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Why use Statistical Models?

» Crashes are “independent” and “random”
events (probabilistic events)

» Estimate a relationship between crashes and
covariates (or explanatory variables)

» Determine the long-term average of crash
occurrences for transportation facilities

» Have a wide variation of applications in
safety analyses:
> Prediction
- Variable screening
- Risk factors
- Before-after study




Statistical Models For Crash Data

Modeling Process

1. Determine Modeling Objectives
Definition (Intersections, Pedestrians, etc.)
Data availability
*Unit Scales (Crashes/year; Severity; etc.)

|

2. Establish Appropriate Process
«Sampling Models
*Observational Models
*Process/System State Models
*Parameter Models (Bayesian Models Only)

|




Statistical Models For Crash Data

Modeling Process

3. Determine Inferential Goals
Point estimate (Value + Standard Error)
Distribution (Bayesian Models)
Percentiles (2.5%, 85%, etc.; Bayesian Models)

|

4. Select Computation Techniques
*Frequentist (MLE)
*Bayesian (via simulation)
*Empirical Bayes
|

5. Evaluate Models
*Goodness-of-Fit
*Prediction

Rdence Intervals




Basic Nomenclature

Vi = f(x'ﬁi) =P+ Bx; + Px, ++ :Bpxip &,
y,- is the response variable for observation /.,

ﬁ ; isapx 1 vector of estimable parameters.

/I . .
X is a vector of explanatory variables.

P is the number of parameters in the model.

6'l. is @ random error term of the model.




Basic Nomenclature

The previous equation can be re-written as follows

Eh/i|xi] = MU; = 60 + ﬁlxil =} 621’1'2 3 plaabde o ABPxip

Based on the generalized linear modeling relationship with an exponential
canonical link function, the equation leads to the following form:

i =exp(xiB) = exp (B + B1xi1 + BaxXio + ++* + BpXip).

All the models described further below will follow the form described
above.




Sources of Dispersion

» Over-Dispersion
> Unequal probability of events (Poisson trials)

- Unobserved heterogeneity (crash rate that differs across
observations)

- Factors that influence crash risk not captured by the
data/model

» Under-Dispersion (rare)
> Two Conditions

> 1) Low sample mean

> 2) Modeling output (Observations conditional upon the
mean)




Sources of Dispersion

FIGURE 3.1 Overdispersed (left) and underdispersed (right) residuals.

| Var[yl.]>E[yl.] Var[yl.]<E[yl.]



Basic Count Models

In a Poisson regression model, the probability of a roadway entity (segment,
intersection, vehicle, etc.) i having y; crashes per some time period (where vy, is a
non-negative integer) is given by:

—Hi Vi
€ H

y !

P(y,|x,)=

p( ¥, | Xi) is the probability of roadway entity (or observation) / having y; crashes
per time period.

M = exp(X;li) is the Poisson mean parameter for roadway entity /.

Var[yl.] = E[yl.] is extremely rare.




Basic Count Models

Poisson-gamma Model (NB)

The PMF of the Poisson-gamma regression for y; is

l/a Vi
P(yl_|xl_,a)_F(1/0c+y,-)£ l/o j ( 1, j

Ty (o) +p, ) (a)+g,

The mean and variance are given by

E(yi | Xz') = U,

2

Var(y, | X,) =, + g or Var(y,|x,)=u, +-

?

The mean function is given by

i =exp(xB+s) exp(s)~gamma(l1/g)



Basic Count Models

Example — Crash Data at 3-legged signalized intersections:
Functional form: = ¢/ /fn

Functional form needed to model crash data:
lu — ﬂOFﬁl'Fﬂz

maj~ min
Need to take the
Where, natural log of the

1= Expected number of crashes flow variables

F,., = Major traffic flow

F . = Minor traffic flow

min




Basic Count Models

Poisson-gamma Model

The GENMOD Procedure

Model Information

—10.065 10.751 0.484 Data Set WORK.C
€ F F min

. Distribution Negative Binomial
maj Link Function Log
Dependent Variable Total Total

0.751 1~0.484 .
4.05E —_— 05 X Fma] len Number of Observat Read 255

Number of Observations Used 255

-
Il

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF
Deviance 252 288.8580 1.1463
Scaled Deviance 252 288.8580 1.1463
Pearson Chi-Square 252 312.6975 1.2409
Scaled Pearson X2 252 312.6975 1.2409
Log Likelihood 836.0686

Full Log Likelihood -606.7989

AIC (smaller is better) 1221.5978

AICC (smaller is better) 1221.7578

BIC (smaller is better) 1235.7628

Algorithm converged.

Va]/'(y) = /Ll —I— 0.3 1 5#2 Analysis Of Maximum Likelihood Parameter Estimates

Standard  Wald 95% Confidence Wald
Parameter DF Estimate Error Limits Chi-Square Pr > ChiSq
Intercept 1 -10.0648 1.3659 -12.7420 -7.3876 54.29 <.0001
logf_maj 1 0.7517 0.1320  0.4929 1.0105 32.41 <.0001
logf_min 1 0.4837  0.0562 0.3735 0.5939 74.01 <.0001
Dispersion 1 0.3153 0.0519 0.2135 0.4170

NOTE: The negative binomial dispersion parameter was estimated by maximum likelihood.




Basic Count Models
Poisson-Lognormal Model (PLN)

The PMF of the Poisson-lognormal regression is not available for the PLN, since
it does not have a closed form.

The mean and variance are given by

Ely |x]=n :exp(xl’.B+l/0'2+8i)

The error is given by

g ~ Normal(O, 0'2) Note: exp(e,)~ Lognormal(O, 0'2)




Basic Count Models
Poisson-Lognormal Model (PLN)
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FIGURE 3.2  Probability distribution function of the Poisson-gamma (NB) and lognormal
distributions for different mean-variance combinations (Khazraee et al., 2018).




Basic Count Models
Selecting between PG/NB and PLN

No Kurtosis < 18.5 Yes
Yest seros> 1.8% | Yes | zeros231.6% N2
NO | Kurtosis<6.9 | Yes No Kurtosis < 73.6 Yes
[Pe ] _‘ PLN
Ves [ eros»01% 0 YeS [ eros> 78.7% I°
2 U. eros 2 .
i _l [ PN ] [PG | °
Nof wurtosis < 4.7 |
urtosis< 4,
| PG| [ PLN |
| PG PLN

late the % of zeros and Kurtosis with the data at hand. Then, follow the tree




Basic Count Models

Some of these models include:

Poisson-Weibull: The Poisson-Weibull distribution model performs as
well as the NB model and its coefficients can be easily estimated using the MLE.

Poisson-Inverse Gaussian (PIG): The PIG model performs similar to the
PLN, in that the model fits the data better at the tail end of the distribution. The
coefficients are also easily estimated using the MLE.

Poisson-Inverse Gamma: This model also performs similar to the PLN for
long-tailed data. The model is estimated using the Bayesian estimating method,
which requires further work than the MLE.

Sichel [SI]: This model has been used or applied more frequently than
the previous models. The SI model is recommended to be
used for long-tailed data. This model can be estimated using the MLE.

Poisson-Tweedie: Depending on the parameterization of the model, the
isson-Tweedie distribution models can become as special cases to the
N model. The same characteristics as those listed above apply here.



Generalized count models for underdispersion

Conway-Maxwell-Poisson (COM-Poisson)
The PMF of the COM-Poisson regression for y; is

P(ylxi):z(;i,v)[,uiy’ ] Z(ﬂv"):i[%njv

V! o\ 1!
The mean and variance are given by v > 1 -> Over-Dispersion
» v < 1 -> Under-Dispersion
H; = CXP [ﬁo +leﬁixij v = 1 -> Poisson
) 1
q Note: U; =— /\i/v ,
vV, = exp(yo +Z;ijj]
=




Generalized count models for underdispersion

Other models that have been proposed for analyzing underdispersion
include the following:

Gamma model (continuous distribution): This model cannot account for
observations with zero counts. It is presented here as a caution for not
using this model.

Gamma-count model: This modified gamma model has been proposed

by Winkelman (1995). The parameterization offered by this researcher
assumes that the observations have a direct correlation with each other in
time. In safety, this means that a crash at time t is directly related to a crash
at time t + n, which is again theoretically impossible.

Double Poisson: This model has initially been proposed by Efron (1986).

However, it has not been used often, as the normalizing constant of the

model is not properly definite. Zou et al. (2013) have proposed a different
arameterization of the constant term and found results similar to the



Generalized count models for underdispersion

Other models that have been proposed for analyzing underdispersion include the
following:

Hyper-Poisson: The hyper-Poisson (hP) is a two-parameter generalization of the
Poisson distribution. Similar to the COM-Poisson, it can model the variance function
as a function of the covariates. It performs as well as the COM-Poisson and can be
estimated using the MLE.

Generalized Event Count: This model uses the theoretical statistics called
“bilinear recurrence relationship” that was introduced by Katz (1965) for describing
the dispersion parameter of the Poisson count model. Ye et al. (2018) applied the
model to crash data and found its performance to be similar to the hP.




Finite mixture and multivariate models

Finite Mixture Model - Poisson-Gamma Model (NB)
The PMF of the FMNB-K regression for y; is

oSt o) Sl it e (4T

k=1 M T O M T O

The mean and variance are given by

|Xla® Zwk:ukz

Var(yl.|xl.,®) (yl|xl,® (Zwk,uk (IJFASJ yl|xl,® j

ote: Each class will have their own coefficients or parameters.



Finite mixture and multivariate models

Finite Mixture Model - Poisson-Gamma Model (NB)

50— N (T - N
L 3 ‘.
L * @
L ] ® S
40~ * . *
Py & & L )
L ] [ ] e & *
L J L % .. '.. *
» e %0
®30- s ¢ ., .} ® %’."' Component
? - * 1
© 5
L J
O oo- 2
10- -

10000 20000 30000 40000 50000 60000 70000
Major entering flow

(a) The number of crashes against the major entering flow



Finite mixture and multivariate models

Multivariate models

Each parameter and explanatory variables are vectors/matrices:

Vit .- Yim X1 - xlp B11 -+ Bim

Yl o Ynm | Xnl -0 Xup Bp1 -+ Bpm

P(.}/im ‘xie b;. ﬁ,,,)“’Poisson(uim)

Mim — eXP(l‘iﬁm + bim)

These models are used to account for the correlation between crash severity
levels or collision types. The most common model is the multivariate Poisson-
Iognormal model. The multivariate NB has been proposed but suffers from
portant methodological limitations.




Models for better capturing unobserved
heterogeneity
Random-effects/ multilevel model

Random-effects (RE) models, or sometimes called multilevel models, are models
that allow the variance that may exist within different levels of the data to be
better depicted. This is accomplished by adding one or more RE terms or
random intercept term to capture the between observations variance. Taking the
basic models described above, the formulation becomes

Mip — €XP (X;OB + Wo + 51’0)




Models for better capturing unobserved
heterogeneity
Random-Parameters NB Models (RPNB)

Same PMF as before for y; is

l/a Vi
P(yi|xi,a):F(1/0c+yl-)£ l/o j ( 0 j

Foay! (Goy+r ) (Ga)+y,

The parameters can have a mean and variance:

/ui:eXp(Xz,'B) eXp(ﬂO+ﬂ1 Xy + Doxyy +-+ B X, +5)

i

Py =b +u, Or i =b + Oz

There is also a version that account for correlation between the
variables.



Models for better capturing unobserved
heterogeneity
Random-Parameters NB Models (RPNB)

The log-likelihood is defined like this

LL:ZW"] gl )Pyilg;) de,
W%
where g (@) is the probability density function of the .

The log-likelihood needs to be estimated using simulation, such as the Monte Carlo
simulation (not MCMC).




Models for better capturing unobserved
heterogeneity

» Although RP models reduce the unobserved
heterogeneity, some of the coefficients may be
difficult to explain or describe.

» Usually, only some parameters are random, while
others are fixed.

» The issue related to Bayesian estimation vs RP
models still need to be fully addressed

> Under the Bayesian estimation approach, all the
parameters are considered random. Hence, why not use
Bayesian and assume all variables to be random?

» Should not only be used for improving the GOF



Models for better capturing unobserved
heterogeneity
Random-Parameters NB Models (RPNB)

Table 2
Parameter estimates from different random parameters types of negative binomial count models.

Variables Uncorrelated random parameters model Correlated random parameters model
Estimates t-Value Estimates t-Value
Gross value added —0.104"* -3119 -0131"* —4144
Employment rate 0.005** 569 0.005** 555
Urbanization rate 0.034** 62.51 0.018** 3543
Education share —0.008** —-4.77 —-0.005%* -334
Health personnel share 0581 26.16 L158%* 1945
Haospital capacity share -0.286 -643 -0.268 -575
Transportation share —0.049%* - 1440 0.035** 1.76
Alcohol share —-0224** -2099 -0260%* -2597
Migration dummy —0.060"* -5.13 —0.039%* -349
Highways -0358** —-28.19 0.670"* 5248
Marmara region 0813 3366 —0.109"* —453
Aegean region 1545% 5240 0.261%* 1061
Mediterranean region 1656 5048 -0373"* -14.16
Central Anatolia region 1327 5551 0.007 031
Black Sea region 0.750** 3831 —-0.030 -158
Southeastern Anatolia 0496 2093 0178** 780
Year 2009 0.052%* 495 0.069** 6.62
Year 2010 0.109** 698 0.144** 1009
Winter —0.257%* -16.13 —0254** -1582
Spring 0.048%* 3.00 0.051%* 3.18
Summer 0.198%* 1084 0203** 10.78
Migration dummysSummer 0.106%* 1003 Q103" 966
Migration dummysFall a119™* 6.71 0121% 6.85
Means for random parameters:
Constant LE71%* 2095 2701 3108
Vehicles share 0.029** 2200 0.026** 2055
Rain amount —-0.001** -733 —-0.001** -653
Share of the red light rule violation 0.002* 174 0.002%* 283
Share of the speed limit rule violation 0.004** 5.75 0.004** 1.00
Scale parameters for distribution of random parameters:
Constant 0485"* 7111 0650 2855
Vehicles share 0.076%* 8425 a.o0m 153
Rain amount 0.001** 1356 Q.000*™* 558
Share of the red light rule violation 0.011"* 2202 0.009** 1430
Share of the speed limit rule violation 0.040%* 3349 0.003** 2465
Dispersion parameter (a) 69.432"" 24 678147 2257
Other statistical information:
Log-likelihood values at convergence (LL:) —11247.824 -11,217.075
Restricted log-likelihood value (LL,) —=1]179,724.853 -1179,724853
AIC 22563.648 22522150
BIC 22766899 22785181
Pseudo-R? 0304 0306
Predicted numbers of accidents 94.180 94161

Note that the degrees of freedom for LL, is 5 and 15 for uncorrelated and correlated random parameters models since the model compare them to the
conventional negative binomial model with pooled data.
*p < 0.10;*p < 0.05;:"*p < 001




Models for better capturing unobserved

heterogeneity

Random-Parameters NB Models (RPNB)
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Parameter estimates from different random parameters types of negative binomial count models.

Variables Uncorrelated random parameters model Correlated random parameters model
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Note that the degrees of freedom for LL, is 5 and 15 for uncorrelated and correlated random parameters models since the model compare them to the
conventional negative binomial model with pooled data.
*p < 010" p < 005;"*p < 001
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4 variables



Models for better capturing unobserved
heterogeneity
Random-Parameters NB Models (RPNB)

— NB RPNB NB-L RPNB-L
Value Std Dev. Value Std Dev. Value Std Dev. Value  Std Dev.
Parameter Mean
Intercept 4449 0.067 -5.486 0.035 -3947 0.162 -4.443 0.206
Log(ADT) 0.689 0.133 0816 31.750 0.651 0.145 0.717 0.231
Fnction -0.027 0.011 0.029 0.133 0027 0.012 -0.032 0.015
Pavement 0422 0.189 0.588 0.012 0.445 0.210 0.605 0.281
Median Width  -0.005 0.002 0012 240 -0.006 0.002 -0.012 0.004
Barmer -3.031 0308 -6.614 0.003 -3.282 0338 -6.152 0.898
Rumble -0.405 0.186 -0.288 0437 0404 0.207 -0329 0.260
a=1/% 0.950 0.122 0.137 0.035 0.239 0.083 0.128 0.028
8 1464 0.180 1414 0.173
Std. Deviation of Random Parameters
Log(ADT) 0302 0172 0.232 0.137
Frction 0.057 0011 0.056 0.011
Pavement 0326 0216 0.291 0.200
Median Width 0.028 0.003 0.028 0.003
Barmer 2390 0399 1.925 0.709
Rumble 0379 0242 0.310 0.183
Model Performance
Dbar 189193 1481.09 158593 142270
Dhat 1883.01 1296.86 146951 1276.00
pD 892 18422 11641 146.30
DIC 190084 1665.31* 170234 1569.00
MAD* 692 6.90 6.88 6.71

Note: T With the MLE RPNB, only three variables (loganthm of ADT, presence of median barrier and interior
rumble strips) were found to be random This increased the Deviance Information Cnterion or DIC to 1736.



Models for better capturing unobserved
heterogeneity
Random-Parameters NB Models (RPNB)

— NB RPNB NB-L RPNB-L
Value Std Dev. Value Std Dev. Value Std Dev. Value  Std Dev.
Parameter Mean
Intercept 4449 0.067 -5.486 0.035 -3947 0.162 -4.443 0.206
Log(ADT) 0.689 0.133 0816 31.750 0.651 0.145 0.717 0.231
Fnction -0.027 0.011 0.029 0.133 0027 0.012 -0.032 0.015
Pavement 0422 0.189 0.588 0.012 0.445 0.210 0.605 0.281
Median Width  -0.005 0.002 0012 240 -0.006 0.002 -0.012 0.004
Barmer -3.031 0308 -6.614 0.003 -3.282 0338 -6.152 0.898
Rumble -0.405 0.186 -0.288 0437 0404 0.207 -0329 0.260
a=1/% 0.950 0.122 0.137 0.035 0.239 0.083 0.128 0.028
8 1464 0.180 1414 0.173
Std. Deviation of Random Parameters
Log(ADT) 0302 0172 0.232 0.137
Frction 0.057 0011 0.056 0.011
Pavement 0326 0216 0.291 0.200
Median Width 0.028 0.003 0.028 0.003
Barmer 2390 0399 1.925 0.709
Rumble 0379 0242 0.310 0.183
Model Performance
Dbar 189193 1481.09 158593 142270
Dhat 1883.01 1296.86 146951 1276.00
pD 892 18422 11641 146.30
DIC 190084 1665.31* 170234 1569.00
MAD* 692 6.90 6.88 6.71

Note: T With the MLE RPNB, only three variables (loganthm of ADT, presence of median barrier and interior
rumble strips) were found to be random This increased the Deviance Information Cnterion or DIC to 1736.



Multi-distribution models

Negative Binomial-Lindley Model (NB-L)
The PMF of the NB-L regression for y; is

P(y|u.4,6)=NB(y|4,eu)Lindley(z|0)de

The mean and variance are given by

E(y) :quE(g) :exp(ﬂo +in1:/)),-)€,)9‘(90++21)

o+2 , 2(60+3) (1+9) 0+2 Y
o(+1) " _(”Xe(eﬂ)j

Var(y):,ux x92(0+1) y

The parameterization described above can be modified and framed as a
ical model (Bayesian). See Geedipally et al. (2012).




Statistical Models For Crash Data

Selection between NB and NB-L

If the skewness is greater than 1.92, use the NB-L:

Summary Statistics Michigan Dataset
Mean 0.68
NO Skewness >1.92 YES Variance 3.15
Standard Deviation (Sd.) 1.77
Variance-to-Mean-Ratio (VMR) 4.62
Coefficient-of-Variation (CV) 2.60
Skewness (skew) 7.76
Kurtosis (K) 123.59
Percentage-of-Zeros (Z) 69.6%
10-th Quantile 0
20-th Quantile 0
30-th Quantile 0
40-th Quantile 0
“ 50-th Quantile (Median) 0
60-th Quantile 0
70-th Quantile 1
80-th Quantile 1
90-th Quantile 2
10-th Inter-Quantile 1
20-th Inter-Quantile 1
30-th Inter-Quantile 1
40-th Inter-Quantile 2
Range 61




Semi- and nonparametric models
Generalized additive models (GAMSs)

The relationship between the mean and the parameters can be defined as
follows

p
wi=exp | Bo+ ) _fix;)
=

where B, is the intercept of the model and fi(xi) is the smooth function (e.g., P-
splines, kernel cubic regression splines, smootners and thin-plate regression
splines). The generalized additive models can also include a combination of
fixed, nonlinear functions or a combination of nonlinear functions:

ui=exp | By + sz] + fr12 (xz (k+1)> X k+2)) Z fi(xij)

7=l j=k+3




Semi- and nonparametric models
Generalized additive models (GAMSs)

u; =exp(Bo +f1(xi1) +f2(xi2))
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FIGURE 3.4 Relationship between the number of crashes and entering flows (Xie and

Zhang, 2008).



Semi- and nonparametric models

The seminonparametric (SNP) Poisson model

For this model, the unobserved heterogeneity captured by the model’s error (€)
follows a K-not polynomial function.

(Sheome”) oo
fff (Z;_Oamgﬂ’l) 2¢(8)d8

fle)=

where “K" refers to the length of the polynomial, *'m” is an indicator increasing
from 0 to “"K", am is a constant coefficient, and ¢(g) represents the PDF of the
standard normal distribution.




Semi- and nonparametric models

The seminonparametric (SNP) Poisson model

By mixing the SNP with the Poisson distribution, the SNP-Poisson model can be
defined as follows:

Pllx) = | " P(yilen)f (e)de

o0

(

k 2
P(yi|x;) :/+ e i " (Zm oIme] ) b (&;)

\

<

” 4 Zm OZ ama” (m +n)

\ /




Semi- and nonparametric models

The seminonparametric (SNP) Poisson model

As the unconditional probability function of the previous equation does not have
a closed form, the numerical method of the Gausse- Hermite quadrature needs
to be applied to approximate the unconditional probability:

- 2
P(yi|xi) = Z w]- —L 3 X K K .
=1 Yi D =02 n=0dmanl(m + n)

d J




Semi- and nonparametric models

The DP is a stochastic process that is usually used as a prior in Bayesian
nonparametric (or semiparametric) modeling. In this regard, Escobar
and West (1998) defined the DP as a random probability measure over
the space of all probability measures. In that sense, the DP is
considered as a distribution over all possible distributions; that is, each
draw from the DP is itself a distribution, which may not be same as for
the previous draw.




Semi- and nonparametric models

Models that employ the Dirichlet process (DP), widely used in the
Bayesian literature, can technically be classified as either nonparametric
or semiparametric models depending on the modeling framework.

For semiparametric models, as applied with safety data, the count data
still follow a Poisson distribution, but the mean or the error term is
assumed to follow a Dirichlet distribution or process.

As opposed to the Poisson or NB mixtures, in which two parametric
distributions are mixed together, the DP is characterized by an infinite
mixture of distributions, where the number of uniqgue components or
distributions and the component characteristics themselves can be
learned from the data.




Semi- and nonparametric models

Dirichlet process models

In the safety literature, two semiparametric models have been proposed, one for the
Poisson, called the Poisson-Dirichlet Process (P-DP), and one for the multi-parameter
NB model, called the NB-DP. For the P-DP, we have this formulation:

P(ylu. 7. F(|8)) = / Poisson(y|vu)dF(v[DP(z, F(.|6))).
For the NB-DP, we have the following:

P(ylu. ¢, 7, F(10)) = / NB(y|vu, ¢)dF(v|DP(z, F(.|6))).
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Dirichlet process models

As stated in the previous section, the distribution of DP(7,F(.|#)) can be
approximated by its truncated construction TDP(z, M, F(.|#)) . Consequently, the

P-TDP and NB-TDP model can be seen as a hierarchical Bayesian model described
as follows:

P(y;|viu;) = Poisson(v;u;)
P(yi|viui, ;) = NB(viu;, ¢)\A
ve|T Beta(1,7), k=1,2,....M
“Fo(.l0), k=1,2,...M

1-vp), k=12,...M

ui = exp(x;B)

vi F()

F() "TDP(z, Fo(.|60)) Zpkéwk

-
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TABLE 3.1 Modeling Results for the Indiana Data (Shirazi et al., 2017).

Variables NB NB-L NB-TDP
Estimate Std. Error Pr(>lzl) Estimate Std. error Pr(>lzl) Estimate Std. Error Pr(>1zl)

Intercept (By) —4.779 0.979 0.0000 -3.739 1.115 0.0008 —7.547 0.1227 0.0000
Ln(ADT) (81) 0.722 0.091 0.0000 0.630 0.106 0.0000 0.983 0.117 0.0000
Friction (8) —0.02774 0.008 0.0006 —0.02746 0.011 0.1300 —0.01999 0.008 0.0126
Pavement (835) 0.4613 0.135 0.0005 0.4327 0.217 0.0468 0.3942 0.152 0.0100
MW (By) —0.00497 0.001 0.0000 —0.00616 0.002 0.0021 —0.00468 0.002 0.0195
Barrier (85) -3.195 0.234 0.0000 —3.238 0.326 0.0000 —8.035 1.225 0.0000
Rumble (B8g) —0.4047 0.131 0.0021 —0.3976 0.213 0.0609 —0.3780 0.150 0.0134
a=1/¢ 0.934 0.118 0.0000 0.238 0.083 0.0074 0.301 0.085 0.0042
DIC” 1900 1701 1638

MAD" 6.91 6.89 6.63

MSPE" 206.79 195.54 194.5

“Deviance information criterion.
"Mean absolute deviance.
“Mean squared predictive error.




Semi- and nonparametric models

Dirichlet process models

Site 1 2 3 4 3 6 7 8 9 10

02 02 02 02 02

0.1 0.1

0.1 0.1 0.1

10 01 01 01 01 0.1

FIGURE 3.5 The heatmap representation of the partitioning matrix for the top 10 sites
with the highest ADT values in the Indiana dataset (Shirazi et al., 2018).
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Nonparametric models

» Nonparametric models have been used relatively
often in highway safety.

» Popular ones: multilayer perceptron (MLP) neural
network, convolutional neural networks, Bayesian

neural networks (BNN), and support vector
machine (SVM).

» Usually good for predicting crashes, but can easily
over-fit the data.

» Caution: They work as black boxes; need to use
tools for examining sensitivity.

» Chapter 12 covers these models in greater details.
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» In this lecture, we have presented different types
of models that vary from the most basic to very
complex.

» Positive and negative attributes have been

provic
descri

ed for most of these models, along with a
otion explaining when the model could be

suitab

e given the known and unknown

characteristics of the data.

» In the

highway safety literature, a lot of work has

been devoted to the development and application
of statistical models (in fact, this is the majority of
the work produced in highway safety according to

Zou and Vu, 2019).
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» A common theme of a new study is that the “new”
proposed model is claimed to be better than other
previously published or widely applied models because
it fits the data better.

» In other words, the “new” model reduces the
unobserved heterogeneity more than the previous
model.

» The model also needs to adequately capture the data
generating process of the dataset under study. Miaou
and Lord (2003) refer to this subject as the
“goodness-of-logic,” which consists of making sure the
model properly characterizes the analyzed data and
the model is methodologically sound.

- Example Zero-Inflated/Hurdle Models (see textbook)
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» Along the same line, using a very complex model
does not necessarily mean that the model is
better, even if the “fit"” is superior.

» The model could be overly complex given the
study objectives or the gains they provide
compared to traditional models are considered
marginal.
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b Complex models often do not have the opportunity to be
ful validated using theoretical principles, simulation, or a
e range of datasets, especially as many have been
recently een introduced in the safety literature.

» It is not uncommon to see new models that are later found
to suffer from important methodological limitations (e.g.,
zero-inflated models).

» Depending on the parameterization and the estimation
method, the model could also take a very long time to
provide results. For example, some models estimated using
the Bayesian method can sometimes take several days or
hours for the MCMC posterior estimates to converge.

- A pragmatic or better approach would be to use the MLE method
when it can be used based on the studK objectives and
characteristics of the data, but to use the Bayesian estimation

method when the MLE cannot be used because of the complexity
of the model.
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» Final thoughts :

o Although the NB model can become unreliable under
particular conditions, this moadel, which is characterized
by solid theoretical foundations, has had the opportunity
to be analyzed, tweaked and used by researchers and
practitioners across the globe for several decades and is
considered more than adequate for most applications.

> As Dr. George Box famously said "all models are wrong
but some are useful” (Box, 19/79) and "the ability to
devise simple but evocative models is the signature of
the great scientist so overelaboration and
overparameterization is often the mark of mediocrity”

(Box, 19/6), meaning that more complex models are not
necessarily better.




