
traffic flow, lane and shoulder widths), the data for these 100 sites 
when analyzed together will exhibit overdispersion (described above).
Since we do not know the individual risk of each driver (or 
pedestrians/bicyclists, etc.), there is a need to approximate the Poisson 
process by a different procedure.
The best procedure is to assume that the Poisson means (in the 
population of 100 sites) vary according to a continuous distribution that 
enables us to capture overdispersion or unobserved heterogeneity.
The most common distribution is the gamma distribution. This 
distribution is very popular since the Poisson-gamma mixture leads to 
the Negative Binomial distribution (the mixture of both distributions has 
a closed form and can be easily manipulated).



Crash Data as Poisson Process
As discussed in the previous slide, the 100 intersections with the exact 
same characteristics (traffic flow, geometric design, etc.) will (or are 
expected to) have different Poisson mean λ values. The distribution of 
these values is shown as follows:

Distribution of the Poisson means is 
assumed to follow a continuous 
distribution (i.e., the most common being 
the gamma).

Next lecture, we will show that other continuous distributions can be 
used to approximate the crash process.



 Crashes are “independent” and “random” events 
(probabilistic events)

 Estimate a relationship between crashes and 
covariates (or explanatory variables)

 Determine the long-term average of crash 
occurrences for transportation facilities

 Have a wide variation of applications in safety 
analyses:
◦ Prediction
◦ Variable screening
◦ Risk factors 
◦ Before-after study



 Understanding the System: The first application consists of 
developing models with the objective of learning something about the 
system from which the data are taken. Examining the sign of a 
coefficient is an example of such application. 

 Screening Variables: The second application consists of developing 
models for screening purposes, where the objective is to determine 
which covariates have specific or significant effects on the risk of 
collisions. For this application, most of the modeling effort is devoted to 
the analysis of the covariates of the statistical models. 

 Predictive Tool: The third application aims at developing models for 
prediction purposes. In this application, the goal is to develop models 
with the best predictive capabilities. These models are usually 
estimated using one dataset, but are applied or evaluated using a 
completely new dataset. 

 Cause-Effect: Statistical models establish relationships between 
variables and are not establishing cause-effect relationships. Some 
researchers in highway safety have started looking into the cause-effect 
relationships, but more work needs to be done on this topic.



Statistical Models For Crash Data
Modeling Process

1. Determine Modeling Objectives
•Definition (Intersections, Pedestrians, etc.)
•Data availability
•Unit Scales (Crashes/year; Severity; etc.)

2. Establish Appropriate Process
•Sampling Models
•Observational Models
•Process/System State Models
•Parameter Models (Bayesian Models Only)



Statistical Models For Crash Data
Modeling Process

3. Determine Inferential Goals
•Point estimate (Value + Standard Error)
•Distribution (Bayesian Models)
•Percentiles (2.5%, 85%, etc.; Bayesian Models)

4. Select Computation Techniques
•Frequentist (MLE)
•Bayesian (via simulation)
•Empirical Bayes

5. Evaluate Models
•Goodness-of-Fit
•Prediction
•Confidence Intervals



The first step in developing statistical models is to layout 
the objectives of the modeling effort.

The main considerations, in this step, include application 
needs (e.g., prediction, screening variables), project 
requirements, data availability, logical scales both spatial 
and temporal scales of modeling units and their definitions, 
and range, definition, and unit of key input and output 
variables.



The table below lists an example of a matrix describing the 
modeling objectives. This table shows how the highway 
network is divided into segments and intersections, and the 
outcome of potential models. For this hypothetical project, 
crash-frequency and crash-severity and statistical models 
by collision type will be estimated, but crash cost will not 
be included in the analysis for segments and intersections.



It is critically important in this step to determine the logical scales of 
modeling units and their definitions, as well as range, unit, and definition of 
key input and output variables. Example:

• Define spatial and physical definition of intersections and segments and 
the exact types of traffic crashes (e.g., intersection, intersection-related, 
pedestrian involved, or animal-involved crashes)

• The range of traffic flows (e.g., AADT = 200 - 20,000)

• Make sure commensurable data can be obtained and enough data can be 
collected (discuss later in the course).

• The time unit of analysis (i.e., number of crashes per unit of time). (Note: 
whether one uses crashes per month, per year, per 3-year, etc., will have 
considerable effects on modeling assumptions and consequently on model 
interpretation and applicability.) 



Typical modeling procedures employed in developing statistical
models can be grouped into five major processes:

(1) Establish a sampling model (such as those used in surveys with 
weight factors or stratified data),

(2) Choose an observational model (or conditional model) (note: most 
crash-frequency and crash-severity models fall into this category),

(3) Develop a process/state/system model (e.g., hierarchical/random    
effects models, etc.), 

(4) Develop a parameter model (for the Bayesian method and, to some 
degree, random-parameters models), and

(5) Construct model and interrogation methods (e.g., interrogating 
theoretical models), including model comparison, sensitivity or 
robustness analysis, and specification test, among others.



The inferential goals determine whether a point prediction combined
with a simple estimate of its standard error (i.e., the maximum 
likelihood estimation method or MLE), an interval prediction (e.g., 2.5 
and 97.5 percentile “credible” intervals using the Bayesian method), or 
a full probability distribution for the prediction is needed (also based on 
the Bayesian method).



This is the process where Frequentist (analysts who use the likelihood-
based method or MLE), and the Bayesian method are likely to differ in 
their estimating approaches and use of different “stochastic 
approximations” to reduce the computational burden.

Many statistical programs are now available for estimating the coefficients 
of statistical models for both the Bayesian and the MLE methods which fall 
under the exponential family of probability distributions (e.g., the Poisson 
model). 

More difficult inferential goals will require additional sophisticated 
computational methods to fully capture the sampling variations in 
producing estimates and predictions.



Under this method, one estimates the parameters by 
maximizing the likelihood function. The likelihood function is 
nothing more than the joint distribution of the observed data 
under a specified model, but it is seen as a function of the 
parameters, with fixed data. Example:



With the MLE, the conditional mean is considered an 
unknown function of the covariates, as given in the following 
equation: 

All statistical programs have functions or subroutines that can 
be used for estimating the model’s parameters using the MLE.



Under the MLE method, the likelihood function is solely responsible for 
encoding the knowledge about the model. However, in many cases, a 
safety analyst may know something about the problem, even before 
collecting the data, often dubbed as prior knowledge or expert knowledge. 
The Bayesian paradigm formally combines the prior knowledge and the 
likelihood via the Bayes rule: we can say that posterior belief is 
proportional to the product of the prior belief and the likelihood. It is 
expressed as

Inference is typically carried out by generating approximate samples 
from the posterior density using MCMC techniques.



Models elicited under the Bayesian paradigm are framed as a hierarchical 
or multilevel model. In highway safety, they are often defined as a 
hierarchical Poisson-mixed model (for crash-frequency models) or simply 
as an FB model, as explained earlier. Such a hierarchical modeling
framework can be defined as follows:



Depending on the specification of the priors η and πη(•), different alternative 
hierarchical models can be defined.

Poisson-gamma/NB:

Poisson-lognormal:

In addition to the criteria described above (step 3), the selection of MLE 
vs FB should be governed by the simplicity/complexity of the model and 
the time you need to spend to estimate the parameters. 



This section describes different methods that can be used for 
evaluating the model performance of crash-frequency and 
crash-severity models. The methods are used to measure the 
“goodness-of-fit” (GOF) or how well the model fits the data.

Although evaluating the fit is an important measure in the 
assessment of models, it should not be the sole goal for 
selecting a model over another. It is also important to 
examine what is called the “goodness-of-logic” (Miaou and 
Lord, 2003).

There are two approaches: 1) Likelihood-based methods and 
2) Error-based methods
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As the name implies, the most basic method consists of maximizing the LL 
function. This is accomplished by first taking the log of the function. Then, 
take the partial derivatives (first-order conditions) of the LL for each model’s 
parameter and make each one equal to zero.

The largest value indicates the best fit. The MLE is unfortunately not 
dependent on the number of parameters found in the model, which could 
potentially lead to an overfitted model.

Maximum Likelihood

See Appendix A of the textbook for how to calculate the LL.
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The likelihood ratio test is used to select models by comparing the 
loglikelihood for the fitted model (restricted—R below—) with the log-
likelihood for a model with fewer or no explanatory variables (unrestricted or 
less restricted model).

Log-Likelihood Test
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The likelihood ratio index statistic compares how well the model with 
estimated parameters performs with a model in which all the parameters are 
set to zero (or no model at all). This test is primarily used for assessing the 
GOF of crash-severity models. The index is more commonly called the 
McFadden R2, the ρ2 statistic or sometimes just, ρ:

Log-Likelihood Ratio
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The Akaike information criterion (AIC) is a measure of fit that can be used to 
assess models. This measure uses the log-likelihood, but add a penalizing 
term associated with the number of variables. It is well known that by adding 
variables, one can improve the fit of models. Thus, the AIC tries to balance 
the GOF versus the inclusion of variables in the model (p below).

Akaike information criterion
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Similar to the AIC, the Bayes information criterion (BIC) also employs a 
penalty term, but this term is associated with the number of parameters (p) 
and the sample size (n). This measure is also known as the Schwarz 
Information Criterion. 

Bayes information criterion
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When the Bayesian estimation method is used, the deviance information
criterion (DIC) is often used as a GOF measure instead of the AIC or
BIC.

Deviance information criterion

where      is the average of the deviance (              ) over the posterior 
distribution, and      is the deviance calculated at the posterior mean 
parameters. As with the AIC and BIC, the DIC uses                       (effective 
number of parameters) as a penalty term on the GOF. Differences in DIC from 
5 to 10 indicate that one model is clearly better.
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The widely applicable information criterion (WAIC) (Watanabe, 2010) is a 
measure that is like the DIC (i.e., adds a penalty term for minimizing 
overfitting), but incorporates the variance of individual terms (the D s in the 
equation above). According to Gelman et al. (2014), the “WAIC has the 
desirable property of averaging over the posterior distribution rather than 
conditioning on a point estimate” (p. 9), as it is done with the AIC and DIC. 
Because of this, the WAIC provides a better assessment of models estimated 
by the Bayesian method.

Widely applicable information criterion
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The Bayes factor is a powerful tool to assess different models using the same 
dataset when the Bayes estimating method is used. For example, the Bayes 
factor, B12, compares model M1 to model M2 after observing the data (Lewis 
and Raftery, 1997). The Bayes factor is the ratio of the marginal likelihoods of 
the two models being compared                                         . For calculating 
the marginal likelihood, the method developed by Lewis and Raftery (1997) 
can be used. The approximation of the marginal likelihood is carried out on 
the logarithmic scale such that:

Bayes factors

Assuming that the prior probabilities for the competing models are equal, 
B12 is expressed as follows:

A difference between 20 and 150 strongly supports the selection of Model 1 
over Model 2.
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The deviance is a measure of GOF and is defined as twice the difference
between the maximum likelihood achievable (yi = μi) and the likelihood
of the fitted model:

Deviance

The deviance for the NB model can be calculated as follows:
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The mean prediction bias (MPB) measures the magnitude and direction
of the model bias. It is calculated using the following equation:

Mean prediction bias

A positive value indicates the model over-estimate values, while a negative 
value shows the model under-predict values.
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The mean absolute deviance (MAD) calculates the absolute difference 
between the estimated and observed values:

Mean absolute deviation

Smaller values are better.
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The mean squared prediction error (MSPE) is a traditional indicator of error 
and calculates the difference between the estimated and observed values 
squared. The equation is as follows:

Mean squared prediction error

A value closer to 1 means the model fits the data better.
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The mean squared error (MSE) calculates the sum of the squared differences 
between the observed and estimated crash frequencies divided by the sample 
size minus the number of parameters in the model. The MSE is calculated as 
follows:

Mean squared error

The MSE value can be compared to the MSPE. If the MSE value is larger
than the MSPE value, then the model may overpredict crashes.
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The mean absolute percentage error (MAPE) is a statistical technique that is 
used for assessing how well a model predicts values (in the future). It 
measured as a percentage. The MAPE is calculated using this equation:

Mean absolute percentage error

Where Ai is the actual value and Pi is the predicted value for site or
observation i. It should be pointed out that the equation will not work if
one or more actual values is 0. A smaller percentage indicates that a model
is better at predicting values.
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Another useful likelihood statistic is the Pearson Chi-square and is defined as

Pearson Chi-square

If the mean and the variance are properly specified, then

..

Values closer to n (the sample size) show a better fit.
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Miaou (1996) has proposed using the dispersion-parameter-based coefficient 
of determination       a to evaluate the fit of an NB model when it
is used for modeling crash data. It is computed as follows:

Coefficient of Determination

where α is the dispersion parameter of the NB model that includes 
independent variables (i.e.,                         ); and, αnull is the dispersion 
parameter of the NB model when no parameters are included in the model.
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The cumulative residuals (CURE) consist of plotting the cumulative difference 
between the estimated and observed values (                   , where ri
represents the residual for observation or rank i) in the increasing order of the 
variable that is being analyzed.

The CURE plot allows the safety analyst to examine how the cumulative
difference varies around the zero-line, which can help determine where,
in the range of the variable examined, the model over- or underestimate
the number of crashes.

Cumulative Residuals
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Cumulative Residuals
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To properly evaluate the fit, the 95%-percentile confidence interval (CI) needs 
to be calculated. The CI is calculated using the variance of the residual i (i.e.,

) and then cumulating the variance for the increasing order of the 
variable. The following equation can be used for this purpose:

Cumulative Residuals
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Cumulative Residuals
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Cumulative Residuals
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Cumulative Residuals

Rank Flow Residual CumulativeAdjusted Squared ReCumulativeUpper CI Lower CI
1 1542 ‐12.4 ‐12.4 0.0 152.6 152.6 24.7 ‐24.7
2 7793 ‐30.0 ‐42.4 ‐41.9 902.1 1054.7 64.9 ‐64.9
3 8425 ‐29.4 ‐71.8 ‐72.5 864.1 1918.8 87.6 ‐87.6
4 9142 ‐53.2 ‐124.9 ‐127.0 2826.6 4745.4 137.6 ‐137.6
5 9474 74.1 ‐50.9 ‐53.6 5489.3 10234.7 201.7 ‐201.7
6 9856 ‐37.6 ‐88.4 ‐91.9 1412.9 11647.6 215.1 ‐215.1

… … … … … … … … …

215 45685 258.3 71.7 0.0 66733.8 1660753.9 0.0 0.0
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Cumulative Residuals

Above red line < 8,057 veh/day
Below red line > 8,057 veh/day
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Cumulative Residuals
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Heuristic methods for model selection
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Heuristic methods for model selection


