Crash-Frequency Models

Part 2

November 10, 2021

Instructor: Dominique Lord Texas A&M University

<u>d-lord@tamu.edu</u>

HIGHWAY SAFETY ANALYTICS AND MODELING

DOMINIQUE LORD XIAO QIN SRINIVAS R. GEEDIPALLY

Textbook

The material presented in this series of lectures are taken from this textbook and other sources based on lectures given by the authors.

The textbook is available on Amazon and the Elsevier website below among other places.

https://www.elsevier.com/books/highway-safety-analytics-and-modeling/lord/978-0-12-816818-9

Textbook

Datasets for examples and updates/corrections can be find in the following link: <u>https://dlord.engr.tamu.edu/highway-safety-analytics-and-modeling/</u>

3

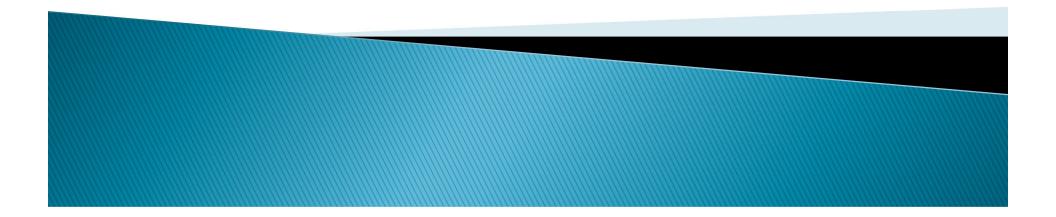
Crash-Frequency Models

- Basic Models
 - Poisson, NB, PLN
- Generalized count models for underdispersion
 - COM-Poisson
- Finite mixture and multivariate models
- Multi-distribution models
 - NB-L, NB-GE
- Models for better capturing unobserved heterogeneity
 - Random Effects, Random Parameters
- Semi- and nonparametric models

• GAMs, Semi-parametric Poisson, NB-Dirichlet process SVM, MLP (Neural Network), BNN

Model Selection

- Selection of model should be based on characteristics of data and study objectives
- Pragmatic approach: MLE (for simple) and Bayesian (for complex)
- Goodness-of-fit not the sole objective
- Goodness-of-logic is also important
- It is good to introduce new models/methods, but it should address a specific problem
- Although the NB model can suffer from methodological issues, it is still a very solid model that has been studied extensively


Outline

- Empirical Bayes (EB) Method
- Crash Variance and Variance Function
- Low Sample Mean and Small Sample Size
- Goodness of Logic
- Reducing Unobserved Heterogeneity
- Correlation between Severity Models
- Safety Performance of Automated Vehicles (New topic)

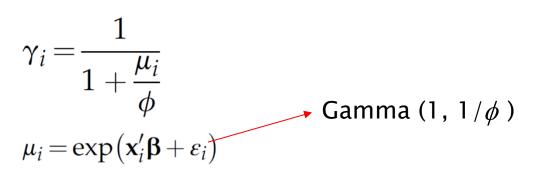
Empirical Bayes Method

(introduction – it will be discussed more as part of Chapter 7)

EB Method

The empirical Bayes (EB) method was initially developed as an approximation of the Bayes method, as the latter method requires a multidimensional integration of the total prior function of the Bayesian (bottom of equation), which was first described in Chapter 2:

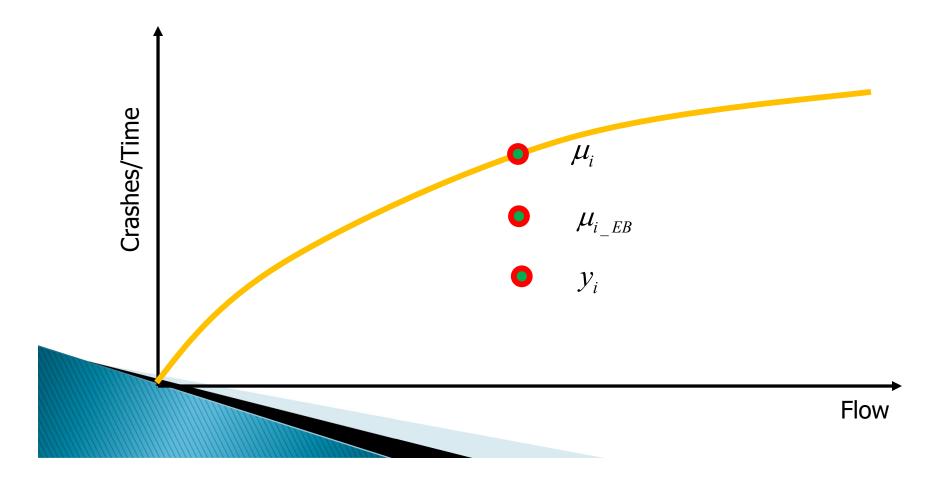
$$f(\mu|y) = \frac{p(y|\mu)f(\mu)}{\int_a^b p(y|\mu)f(\mu)d\mu}$$

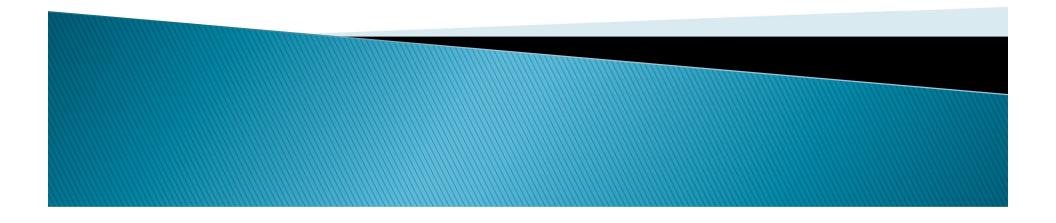

With the availability of very advanced computing power and the application of the Markov Chain Monte Carlo (MCMC), the EB method is basically no longer use in statistics and other fields. However, it remains very popular in highway safety.

The EB method was initially introduced by researchers from England (TRRL) in a 1981 paper (Abbess et al., 1981) and later refined by Ezra Hauer in the late 80s and early 90s.

EB Method

In highway safety, the EB method consists of using two sources of information: **one coming from the site investigated** and **one coming from a population of sites that are assumed to have the same basic characteristics** (e.g., 4legged urban signalized intersections, 4-lane divided rural arterials). The EB estimate is calculated as follows (based on the NB distribution/model):


$$\mu_{i_EB} = \gamma_i \mu_i + (1 - \gamma_i) y_i$$


Note: In the context of modeling for estimating the safety of entities, the same sites/observations y_i are used for estimating μ_i . For statisticians, this is a violation of the Bayes rules (using data twice).

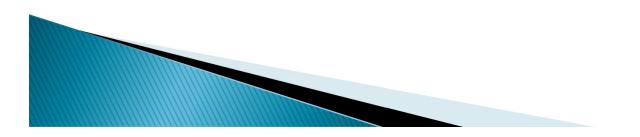
In the context of safety estimation, the EB method is assumed to more accurately estimate the long-term mean of a given site. Recall that the simplified assumption states that crashes for a given site/observations follow a Poisson distribution (over time) where the mean is gamma distributed (or other distributions).

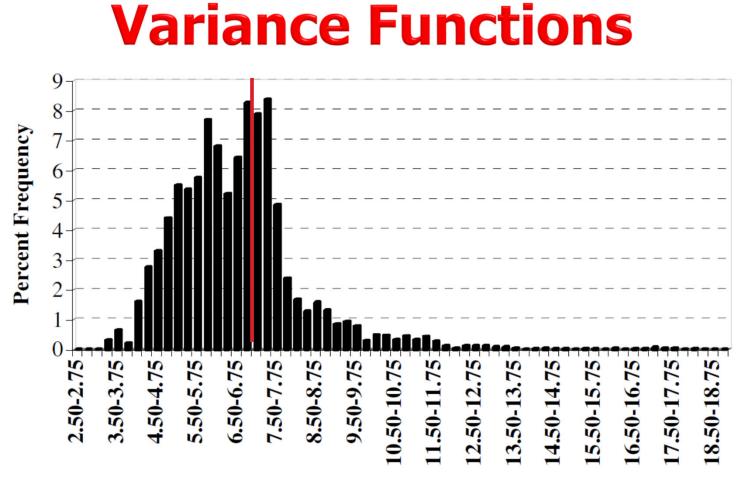
Crash Modeling and Variance Function

Variance Functions

 $Var(y) = \mu + \alpha \mu^2$

Function of segment length:


Fixed:


$$\alpha_i = e^{\gamma_0} L_i^{\gamma_1}$$
$$\alpha_i = \frac{1}{e^{\gamma_0} L_i}$$

Function of covariates:

$$\alpha_i = e^{\gamma_0 + \gamma_1 \times AADT_{maj,i} + \gamma_2 \times AADT_{min,i} + \gamma_3 \times AADT_{min,i}, i/AADT_{maj,i}}$$

$$\alpha_i = \exp(\mathbf{z}_i' \mathbf{\gamma} + \boldsymbol{\varpi}_i)$$

Inverse Dispersion Parameter Value

2.2200 $\phi_{it} = \exp(\eta_0 + \eta_1 F_{1,it} + \eta_2 F_{2,it} + \eta_3 F_{2,it} / F_{1,it})$ (± 0.180)

	-0.02126	0.05452	-0.8783
)	(±0.005)	(±0.009)	(±0.265)

Variance Functions

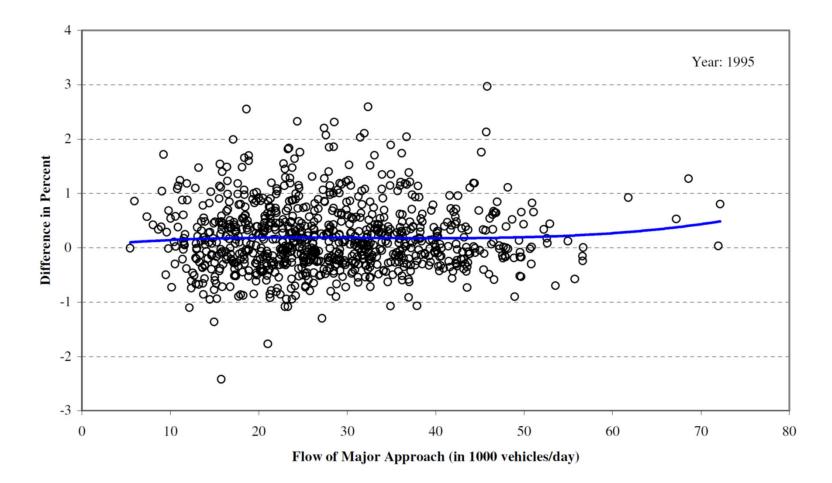


FIGURE 5. Differences in estimates of expected number of crashes for individual sites: EB versus Bayes, both with a fixed dispersion assumption.

Variance Functions

Many other models allow for a varying dispersion parameter. They include the COM-Poisson and Poisson-Inverse Gaussian among others.

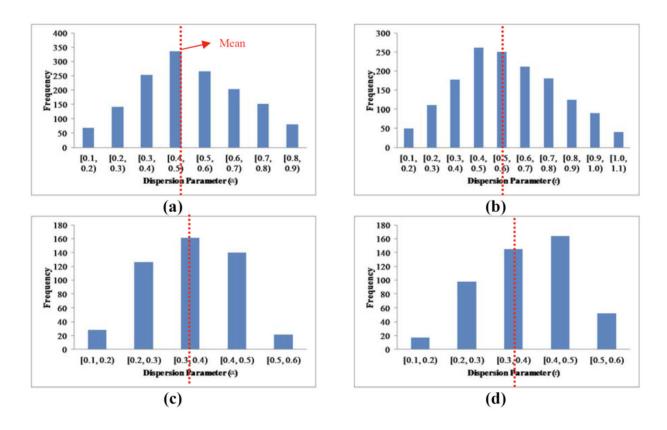
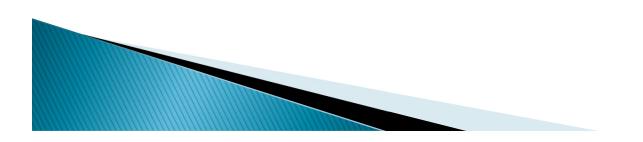


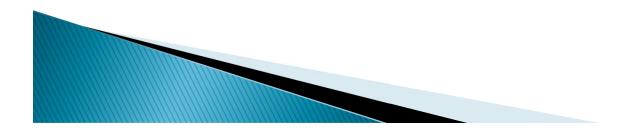
Figure 3 Distribution of Dispersion Parameter of NB and PIG Model for Texas Data ((a), (b)) and Washington Data ((c), (d)).


Low Sample Mean and Small Sample Size

LSM and SSS

Table 3. Simulation Results for $\lambda = 0.5$ (Fixed Mean)

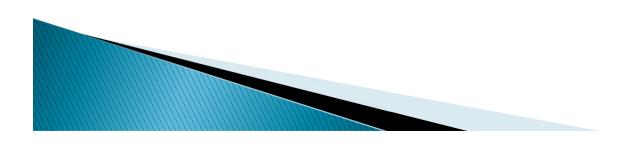
Characteristics		$\phi =$	1/2			ϕ :	=1			ϕ =	= 2	
	â	MM1	WR ²	ML ³	â	MM	WR	ML	â	MM	WR	ML
		n=	50 [†]			n=	50			n=50		
Mean	0.54	0.70	0.71	0.67	0.51	3.18	3.25	2.74	0.52	6.04	6.17	5.72
	$(0.15)^{\ddagger}$	(0.35)	(0.36)	(0.36)	(0.09)	(4.67)	(4.77)	(3.68)	(0.10)	(8.18)	(8.35)	(8.08)
Max	0.96	1.67	1.70	1.80	0.66	25.75	26.27	20.10	0.74	29.65	30.25	32.98
Min	0.32	0.20	0.21	0.27	0.34	0.52	0.53	0.47	0.30	0.91	0.92	1.21
		n=	100		n=100				n=100			
Mean	0.47	0.74	0.75	0.67	0.52	1.45	1.47	1.28	0.53	3.90	3.94	3.67
	(0.11)	(0.38)	(0.39)	(0.29)	(0.09)	(0.98)	(0.99)	(0.83)	(0.10)	(3.83)	(3.87)	(3.42)
Max	0.67	1.89	1.91	1.45	0.68	4.30	4.34	3.48	0.70	19.72	19.92	17.82
Min	0.26	0.23	0.23	0.29	0.32	0.36	0.36	0.33	0.37	1.35	1.36	1.25
		n=1	000			n=1	.000			n=1	.000	
Mean	0.51	0.52	0.52	0.49	0.49	1.01	1.01	1.00	0.51	2.08	2.08	2.09
	(0.03)	(0.07)	(0.07)	(0.06)	(0.03)	(0.21)	(0.21)	(0.20)	(0.02)	(0.47)	(0.47)	(0.47)
Max	0.56	0.78	0.78	0.75	0.54	1.53	1.53	1.51	0.56	3.00	3.00	3.10
Min	0.46	0.38	0.38	0.41	0.44	0.66	0.66	0.69	0.47	1.29	1.29	1.29
⁺ Sample size, [‡] Stand	lard deviation	n, ¹ Method o	f moments (Estimator 1)	² Weighted	Regression (Estimator 2)	, ³ Maximum	Likelihood (I	Estimator 3)	-	



LSM and SSS

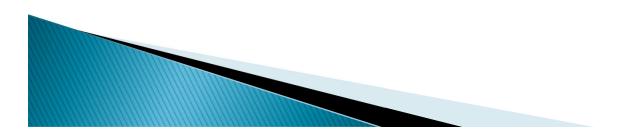
Table 8. Effects of an Unreliably Estimated Dispersion Parameter

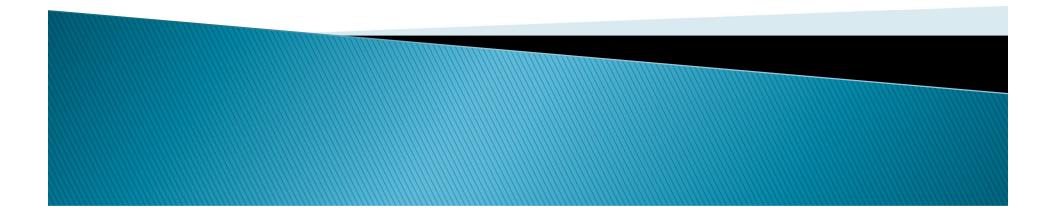
 $(\lambda = 0.5)$


У	Freq*	$^{*}\phi$	=1	$\phi = 2$			$\phi = 3$			
		γ	$\hat{\hat{\mu}}$	γ	$\hat{\hat{\mu}}$	[†] Diff	γ	$\hat{\hat{\mu}}$	[†] Diff	
0	67	0.67	0.33	0.80	0.40	20.0%	0.86	0.46	28.6%	
1	26	0.67	0.67	0.80	0.60	10.0%	0.86	0.57	14.3%	
2	5	0.67	1.00	0.80	0.80	20.0%	0.86	0.71	28.6%	
3	1	0.67	1.33	0.80	1.00	25.0%	0.86	0.86	35.7%	
4	0									
5	1	0.67	2.00	0.80	1.40	30.0%	0.86	1.14	42.9%	
Total	100									
Ave	0.44									
100		e, [‡] Theor	etical valu	e used for	the simul	ation, [*] Fre	quency or	number o	of	
observat	ions									

Sample Size

Population sample mean	Minimum sample size
5.00	200
4.00	250
3.00	335
2.00	500
1.00	1000
0.75	1335
0.50	2000
0.25	4000


TABLE 6.4Recommended sample size (Lord, 2006).



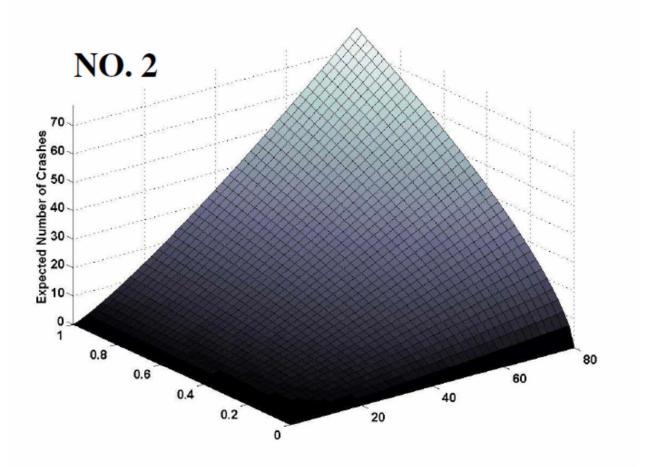
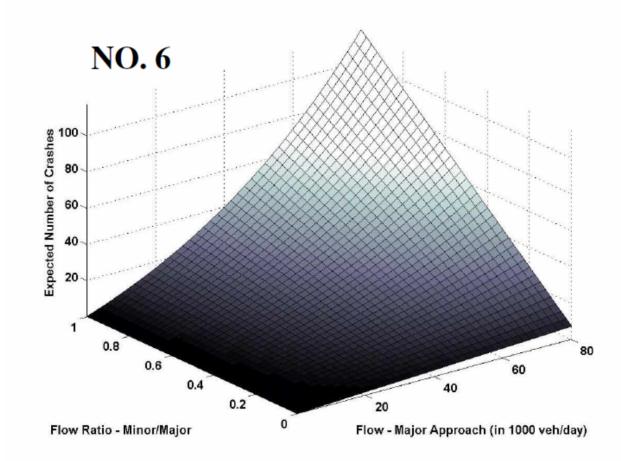
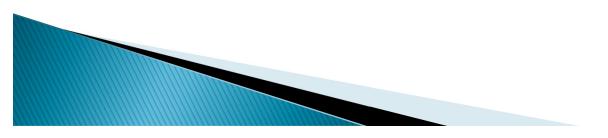
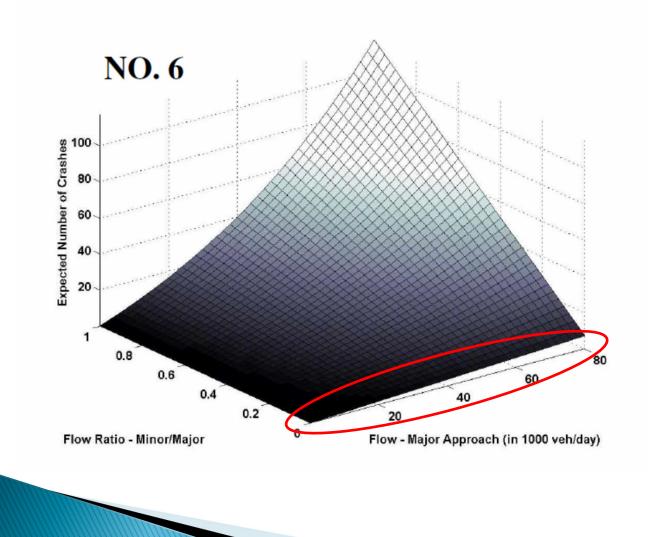

Sample Size

TABLE 6.5Recommended minimum sample size for Bayesian Poisson-lognormal
models (Miranda-Moreno et al., 2008).


Population sample mean	Minimum sample size
≥2.00	20
1.00	100
0.75	500
0.50	1000
0.25	3000

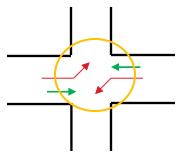

 $\beta_{0,t} F_{1,it}^{\beta_1} F_{2,it}^{\beta_2}$ If either F_1 or $F_2 = 0$, no crash can occur, but if no F_2 , vehicles on major road can still turn and hit another vehicle on major road. (crash risk not zero)

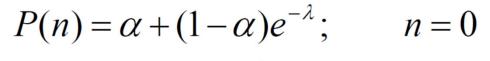


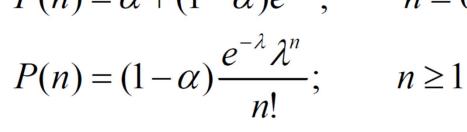
 $F_{1,it}\lambda_{1,it} + F_{2,it}\lambda_{2,it}$

where

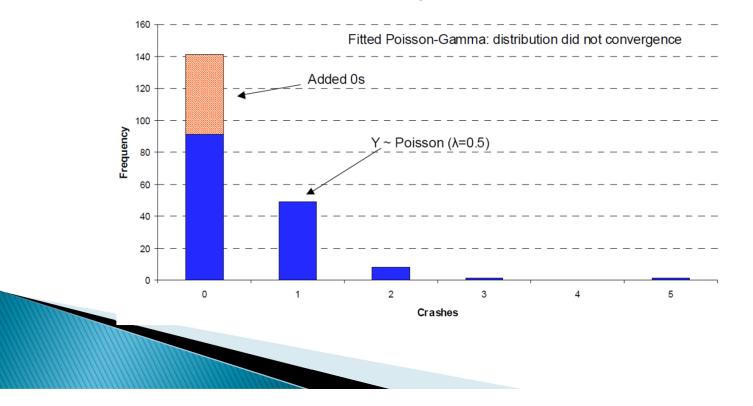
$$\lambda_{1,it} = \exp(\beta_{0,t} + \beta_1 F_{2,it})$$
$$\lambda_{2,it} = \exp(\beta_{0,t}^* + \beta_2 F_{1,it})$$

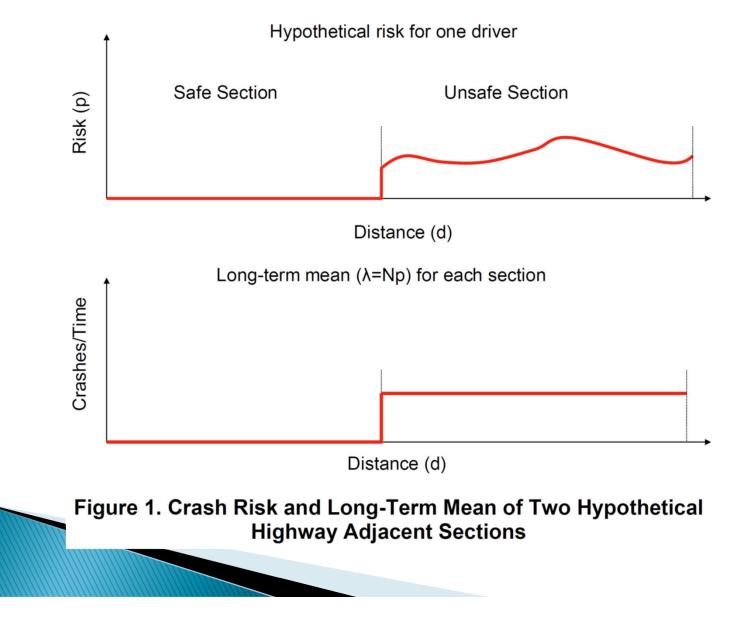


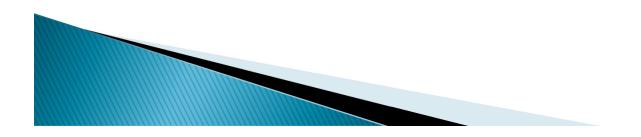



$$F_{1,it}\lambda_{1,it} + F_{2,it}\lambda_{2,it}$$

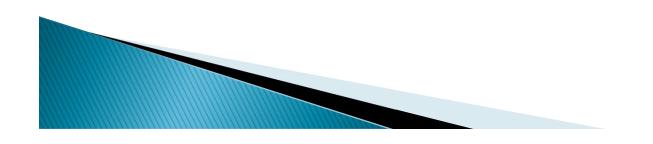
where


$$\lambda_{1,it} = \exp(\beta_{0,t} + \beta_1 F_{2,it})$$
$$\lambda_{2,it} = \exp(\beta_{0,t}^* + \beta_2 F_{1,it})$$





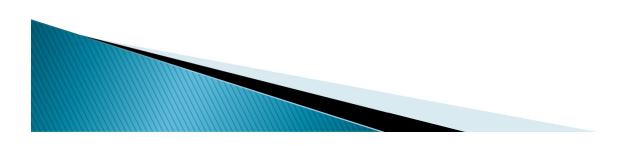
1-km Segments


Variable	Estimate Coefficients	<i>t</i> -Statistic
Zero-inflated State		
Constant	-10.731	-5.84
Environmental characteristics		
Visibility (miles)	0.959	1.78
Wet road surface indicator (1 if the road surface is wet, 0 otherwise)	-1.663	-3.64
Chemically Wet road surface indicator (1 if the road surface is chemically wet, 0 otherwise)	-1.864	-5.04
Traffic characteristics		
Hourly traffic volume (in 1000 vehicles per hour)	-0.611	-9.06
Truck percentage (%)	0.439	5.95
Temporal characteristics		
Night indicator (1 if the time period is at night, 0 otherwise)	0.352	1.94
Road characteristics		
Segment length (miles)	0.755	4.60
Number of lanes	1.917	6.10
Good pavement condition indicator (1 if the pavement condition is good, 0 otherwise)	0.680	2.63



ronmental characteristics	-10.673	-9.31
onmental characteristics		
s wind speed (mph)	-0.013	-1.75
road surface indicator (1 if the road surface is wet, 0 otherwise)	-0.529	-3.70
c characteristics		
speed limit (1 if the speed limit is less than 60 mph, 0 otherwise)	0.387	1.83
rence between speed limit and current traffic speed (speed limit minus traffic speed)	0.081	29.75
<pre>c percentage (%)</pre>	0.107	2.69
poral characteristics		
et indicator (1 if the time period is during sunset, 0 otherwise)	-0.200	-1.88
ember indicator (1 if the time period is in November, 0 otherwise)	0.292	3.20
–5 am indicator (1 if the time period is between 4 am to 5 am, 0 otherwise)	-0.608	-1.96
I characteristics		
ber of merging ramps per lane per mile	-1.072	-2.65
nent length (miles)	0.786	5.44
ber of lanes	0.849	3.69
ature (degree)	0.406	3.07
Remaining service life of rutting indicator (1 if the value of ruti is higher than 99, 0 otherwise)	0.546	2.88
	1.818	3.57
te-specific)	0.484	7.54
g statistic	4.48	
og Likelihood	15,145	

TADLE 5. TO	Disterior Means,	Stanuaru De	viations, 757	o Creatore II	iter vals for 1	AD MIATURES
NB M	lixtures	W	$Ln(\beta_0)$	eta_1	β_2	ϕ
	Estimate		-10.2300	0.6190	0.6854	7.0894
Single	(Std. dev.)	1.0	(0.4659)	(0.0459)	(0.0216)	(0.6156)
Component	(2.5%)	1.0	(-11.1707)	(0.5296)	(0.6428)	(5.9590)
	(97.5%)		(-9.3241)	(0.7118)	(0.7273)	(8.3760)
	Component 1					
	Estimate	0.430	-10.9407	0.8588	0.5056	9.3692
	(Std. dev.)	(0.153)	(1.3641)	(0.1595)	(0.0812)	(1.6220)
	(2.5%)	(0.150)	(-13.8766)	(0.5991)	(0.3199)	(6.8739)
Two	(97.5%)	(0.731)	(-8.3865)	(1.2297)	(0.6384)	(12.9768)
Component	Component 2					
	Estimate	0.570	-9.7842	0.3987	0.8703	8.2437
	(Std. dev.)	(0.153)	(1.0447)	(0.1289)	(0.0782)	(1.3502)
	(2.5%)	(0.268)	(-11.8434)	(0.1116)	(0.7445)	(6.0746)
	(97.5%)	(0.849)	(-7.6601)	(0.6181)	(1.0497)	(11.2873)



- Important objective, but should not be the sole objective
- Two different philosophies:
 - Reduce it via the parameters (Random Parameters)
 - Reduce it via the error (multi-distribution, such as the NB-L)
- Do both at the same time (RPNB-L and other recent expansions)?

	1 able 4. Mio	uening Kesu	its for the fi	iulalla Data	۱.	
Variable	NB		NB	3-L	ZIN	${ m VB}^{\dagger}$
variable	Value	Std. dev	Value	Std. dev	Value	Std. dev
INTERCEPT (β ₀)	-4.779	0.979	-3.739	1.115	-8.3381	1.126
$Ln(ADT)(\beta_1)$	0.7219	0.091	0.630	0.106	1.0845	0.105
FRICTION (β_2)	-0.02774	0.008	-0.02746	0.0111	-0.0205	0.008
PAVEMENT (β ₃)	0.4613	0.135	0.4327	0.217	0.2306	0.151
MW (β ₄)	-0.00497	0.001	-0.00616	0.002	-0.0023	0.002
BARRIER (\$65)	-3.195	0.234	-3.238	0.326	-1.5095	0.389
RUMBLE (β_6)	-0.4047	0.131	-0.3976	0.213	-0.511	0.151
$\alpha = 1/\phi$	0.934	0.118	0.238	0.083	0.375	0.056
DIC ¹	1900)	17	01	18	50 [‡]
MAD^2	6.91		6.8	39	8.	04
MSPE ³	206.7	76	195.54		268	3.01
Pearson χ^2	1174	4	97	78	85	51
$MCPD^4$	454		26			78
¹ Deviance Information (Criterion: ² Mean A	bsolute Devia	nce (Oh et al. 2	003) ^{, 3} Mean S	Squared Predict	tive Error (Oh

Table 4. Modeling Results for the Indiana Data.

¹ Deviance Information Criterion; ² Mean Absolute Deviance (Oh et al, 2003); ³ Mean Squared Predictive Error (Oh et al, 2003); ⁴ Maximum Cumulative Residual Plot Deviation (Geedipally et al, 2010). [†]Estimated using the MLE and the inflated parameters are not presented here; ‡AIC

Parameters -	1	NB	RI	PNB	N	B-L	RPNB-L		
rarameters .	Value	Std. Dev.	Value	Std. Dev.	Value	Std. Dev.	Value	Std. Dev.	
Parameter Mea	n								
Intercept	-4.449	0.067	-5.486	0.035	-3.947	0.162	-4.443	0.206	
Log(ADT)	0.689	0.133	0.816	31.750	0.651	0.145	0.717	0.231	
Friction	-0.027	0.011	-0.029	0.133	-0.027	0.012	-0.032	0.015	
Pavement	0.422	0.189	0.588	0.012	0.445	0.210	0.605	0.281	
Median Width	-0.005	0.002	-0.012	0.240	-0.006	0.002	-0.012	0.004	
Barrier	-3.031	0.308	-6.614	0.003	-3.282	0.338	-6.152	0.898	
Rumble	-0.405	0.186	-0.288	0.437	-0.404	0.207	-0.329	0.260	
$\alpha = 1/\phi$	0.950	0.122	0.137	0.035	0.239	0.083	0.128	0.028	
θ					1.464	0.180	1.414	0.173	
Std. Deviation of	of Random	Parameters							
Log(ADT)			0.302	0.172			0.232	0.137	
Friction			0.057	0.011		-	0.056	0.011	
Pavement			0.326	0.216		-	0.291	0.200	
Median Width			0.028	0.003		-	0.028	0.003	
Barrier			2.390	0.399		-	1.925	0.709	
Rumble			0.379	0.242		-	0.310	0.183	
Model Perform	ance								
Dbar	189	91.93	14	81.09	158	35.93	142	2.70	
Dhat	18	83.01	12	96.86	146	59.51	127	6.00	
pD	8	.92	18	4.22	11	6.41	14	6.30	
DIC	190	00.84	- 160	5.31+ 1736	170	2.34	156	9.00	
MAD ⁵	6	.92	6	.90	6	.88	6	.71	
Note: † With the M	VILE RPNE	, only three v	ariables (lo	garithm of AD	T. presenc	e of median b	arrier and i	nterior	

rumble strips) were found to be random. This increased the Deviance Information Criterion or DIC to 1736.

Table 2

Posterior estimates of model parameters for multi-vehicle crashes along rural mountainous highways.

Variables	RPNB		RPNB-L		RPNB-GE	
	Mean (Std. Dev ^a)	[95% BCI ^b]	Mean (Std. Dev.)	[95% BCI]	Mean (Std. Dev)	[95% BCI]
Constant	-7.634 (1.886)	[-11.690,-3.606]	-9.098 (1.610)	[-13.100,-6.273]	- 8.025 (1.617)	[-10.630,-4.259]
Exposure variable Log (ADT x segment length)	0.473 (0.135)	[0.187,0.757]	0.517 (0.116)	[0.296,0.767]	0.511 (0.114)	[0.251,0.710]
Real-time weather conditions Heavy rainfall indicator at time of crash (1 if 1-hour amount of rainfall is greater than 5.08 mm, 0 otherwise)	0.860 (0.408)	[0.069,1.732]	0.897 (0.403)	[0.113,1.714]	0.936 (0.419)	[0.071,1.746]
Longitudinal grades Combination of horizontal and vertical alignment indicator; Category 4: (1 if more than 50% of a segment has horizontal curve and absolute gradient > 4%, 0 otherwise)*	-0.094 (0.217)	[-0.538,0.307]	-0.018 (0.232)	[-0.474,0.443]	0.010 (0.194)	[-0.419,0.344]
Standard deviation of distribution	0.352 (0.244)	[0.022,0.954]	0.310 (0.223)	[0.031,0.860]	0.279 (0.223)	[0.000,0.800]
Cross-sectional elements Presence of a passing lane (1 if there is a passing lane along the segment, 0 otherwise)	-1.164 (0.466)	[-2.089,-0.295]	- 1.104 (0.476)	[-2.230,-0.246]	-1.139 (0.466)	[-2.094,-0.270]
Roadway and roadside features Number of minor junctions Presence of road delineation (1 if there are road delineations such as guide posts and chevron signs along the segment, 0 otherwise) [°] Standard deviation of distribution	0.212 (0.060) - 0.209 (0.230) 0.483 (0.346)	[0.094,0.329] [-0.675,0.221] [0.049,1.409]	0.213 (0.059) -0.237 (0.231) 0.522 (0.332)	[0.097,0.329] [-0.710,0.191] [0.076,1.335]	$\begin{array}{c} 0.216 \\ (0.060) \\ - 0.241 \\ (0.265) \\ 0.565 \\ (0.381) \end{array}$	[0.099,0.335] [-0.763,0.260] [0.082,1.587]
Dispersion parameter Lindley parameter (Theta)	1.901 (0.661) -	[0.998,3.576] -	1.911 (0.674) 0.862	[0.996,3.589] [0.080,2.979]	1.884 (0.645)	[0.999,3.454]
Parameter of GE Distribution (a) Parameter of GE Distribution (b)			(0.770)		2.031 (0.569) 1.498 (0.289)	[1.059,2.956] [1.023,1.972]
Number of parameters LL DIC MAD MSPE MSE	7 425.650 885.100 0.541 0.690 0.690		7 425.550 752.800 0.539 0.672 0.687		7 425.700 870.500 0.541 0.674 0.690	

* random parameter.

^a Std. Dev: Standard deviation of posterior estimates.

^b BCI: Bayesian Credible Interval.

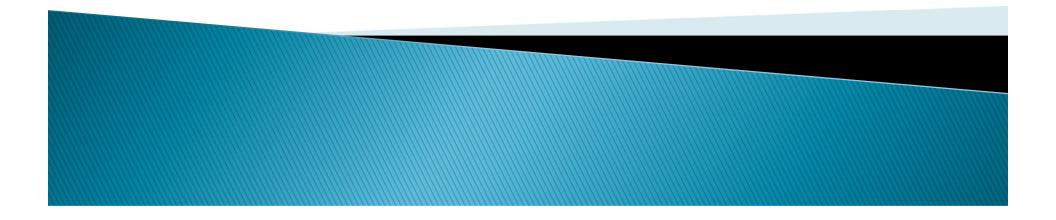
Table 3

Analysis of FSI Crashes using Bayesian Inference and MCMC Simulation.

Response variable: FSI Crashes	Random Parameters Negative Binomial				Random Parameters NB with Heterogeneity in Means			Random Parameters NB- Lindley			Random Parameters NB with Heterogeneity in Means - Lindley		
Explanatory Variables	Mean	Std. Dev	MC error	Mean	Std. Dev	MC error	Mean	Std. Dev	MC error	Mean	Std. Dev	MC error	
Constant	-11.96	0.82	0.03	-12.80	1.32	0.05	-14.03	1.26	0.05	-14.43	1.84	0.07	
Logarithm of AADT	0.083	0.06	0.02	0.15	0.09	0.03	0.21	0.07	0.03	0.14	0.17	0.07	
Logarithm of AADT (Std. Dev.)	0.028	0.02	0.01	0.03	0.02	0.01	0.03	0.02	0.01	0.03	0.02	0.01	
Logarithm of MCV volume	1.03	0.12	0.04	0.98	0.12	0.04	0.97	0.12	0.04	1.02	0.17	0.06	
Urban single carriageway	1.58	0.61	0.02	2.13	1.05	0.04	2.13	0.65	0.02	1.99	0.88	0.03	
Rural single carriageway with high-speed limit	2.82	0.49	0.02	3.43	1.01	0.04	3.48	0.53	0.02	3.29	0.82	0.03	
Rural single carriageway with high-speed limit (Std. Dev.)	0.20	0.18	0.01	0.21	0.16	0.01	0.17	0.14	0.01	0.20	0.17	0.01	
Rural single carriageway with medium-speed limit	1.59	0.97	0.02	2.21	1.29	0.04	2.11	1.01	0.02	2.04	1.17	0.03	
Curve longer than 50% of the segment length	-0.53	0.56	0.02	-0.38	0.64	0.02	-0.61	0.52	0.02	-0.47	0.69	0.02	
Curve longer than 50% of the segment length (Std. Dev.)	0.68	0.68	0.02	0.62	0.63	0.02	0.69	0.71	0.02	0.79	0.74	0.02	
	Heteroge	neity in .	Means of R	andom Para	umeters								
Curve longer than 50% of the segment length: Roll Terrain	-	-	-	-0.56	0.91	0.02	-	-	-	-0.54	0.96	0.02	
Dispersion parameter (α)	2.66	1.29	0.01	2.66	1.28	0.01	3.06	1.39	0.01	3.01	1.39	0.01	
Average Log Likelihood	-283.12									-270.37			
				-283.30			-269.69						
DIC	603.09			604.75			568.77			589.56			
MAD	0.089	0.01	0.00	0.088	0.01	0.00	0.085	0.01	0.00	0.086	0.01	0.00	
MSPE	0.121	0.03	0.00	0.122	0.01	0.00	0.123	0.04	0.00	0.125	0.05	0.00	
theta	-	-	-	-	_	-	1.29	1.05	0.04	0.64	0.78	0.03	

Response variable: FSI Crashes	Random Parameters Poisson			Random Parameters Poisson with Heterogeneity in Means			Random Parameters Poisson- Lindley		Random Parameters Poisson with Heterogeneity in Means - Lindley			
Explanatory Variables	Mean	Std. Dev	MC error	Mean	Std. Dev	MC error	Mean	Std. Dev	MC error	Mean	Std. Dev	MC error
Constant	-13.08	1.22	0.05	-13.26	1.37	0.05	-13.24	1.58	0.06	-13.20	1.23	0.05
Logarithmic of AADT	0.16	0.13	0.05	0.21	0.09	0.04	0.07	0.11	0.04	0.31	0.13	0.05
Logarithmic of AADT (Std. Dev.)	0.03	0.03	0.01	0.03	0.02	0.01	0.04	0.03	0.01	0.02	0.02	0.01
Logarithmic of MCV volume	0.98	0.15	0.05	0.93	0.12	0.04	1.04	0.13	0.05	0.89	0.14	0.05
Urban single carriageway	2.32	0.98	0.04	2.28	0.92	0.03	1.76	0.76	0.03	1.78	0.63	0.02
Rural single carriageway with high-speed limit	3.58	0.91	0.04	3.62	0.90	0.04	2.99	0.71	0.03	3.20	0.51	0.02
Rural single carriageway with high-speed limit (Std. Dev.)	0.31	0.21	0.01	0.24	0.19	0.01	0.19	0.17	0.01	0.14	0.13	0.00
Rural single carriageway with medium- speed limit	2.37	1.24	0.04	2.36	1.18	0.03	1.80	1.07	0.03	1.81	1.00	0.02
Curve longer than 50% of the segment length	-0.65	0.53	0.02	-0.51	0.62	0.02	-0.64	0.48	0.02	-0.56	0.62	0.02
Curve longer than 50% of the segment length (Std. Dev.)	0.70	0.69	0.02	0.71	0.70	0.02	0.66	0.70	0.02	0.67	0.68	0.02
	Heteroge	neity in M	leans of Ra	ndom Param	eters							
Curve longer than 50% of the segment length: Roll Terrain	-	-	-	-0.49	0.89	0.02	-	-	-	-0.47	0.93	0.02
Average Log Likelihood	-274.50									-253.56		
0 0				-276.00			-262.74					
DIC	594.73			594.75			586.70			550.03		
MAD	0.084	0.01	0.00	0.085	0.01	0.00	0.082	0.01	0.00	0.079	0.01	0.00
MAD	0.106	0.01	0.00	0.107	0.01	0.00	0.082	0.01	0.00	0.103	0.01	0.00
theta	-	-	-	-	-	-	0.104	0.01	0.00	1.55	1.21	0.00

Correlation between Crash Severities



Crash Severity Correlation

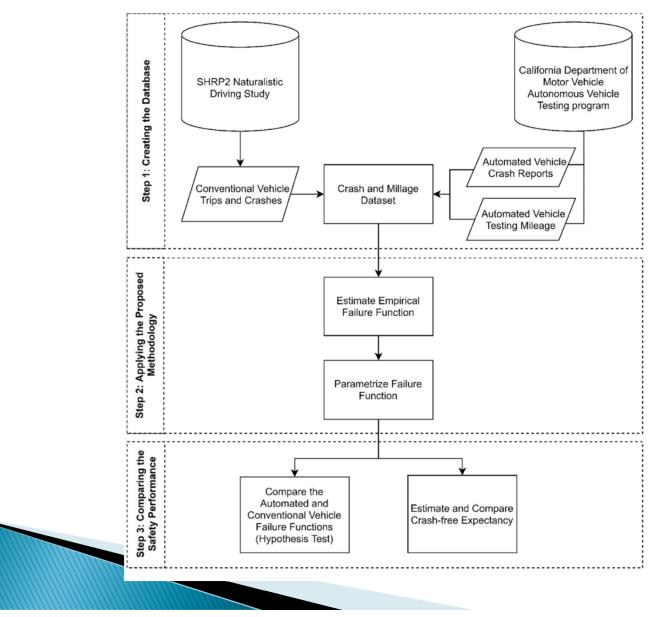
	Univariate	Multivariate
Constant	-9.9596 (0.6670)	-10.1806 (0.3065)
Lighting	0.4203 (0.1051)	0.3544 (0.0465)
Painted Left Turn	-0.2159 (0.1127)	-0.2326 (0.0420)
Curb Med Left Turn	-0.1494 (0.1482)	-0.1836 (0.0611)
Rhgt Trn Channel	0.0715 (0.1263)	0.1864 (0.0525)
ML Lanes	0.1257 (0.0723)	0.1041 (0.0373)
Mountain	0.5337 (0.1347)	0.5352 (0.0533)
Rolling	0.1260 (0.1046)	0.1403 (0.0437)
Logmaj	0.9777 (0.0717)	1.0593 (0.0315)
Logmin	0.2493 (0.0333)	0.2193 (0.0132)

Estimating the Safety Performance of Automated Vehicles

- A lot of research is now devoted to AVs
- Data related to crashes or near misses is very limited
 - In California, companies need to report all crashes involving AVs (within two weeks)
 - NHTSA is implementing such rule at the national level in the US
- This limited data availability causes important methodological challenges
 - Simulation work and risk probabilities (failure) when they are available
 - Need for methods to estimate their safety

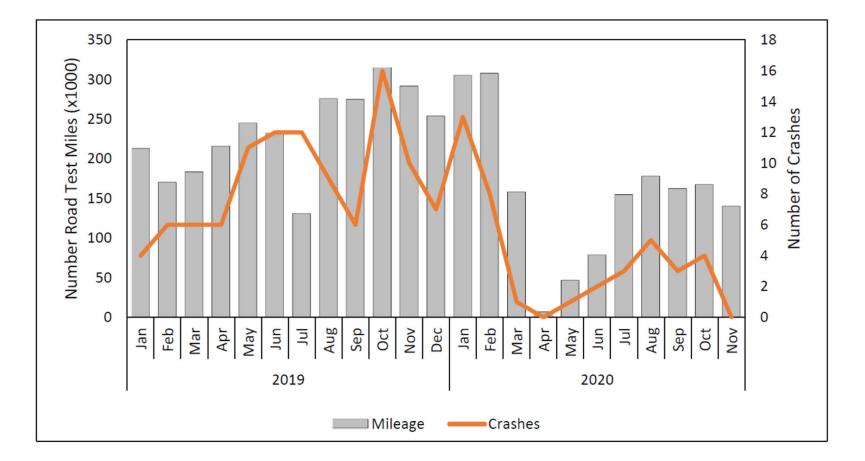
Sohrabi et al. (2021) have proposed using a duration model/hazard function for such evaluation. The goal consists of estimating time to crash given the available exposure (aggregated). The approach was also used for comparing it with human-driven vehicles (*conventional vehicles* or CV).

The probability of survival (being crash-free) beyond *x* miles is shown as:

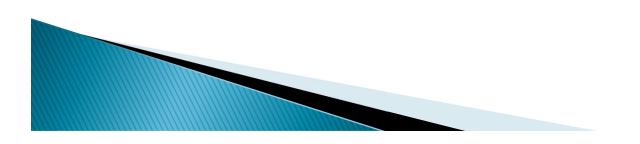

$$S(x) = \Pr(X > x) = \int_{x}^{\infty} f(x) dx$$

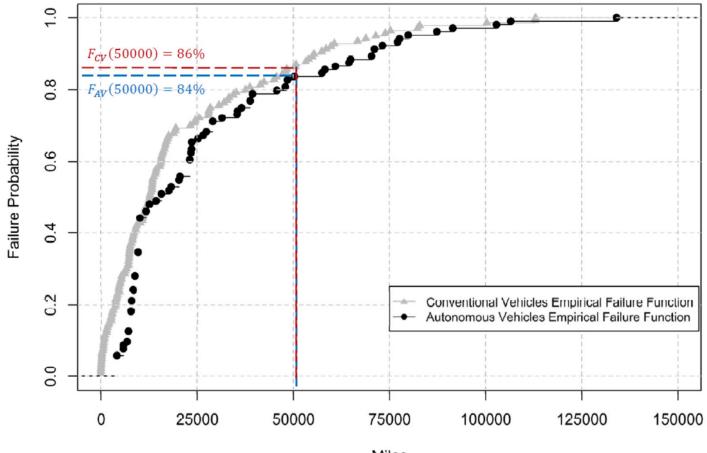
The cumulative distribution function of number of miles between crashes can then be written as: F(x) = 1 - S(x)


The first derivative of this cumulative distribution with respect to distance gives the density function f(x) = dF(x)/dx. With this, the instantaneous rate of failure (crashes) is represented by the hazard function, h(x):


$$h(x) = f(x)/[1 - F(x)]$$

Sohrabi, S., D. Lord, B. Dadashova, F. Mannering (2021)Towards the assessment of automated-vehicle safety with duration modeling. Paper submitted for publication.


Descriptive Statistics	Conventional-vehicle crash data	Automated-vehicle crash data		
Number of crashes	130	105		
Number of miles driven (million miles)	2,849,850	2,849,850		
Rate of crashes (per million miles)	45.6	36.8		
Mean miles-to-crash	21,634	27,399		
Minimum miles-to-crash	12	4,212		
Maximum miles-to-crash	112,975	134,023		
Median miles-to-crash	12,679	15,767		



Mileage	Conventional Vehicle Crash-free Expectancy (miles)	Automated Vehicle Crash-free Expectancy (miles)	Difference in Miles	Difference in Percentage	
10,000	3884	7,500	3616	93%	
25000	8027	11,724	3697	46%	
50,000	13,730	16,863	3133	23%	
100,000	20,257	24,813	4556	22%	
150,000	21,612	27,399	5787	27%	

Miles

Note: Hazard model is also covered in Chapter 7 of the textbook.