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The material presented in this series of lectures 
are taken from this textbook and other sources 
based on lectures given by the authors.

The textbook is available on Amazon and the 
Elsevier website below among other places.

https://www.elsevier.com/books/highway-safety-analytics-and-modeling/lord/978-0-12-816818-9



 Crashes are “independent” and “random” 
events (probabilistic events)

 Estimate a relationship between crashes and 
covariates (or explanatory variables)

 Determine the long-term average of crash 
occurrences for transportation facilities

 Have a wide variation of applications in 
safety analyses:
◦ Prediction
◦ Variable screening
◦ Risk factors 
◦ Before-after study



Statistical Models For Crash Data
Modeling Process

1. Determine Modeling Objectives
•Definition (Intersections, Pedestrians, etc.)
•Data availability
•Unit Scales (Crashes/year; Severity; etc.)

2. Establish Appropriate Process
•Sampling Models
•Observational Models
•Process/System State Models
•Parameter Models (Bayesian Models Only)



Statistical Models For Crash Data
Modeling Process

3. Determine Inferential Goals
•Point estimate (Value + Standard Error)
•Distribution (Bayesian Models)
•Percentiles (2.5%, 85%, etc.; Bayesian Models)

4. Select Computation Techniques
•Frequentist (MLE)
•Bayesian (via simulation)
•Empirical Bayes

5. Evaluate Models
•Goodness-of-Fit
•Prediction
•Confidence Intervals



  0 1 1 2 2i i i i p ip iy f x x x          x β 

iy is the response variable for observation i.

iβ is a p x 1 vector of estimable parameters.

x is a vector of explanatory variables.

p

i

is the number of parameters in the model.

is a random error term of the model.



The previous equation can be re-written as follows

Based on the generalized linear modeling relationship with an exponential 
canonical link function, the equation leads to the following form:

All the models described further below will follow the form described 
above.



 Over-Dispersion
◦ Unequal probability of events (Poisson trials)
◦ Unobserved heterogeneity (crash rate that differs across 

observations)
 Factors that influence crash risk not captured by the 

data/model
 Under-Dispersion (rare)
◦ Two Conditions
◦ 1) Low sample mean
◦ 2) Modeling output (Observations conditional upon the 

mean)
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Basic Count Models
Poisson Model

In a Poisson regression model, the probability of a roadway entity (segment, 
intersection, vehicle, etc.)  i having yi crashes per some time period (where yi is a 
non-negative integer) is given by:
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 |i iP y x is the probability of roadway entity (or observation) i having yi crashes 
per time period.

 expi i  x β is the Poisson mean parameter for roadway entity i. 
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Basic Count Models
Poisson-gamma Model (NB)

The PMF of the Poisson-gamma regression for yi is

The mean and variance are given by
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Basic Count Models
Poisson-gamma Model

Example – Crash Data at 3-legged signalized intersections:
0 1 2maj majF Fe    

Expected number of crashes
Where,
 

majF  Major traffic flow

1 2
0 minmajF F  

Functional form:

Functional form needed to model crash data:

minF  Minor traffic flow

Need to take the 
natural log of the 
flow variables



Basic Count Models
Poisson-gamma Model

The GENMOD Procedure

Model Information

Data Set                         WORK.C
Distribution          Negative Binomial
Link Function                       Log
Dependent Variable                Total    Total

Number of Observations Read         255
Number of Observations Used         255

Criteria For Assessing Goodness Of Fit

Criterion                     DF           Value        Value/DF
Deviance                     252        288.8580          1.1463
Scaled Deviance              252        288.8580          1.1463
Pearson Chi-Square           252        312.6975          1.2409
Scaled Pearson X2            252        312.6975          1.2409
Log Likelihood                          836.0686
Full Log Likelihood                    -606.7989
AIC (smaller is better)                1221.5978
AICC (smaller is better)               1221.7578
BIC (smaller is better)                1235.7628

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates
Standard     Wald 95% Confidence          Wald

Parameter     DF    Estimate       Error           Limits           Chi-Square    Pr > ChiSq
Intercept      1    -10.0648      1.3659    -12.7420     -7.3876         54.29        <.0001
logf_maj 1      0.7517      0.1320      0.4929      1.0105         32.41        <.0001
logf_min 1      0.4837      0.0562      0.3735      0.5939         74.01        <.0001
Dispersion     1      0.3153      0.0519      0.2135      0.4170

NOTE: The negative binomial dispersion parameter was estimated by maximum likelihood.
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Basic Count Models
Poisson-Lognormal Model (PLN)

The PMF of the Poisson-lognormal regression is not available for the PLN, since 
it does not have a closed form.

The mean and variance are given by

The error is given by
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Basic Count Models
Poisson-Lognormal Model (PLN)



Basic Count Models
Selecting between PG/NB and PLN

Calculate the % of zeros and Kurtosis with the data at hand. Then, follow the tree 
branches above.



Basic Count Models
Some of these models include:

Poisson-Weibull: The Poisson-Weibull distribution model performs as
well as the NB model and its coefficients can be easily estimated using the MLE.

Poisson-Inverse Gaussian (PIG): The PIG model performs similar to the
PLN, in that the model fits the data better at the tail end of the distribution. The 
coefficients are also easily estimated using the MLE.

Poisson-Inverse Gamma: This model also performs similar to the PLN for
long-tailed data. The model is estimated using the Bayesian estimating method, 
which requires further work than the MLE.

Sichel [SI]: This model has been used or applied more frequently than
the previous models. The SI model is recommended to be
used for long-tailed data. This model can be estimated using the MLE.

Poisson-Tweedie: Depending on the parameterization of the model, the
Poisson-Tweedie distribution models can become as special cases to the
NB, PIG, or SI model. The same characteristics as those listed above apply here.



Generalized count models for underdispersion

Conway-Maxwell-Poisson (COM-Poisson)
The PMF of the COM-Poisson regression for yi is

The mean and variance are given by
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Generalized count models for underdispersion

Other Models

Other models that have been proposed for analyzing underdispersion
include the following:

Gamma model (continuous distribution): This model cannot account for
observations with zero counts. It is presented here as a caution for not
using this model.

Gamma-count model: This modified gamma model has been proposed
by Winkelman (1995). The parameterization offered by this researcher
assumes that the observations have a direct correlation with each other in
time. In safety, this means that a crash at time t is directly related to a crash
at time t + n, which is again theoretically impossible.

Double Poisson: This model has initially been proposed by Efron (1986).
However, it has not been used often, as the normalizing constant of the
model is not properly definite. Zou et al. (2013) have proposed a different
parameterization of the constant term and found results similar to the
COM-Poisson.



Generalized count models for underdispersion

Other Models
Other models that have been proposed for analyzing underdispersion include the 
following:

Hyper-Poisson: The hyper-Poisson (hP) is a two-parameter generalization of the 
Poisson distribution. Similar to the COM-Poisson, it can model the variance function 
as a function of the covariates. It performs as well as the COM-Poisson and can be 
estimated using the MLE.

Generalized Event Count: This model uses the theoretical statistics called 
“bilinear recurrence relationship” that was introduced by Katz (1965) for describing 
the dispersion parameter of the Poisson count model. Ye et al. (2018) applied the 
model to crash data and found its performance to be similar to the hP.



Finite mixture and multivariate models
Finite Mixture Model - Poisson-Gamma Model (NB)

The PMF of the FMNB-K regression for yi is

The mean and variance are given by
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Note: Each class will have their own coefficients or parameters.



Finite mixture and multivariate models
Finite Mixture Model - Poisson-Gamma Model (NB)



Finite mixture and multivariate models
Multivariate models

Each parameter and explanatory variables are vectors/matrices:

These models are used to account for the correlation between crash severity 
levels or collision types. The most common model is the multivariate Poisson-
lognormal model. The multivariate NB has been proposed but suffers from 
important methodological limitations.

x

xx



Models for better capturing unobserved 
heterogeneity

Random-effects/multilevel model

Random-effects (RE) models, or sometimes called multilevel models, are models 
that allow the variance that may exist within different levels of the data to be 
better depicted. This is accomplished by adding one or more RE terms or 
random intercept term to capture the between observations variance. Taking the 
basic models described above, the formulation becomes



Models for better capturing unobserved 
heterogeneity

Random-Parameters NB Models (RPNB)
Same PMF as before for yi is

The parameters can have a mean and variance:
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There is also a version that account for correlation between the 
variables.



Models for better capturing unobserved 
heterogeneity

Random-Parameters NB Models (RPNB)
The log-likelihood is defined like this

where g (φi) is the probability density function of the φi.

The log-likelihood needs to be estimated using simulation, such as the Monte Carlo 
simulation (not MCMC).



Models for better capturing unobserved 
heterogeneity

Random-Parameters NB Models (RPNB)

 Although RP models reduce the unobserved 
heterogeneity, some of the coefficients may be 
difficult to explain or describe.

 Usually, only some parameters are random, while 
others are fixed.

 The issue related to Bayesian estimation vs RP 
models still need to be fully addressed
◦ Under the Bayesian estimation approach, all the 

parameters are considered random. Hence, why not use 
Bayesian and assume all variables to be random?

 Should not only be used for improving the GOF



Models for better capturing unobserved 
heterogeneity

Random-Parameters NB Models (RPNB)



Models for better capturing unobserved 
heterogeneity

Random-Parameters NB Models (RPNB)

23 variables

4 variables

Fixed

Random



Models for better capturing unobserved 
heterogeneity

Random-Parameters NB Models (RPNB)



Models for better capturing unobserved 
heterogeneity

Random-Parameters NB Models (RPNB)



Multi-distribution models
Negative Binomial-Lindley Model (NB-L)

The PMF of the NB-L regression for yi is

The mean and variance are given by

The parameterization described above can be modified and framed as a 
hierarchical model (Bayesian). See Geedipally et al. (2012).
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Statistical Models For Crash Data
Selection between NB and NB-L

Summary Statistics Michigan Dataset 
Mean 0.68 
Variance 3.15 
Standard Deviation (Sd.) 1.77 
Variance-to-Mean-Ratio (VMR) 4.62 
Coefficient-of-Variation (CV) 2.60 
Skewness (skew) 7.76 
Kurtosis (K) 123.59 
Percentage-of-Zeros (Z) 69.6% 
10-th Quantile 0 
20-th Quantile 0 
30-th Quantile 0 
40-th Quantile 0 
50-th Quantile (Median) 0 
60-th Quantile 0 
70-th Quantile 1 
80-th Quantile 1 
90-th Quantile 2 
10-th Inter-Quantile 1 
20-th Inter-Quantile 1 
30-th Inter-Quantile 1 
40-th Inter-Quantile 2 
Range 61 

 

If the skewness is greater than 1.92, use the NB-L:

>



Semi- and nonparametric models
Generalized additive models (GAMs)

The relationship between the mean and the parameters can be defined as 
follows

where β0 is the intercept of the model and         is the smooth function (e.g., P-
splines, kernel cubic regression splines, smoothers, and thin-plate regression 
splines). The generalized additive models can also include a combination of 
fixed, nonlinear functions or a combination of nonlinear functions:



Semi- and nonparametric models
Generalized additive models (GAMs)



Semi- and nonparametric models
The seminonparametric (SNP) Poisson model

For this model, the unobserved heterogeneity captured by the model’s error (ε) 
follows a K-not polynomial function.

where “K” refers to the length of the polynomial, “m” is an indicator increasing 
from 0 to “K”, am is a constant coefficient, and φ(ε) represents the PDF of the 
standard normal distribution.



Semi- and nonparametric models
The seminonparametric (SNP) Poisson model

By mixing the SNP with the Poisson distribution, the SNP-Poisson model can be 
defined as follows:



Semi- and nonparametric models
The seminonparametric (SNP) Poisson model

As the unconditional probability function of the previous equation does not have 
a closed form, the numerical method of the Gausse- Hermite quadrature needs 
to be applied to approximate the unconditional probability:



Semi- and nonparametric models
Dirichlet process models

The DP is a stochastic process that is usually used as a prior in Bayesian 
nonparametric (or semiparametric) modeling. In this regard, Escobar 
and West (1998) defined the DP as a random probability measure over 
the space of all probability measures. In that sense, the DP is 
considered as a distribution over all possible distributions; that is, each 
draw from the DP is itself a distribution, which may not be same as for 
the previous draw.



Semi- and nonparametric models
Dirichlet process models

Models that employ the Dirichlet process (DP), widely used in the 
Bayesian literature, can technically be classified as either nonparametric 
or semiparametric models depending on the modeling framework.
For semiparametric models, as applied with safety data, the count data 
still follow a Poisson distribution, but the mean or the error term is 
assumed to follow a Dirichlet distribution or process. 
As opposed to the Poisson or NB mixtures, in which two parametric 
distributions are mixed together, the DP is characterized by an infinite 
mixture of distributions, where the number of unique components or 
distributions and the component characteristics themselves can be 
learned from the data.



Semi- and nonparametric models
Dirichlet process models

In the safety literature, two semiparametric models have been proposed, one for the 
Poisson, called the Poisson-Dirichlet Process (P-DP), and one for the multi-parameter 
NB model, called the NB-DP. For the P-DP, we have this formulation:

For the NB-DP, we have the following:



Semi- and nonparametric models
Dirichlet process models

As stated in the previous section, the distribution of                     can be 
approximated by its truncated construction                             . Consequently, the 
P-TDP and NB-TDP model can be seen as a hierarchical Bayesian model described 
as follows:



Semi- and nonparametric models
Dirichlet process models



Semi- and nonparametric models
Dirichlet process models



Semi- and nonparametric models
Nonparametric models

 Nonparametric models have been used relatively 
often in highway safety.

 Popular ones: multilayer perceptron (MLP) neural 
network, convolutional neural networks, Bayesian 
neural networks (BNN), and support vector 
machine (SVM).

 Usually good for predicting crashes, but can easily 
over-fit the data.

 Caution: They work as black boxes; need to use 
tools for examining sensitivity.

 Chapter 12 covers these models in greater details. 



Model Selection
 In this lecture, we have presented different types 

of models that vary from the most basic to very 
complex.

 Positive and negative attributes have been 
provided for most of these models, along with a 
description explaining when the model could be 
suitable given the known and unknown 
characteristics of the data.

 In the highway safety literature, a lot of work has 
been devoted to the development and application 
of statistical models (in fact, this is the majority of 
the work produced in highway safety according to 
Zou and Vu, 2019).



Model Selection
 A common theme of a new study is that the “new” 

proposed model is claimed to be better than other 
previously published or widely applied models because 
it fits the data better.

 In other words, the “new” model reduces the 
unobserved heterogeneity more than the previous 
model.

 The model also needs to adequately capture the data 
generating process of the dataset under study. Miaou
and Lord (2003) refer to this subject as the 
“goodness-of-logic,” which consists of making sure the 
model properly characterizes the analyzed data and 
the model is methodologically sound.
◦ Example Zero-Inflated/Hurdle Models (see textbook)



Model Selection
 Along the same line, using a very complex model 

does not necessarily mean that the model is 
better, even if the “fit” is superior.

 The model could be overly complex given the 
study objectives or the gains they provide 
compared to traditional models are considered 
marginal.



Model Selection
 Complex models often do not have the opportunity to be 

fully validated using theoretical principles, simulation, or a 
wide range of datasets, especially as many have been 
recently been introduced in the safety literature.

 It is not uncommon to see new models that are later found 
to suffer from important methodological limitations (e.g., 
zero-inflated models).

 Depending on the parameterization and the estimation 
method, the model could also take a very long time to 
provide results. For example, some models estimated using 
the Bayesian method can sometimes take several days or 
hours for the MCMC posterior estimates to converge.
◦ A pragmatic or better approach would be to use the MLE method 

when it can be used based on the study objectives and 
characteristics of the data, but to use the Bayesian estimation 
method when the MLE cannot be used because of the complexity 
of the model.



Model Selection
 Final thoughts :
◦ Although the NB model can become unreliable under 

particular conditions, this model, which is characterized 
by solid theoretical foundations, has had the opportunity 
to be analyzed, tweaked and used by researchers and 
practitioners across the globe for several decades and is 
considered more than adequate for most applications.
◦ As Dr. George Box famously said “all models are wrong 

but some are useful” (Box, 1979) and “the ability to 
devise simple but evocative models is the signature of 
the great scientist so overelaboration and 
overparameterization is often the mark of mediocrity” 
(Box, 1976), meaning that more complex models are not 
necessarily better.


