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ABSTRACT 

This paper documents the application of the Sichel (SI) generalized additive models for location, 
scale and shape (GAMLSS) for modeling highly dispersed crash data. The Sichel distribution is 
a compound Poisson distribution, which mixes the Poisson parameter with the generalized 
inverse Gaussian distribution. This distribution is particularly useful as a model for highly 
dispersed count data and has provided satisfactory fits in many cases where other models have 
proved to be inadequate. The objectives of this study were to evaluate the application of the 
Sichel GAMLSS for analyzing highly dispersed crash data and compare the results with the 
traditional Negative Binomial (NB) generalized linear model (GLM). To accomplish the 
objectives of the study, the NB, zero-inflated NB (ZINB) and SI GAMLSS were developed and 
compared using two highly dispersed crash datasets. The first dataset contains the crash data 
collected on 338 rural interstate road sections in Indiana. The second dataset consists of vehicle 
crash data that occurred on undivided 4-lane rural roadway segments in Texas. Several 
goodness-of-fit metrics were used to assess the statistical fit of the models. The results show that 
the Sichel GAMLSS can always have a better fitting performance than the NB and ZINB for the 
crash datasets examined in this study. Thus, the SI GAMLSS may offer a viable alternative to the 
traditionally used NB GLMs for analyzing highly dispersed crash datasets. 
 
Key Words: Negative binomial, sichel, dispersion, generalized additive models for location, scale 
and shape (GAMLSS), crash data. 
  



1. INTRODUCTION 
 
As documented in the literature (Lord and Mannering, 2010), one notable characteristic 
associated with crash data is that the variance usually exceeds the mean of the crash counts. The 
large amount of zeros and a long/heavy tail observed in crash data generally create high 
dispersion. As described in previous research, the Poisson (PO) distribution can potentially result 
in biased and inconsistent parameter estimates because the PO distribution restricts the mean and 
variance of crash frequency to be equal. To overcome these limitations, the Negative Binomial 
(NB) distribution has often been used as an alternative because the NB model relaxes the 
assumption that the mean equals the variance. Within the framework of generalized linear model 
(GLM), a large number of analysis models for overcoming the over-dispersion problem have 
been proposed by transportation safety analysts (Lord and Mannering, 2010). Miaou (1994) and 
Poch and Mannering (1996) noted that if the over-dispersion in crash data is found to be 
moderate or high, the NB GLM could be used. More recently, several researchers have proposed 
different models, under the framework of the GLM, for analyzing over-dispersed data. These 
models, such as the Conway-Maxwell-Poisson (Lord et al., 2008), the Random Parameters 
(Anastasopoulos and Mannering, 2009), the Generalized Additive Model (GAM) (Xie and 
Zhang, 2008), and the Finite Mixture/Markov Switching (Park and Lord, 2009; Malyshkina et al., 
2009), have often been found to perform better than the NB both in terms of fit or predictive 
capabilities.  
 
These new models however may still provide erroneous or biased estimates when they are 
developed using data characterized by a large amount of zeros and/or with a very large 
dispersion (i.e., long tail). For instance, it has been documented that the NB distribution cannot 
be used efficiently for datasets that simultaneously have a skewness coefficient greater than two 
and a mode greater than zero (Stein et al., 1987). The same problem can be observed for datasets 
that contain a large number of zeros. Zero-inflated models have been proposed to handle such 
datasets, but they have been found to suffer from important methodological problems, at least for 
crash data (Lord et al., 2005 & 2007). So far, very few models that have been proposed or 
evaluated could be suitable for analyzing highly dispersed data. A negative binomial-Lindley 
(NB-L) distribution was recently introduced by Lord and Geedipally (2011) for analyzing data 
characterized by a large number of zeros. In a subsequent study, Geedipally et al. (2012) showed 
that the NB‐L GLM works much better than the traditional NB model when datasets contain a 
large number of zeros or datasets are highly dispersed. Currently, only the NB-L model works 
well for highly dispersed data. Even with a large number of statistical models used in highway 
safety research, there might still exist other statistical models that can fully analyze highly 
dispersed crash data. Such models are particularly needed when the observed high dispersion 
cannot be efficiently handled by the NB model.  
 
With the aim of finding a model that can handle highly dispersed crash data, the generalized 
additive models for location, scale and shape (GAMLSS) are introduced (Rigby and 
Stasinopoulos, 2005). The GAMLSS can be considered as the extension of GAMs and GLMs. In 
the GAMLSS, the exponential family distribution assumption for the response variable, y, is 
relaxed and replaced by a general distribution family, including highly skewed continuous and 
discrete distributions. Thus, the GAMLSS are suited to model a highly dispersed count response 
variable. The GAMLSS are a general framework for univariate regression analysis that allows 



modeling not only the mean but all other parameters (including dispersion parameter) of the 
distribution of y as linear and/or nonlinear parametric and/or additive non-parametric functions 
of explanatory variables (Stasinopoulos and Rigby, 2007). Recently, the GAMLSS have been 
applied in various fields including phenological research (Hudson et al., 2008), medical studies 
(Visser et al. 2009), etc. However, the GAMLSS have not been applied to crash data analysis to 
date. The advantages of the GAMLSS for analyzing the crash data are that: (1) the GAMLSS are 
especially suited to model the crash data with very high dispersion. (2) the GAMLSS can be a 
useful tool to explore flexible functional forms between the mean/dispersion parameter and 
explanatory variables. 
 
Within the framework of the GAMLSS, this paper introduces a new distribution that can handle 
highly dispersed count data. The Sichel (SI) distribution is a compound Poisson distribution, 
which mixes the Poisson distribution with the generalized inverse Gaussian distribution. 
Previous studies (Sichel, 1982; Stein et al., 1987) have shown that the resultant mixture of the 
Poisson and generalized inverse Gaussian distributions is particularly useful as a model for 
highly dispersed count data and has provided satisfactory fits in many cases where other models 
proved to be inadequate. The application of a Sichel distribution for analyzing traffic crash data 
is documented in this study. 
 
2. METHODOLOGY 
 
This section describes the characteristics of the GAMLSS and the Sichel distribution. 
 
2.1. THE GENERALIZED ADDITIVE MODELS FOR LOCATION, SCALE AND SHAPE 
 
The GAMLSS were introduced by Rigby and Stasinopoulos (2005) as a way of overcoming 
some of the limitations associated with the popular GLM and GAM. A GAMLSS model assumes 
that for i= 1, 2, …, n, independent observations iy  have a distribution D with probability 
density function ( | )i

if y θ   conditional on 1 2 3 4( , , , ) ( , , , )i
i i i i i i i ivθ θ θ θ θ μ σ τ= =  a vector of four 

distribution parameters, each of which can be a function to the explanatory variables. The 
, , ,i i i ivμ σ τ   are referred to as the distribution parameters of distribution D.  iμ  and iσ  are 

defined as location and scale parameters. iv  and iτ  are characterized as shape parameters. 
 
Let iy , i= 1, 2, …, n, be the n length vector of the response variable. For k= 1, 2, 3, 4, let ( )kg ⋅  
be a known monotonic link function relating the distribution parameter kθ   to explanatory 
variables and random effects through an additive model given by (Rigby and Stasinopoulos, 
2005): 
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Where, 

, , ,μ σ v τ  and kη   = vectors of length n ; 
T
kβ  = vector of length '

kJ ; 

kX  = known design matrix of order '
kn J× ; 

jkZ  = fixed known jkn q×  design matrix; 

jkγ  = jkq   dimensional random variable and is assumed to follow 1~ (0, )
jjk q k jkN −γ G ; 

1
jk
−G  = generalized inverse of a jk jkq q×  symmetric matrix; 

kJ  and '
kJ  = number of explanatory variables considered; and, 

jkq   = dimension of the random effect vector. 
 
There are several important sub-models of the GAMLSS. First, let jk n=Z I , where nI  is an 
n n×   identity matrix, and ( )jk jk jkhγ = x  for all combinations of j and k, the semi-parametric 
additive GAMLSS model is given by 
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Where for k =1, 2, 3, 4,  

  kθ  = distribution parameter vectors , ,μ σ v  and  τ ;  

  jkh  = unknown function of the explanatory variable; and, 

  jkx  = vectors of length n .  
 
If there are no additive terms in any of the distribution parameters, we can have the parametric 
linear GAMLSS model, 

 
( )k k k k kg = =θ η X β

                                   
(7) 

 
In equations (6) and (7), replace k kX β

  with ( , )k k kh X β , where kh  for k =1, 2, 3, 4 are 
non-linear functions, then the new equations (8) and (9) are the non-linear semi-parametric 
additive and non-linear parametric GAMLSS models, respectively. 
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In the framework of the GAMLSS, the logarithm of expected crash frequency can be modeled as 
either a linear parametric or an additive non-parametric function of explanatory variables. When 
adding the additive terms in equation (7), the resulting semi-parametric additive GAMLSS 
model provides the potential for a better fit with the data than the parametric linear GAMLSS 
model. However, the semi-parametric additive GAMLSS model may run the risk of relaxing the 
actual relationship between the expected crash frequency and explanatory variables, perhaps at 
the expense of interpretability of results. Thus, in order to reasonably interpret the modeling 
results and avoid the risk of overfitting, the parametric linear GAMLSS model (equation (7)) was 
adopted as the functional form in the study. 
 
Once the GAMLSS model is determined, the parametric vectors kβ  and the random effects 
parameters jkγ  in equation (1) are estimated by maximizing a penalized likelihood function 
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= ∑  is the log-likelihood function. Since the parametric linear GAMLSS 

model has been selected, only kβ  for k =1, 2, 3, 4 are unknown parameters. The penalized 
likelihood function p  reduces to   and the objective is to maximize the likelihood function 

. Two algorithms can be used to maximize the likelihood function. The first is the CG 
algorithm which is a generalization of the Cole and Green algorithm. The second algorithm is a 
generalization of the algorithm used by Rigby and Stasinopoulos for fitting mean and dispersion 
additive models, and this algorithm is named the RS algorithm. In this study, the RS algorithm 
was selected and has been successfully used. More details about the two algorithms are given in 
Stasinopoulos and Rigby’s paper (2007). 
 
2.2. CHARACTERISTICS OF THE SICHEL DISTRIBUTION 
 
As discussed above, the Sichel distribution (also known as the Poisson-generalized inverse 
Gaussian distribution) is a compound Poisson distribution where the mixing distribution of the 
Poisson rate is a generalized inverse Gaussian distribution. This mixed distribution works very 
well when the data is highly dispersed. In other situations, it works similar to the NB 
distribution. 
 
Before deriving the probability density function of the Sichel distribution, we first need to define 
the NB distribution. The number of crashes y during some time period is assumed to be Poisson 
distributed, which is defined by: 
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Where λ  = mean response of the observation. 
 
The NB distribution can be viewed as a mixture of Poisson distributions where the Poisson rate 
is gamma distributed. For the complete derivation of the NB, readers are referred to Lord and 
Mannering (2010). The probability density function of the NB is defined as follows: 
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Where, 

y =  response variable; 
μ =  mean response of the observation; and, 
σ =  dispersion parameter. 

 
The dispersion parameter σ  of the NB is traditionally assumed to be a fixed value for the entire 
crash dataset. However, within the GAMLSS framework, both the mean and dispersion 
parameters of the NB can be modeled using the explanatory variables with parametric linear 
functional forms. This will be the subject of a subsequent paper.  
 
The Sichel distribution arises if we let λ  take a generalized inverse Gaussian distribution, with 
the probability density function (pdf) given by  
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For 0λ > , the distribution parameters are γ−∞ < <∞ , 0 1θ≤ ≤ , 0α ≥  and ( )K tγ  is the 
modified Bessel function of the third kind of order γ  with argument t . Note that the gamma is 
a limiting distribution of the generalized inverse Gaussian distribution obtained by letting 

0α →  and 0γ > . 
 
The number of crashes y is given by 
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A Sichel distribution can be derived by solving this convolution integral. The pdf of the Sichel 
distribution with distribution parameters γ , θ  and α   is defined as: 
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To overcome some estimation problems associated with the above formulation, Stein et al. (1987) 



reparameterized equation (15) using 1/ 2/(2(1 ) )ξ αθ θ= −  in place of θ  and derived the new 
probability density function: 
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Where 2 2 1/ 2( )w ξ α ξ= + − , and 1 1
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function of the third kind. 
 
Stein et al. (1987) treated ξ , α  and γ  as the parameters, and consequently their 
parameterization cannot be expressed and interpreted as a multiplicative Poisson random effects 
model and their location parameter is not the mean of y (Rigby et al., 2008). Later, Rigby et al. 
(2008) solved this problem by using / cξ μ=  and 1/w σ= . Thus, the final formulation of the 
Sichel distribution, ( , , )SI μ σ γ , is given by, 
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[ ]E y μ=  and variance is 2 2( ) [2 ( 1) / 1/ 1]V y c cμ μ σ γ= + + + − . For 1/ 2γ = − , the Sichel 
distribution can be reduced to the Poisson-inverse Gaussian distribution with mean μ  and 
variance 2μ μ σ+ . Note that it can be also shown that the Sichel distribution converges to the 
NB distribution when σ →∞  and 0γ > . For more information about the formulation in 
equation (17) and parameter c , interested readers are referred to Rigby et al. (2008).  
 
3. DATA DESCRIPTION 
 
The characteristics of the two datasets used in this study are described in this section. The first 
dataset contains crash data collected on rural interstate road sections in Indiana. The second 
dataset consists of vehicle crash data that occurred on 4-lane undivided rural segments in Texas. 
 
3.1. INDIANA DATA 
 
The first dataset used for this study contains crash data collected on 338 rural interstate road 
sections in Indiana over a five-year period from 1995 to 1999. The data have been investigated in 
some previous studies (Anastasopoulos et al., 2008; Geedipally et al., 2012). Geedipally et al. 
(2012) used this dataset to develop NB and NB-L regression models. To be consistent with their 
work, the same explanatory variables are used in this study and summarized in Table 1. During 
the five-year study period, there were 5,737 crashes happened on 218 out of 338 highway 
segments, and the other 120 segments (36%) did not have any reported crashes. As shown in 



Table 1, the observed crash frequency ranges from 0 to 329, and the mean frequency is 16.97 
with a standard deviation of 36.30. Note that the variance to mean ratio is 77.6. For a complete 
list of variables in this dataset, interested readers can consult (Washington et al., 2011). 
 

Table 1. Summary statistics of characteristics for the Indiana data. 
Variable Minimum Maximum Mean(SD†) Sum 
Number of crashes (5 years) X1* 0 329 16.97 (36.30) 5737 
Average daily traffic over the 5 years 
( ADT) X2 

9442 143422 30237.6 
(28776.4)  

Minimum friction reading in the road 
section over the 5-year period 
(FRICTION) X3 

15.9 48.2 30.51 (6.67)  

Pavement surface type (1: asphalt, 0: 
concrete) (PAVEMENT) X4 

0 1 0.77 (0.42)  
Median width (in feet) (MW) X5 16 194.7 66.98 (34.17) 
Presence of median barrier (1: present, 0: 
absent) (BARRIER) X6 

0 1 0.16 (0.37)  
Interior rumble strips (RUMBLE) X7 0 1 0.72 (0.45) 
Segment length (in miles) (L) X8 0.009 11.53 0.89 (1.48) 300.09 
* X1 is the serial number of variable number of crashes. † Standard deviation. 
 
3.2. TEXAS DATA 
 
The second crash dataset was collected at 4-lane undivided rural segments in Texas. This dataset 
contains crash data collected on 1499 undivided rural segments in Texas over a five-year period 
from 1997 to 2001. The data were collected as a part of NCHRP 17-29 research project (Lord et 
al., 2008). The segment length ranged from 0.10 to 6.275 miles, with an average of 0.55 miles. 
During the study period, 553 out of the 1,499 (37%) segments did not have any reported crashes 
over the five-year period, and a total of 4,253 crashes occurred on 946 segments. The mean of 
crashes was 2.84, with a variance of 32.4 and the variance to mean ratio is 11.4. Table 2 provides 
the summary statistics for the Texas data. 
 

Table 2. Summary statistics of characteristics for the Texas data. 
Variable Minimum Maximum Mean(SD†) Sum 
Number of crashes (5 years) X9* 0 97 2.84(5.69) 4253 

Average daily traffic over the 5 years 
( ADT) X10 

42 24800 6613.61 
(4010.01)   

Lane Width (LW) X11 9.75 16.5 12.57(1.59)  
Total Shoulder Width (SW) X12 0 40 9.96(8.02)   

Curve Density (CD) X13 0 18.07 1.43 (2.35)   
Segment Length (L) (miles) X14 0.1 6.28 0.55(0.67) 830.49

* X9 is the serial number of variable number of crashes. † Standard deviation. 
 



4. MODELING RESULTS 
 
This section describes the modeling results of the NB, ZINB and SI models. The section is 
divided into three parts. The first part presents the goodness-of-fit analysis results for PO, NB, 
ZINB and SI distributions. The second and third parts provide the modeling results for the 
Indiana data and the Texas data, respectively. In this study, the GAMLSS models were estimated 
using GAMLSS package in the software R.  
 
4.1. GOODNESS-OF-FIT COMPARISONS 
 
The Sichel distribution is very useful for modeling highly dispersed count data and has been 
shown to be the case in many studies (Sichel, 1985). To examine the applicability of the SI to 
crash count data, the goodness-of-fit comparisons were performed using the Texas data and the 
results are provided in Table 3. Compared with the PO, NB and ZINB distributions, the Sichel 
distribution has the smallest deviance, Akaike information criterion (AIC), and Bayesian 
information criterion (BIC) values. This indicated that the Sichel distribution can improve the 
goodness-of-fit of dispersed crash data. As shown in Figure 1, it can be observed that the trend of 
the crash count histogram is well captured by the Sichel distribution. However, the Sichel 
distribution only works very well when the count data is highly dispersed with a long tail. Based 
on additional examined crash datasets (not shown here), when the crash data are less dispersed 
with a short tail, the Sichel distribution can at least provide a performance that is equal to that of 
the NB distribution.  
 

Table 3. Goodness-of-fit statistics for the Texas data. 
PO NB ZINB SICHEL 

Deviance 11618.3 6354.79 6354.79 6276.87 
AIC 11620.3 6358.79 6360.79 6282.87 
BIC 11625.7 6369.41 6376.73 6298.81 

 
 



 
(a) Texas crash data with fitted Poisson distribution 

 
(b) Texas crash data with fitted negative binomial distribution 
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(c) Texas crash data with fitted zero-inflated negative binomial distribution 

 
(d) Texas crash data with fitted Sichel distribution 

 
Figure 1. Texas crash data with fitted distributions. 
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4.2. INDIANA DATA 
 
This section describes the modeling results for the NB, ZINB and SI GAMLSS using the Indiana 
data. When analyzing the crash data, we consider the segment length as an offset term, which 
means that the number of crashes is linearly proportional to the segment length. As mentioned 
previously, the GAMLSS can be seen as an extension of the GLM which allows using both 
parametric and nonparametric methods. In this study, the parametric linear GAMLSS is used to 
model the crash frequency, and a parametric linear GAMLSS has almost the same formulation as 
a GLM except for a few differences. The main differences are: first, for the GAMLSS, the 
exponential family distribution assumption for the response variable, y, is relaxed and replaced 
by a general distribution family; second, within the framework of the GAMLSS, each of the 
distribution parameters can be a function of the explanatory variables. In this study, only the 
mean (or location) parameter is modeled as a function of the explanatory variables.  
 
The modeling results for the Indiana data are provided in Table 4. Although zeros only account 
for 36% of this crash dataset, the ZINB model was estimated in order to compare its fitting 
performance to that of the SI model. Note that for the NB and ZINB GAMLSS, the coefficients 
of variables and goodness-of-fit statistics are exactly the same as that of the NB and ZINB GLMs 
(the NB GLM was fitted using MASS package and the ZINB GLM was fitted using pscl package 
in the software R). For the SI model, the coefficient for the variable flow is smaller than that of 
the other two models, which means that when traffic flow increases, the estimated crash rate 
using the SI model increases at a slower rate than that of the NB and ZINB models. The 
coefficients between the models have the same sign, but their estimated values may differ 
significantly. For example, the coefficient of median barrier is -5.2573 for the SI model, which 
indicates that the crash risk will decrease significantly with the presence of a median barrier. All 
goodness-of-fit statistics show that the SI model has better fitting results than the NB and ZINB 
models. And the ZINB model provides a slightly better fit than the NB model. 
 

Table 4. Modeling results for the Indiana data. 
NB ZINB SI 

Variable Value SE Value SE Value SE 
INTERCEPT -4.4556 1.2920 -7.8840 1.1969 -3.7672 1.1603 

Ln(ADT) 0.6878 0.1202 1.0165 0.1049 0.6434 0.1028 
FRICTION -0.0267 0.0101 -0.0182 0.0093 -0.0284 0.0096 

PAVEMENT 0.4296 0.1850 0.2718 0.1938 0.4710 0.1798 
MW -0.0052 0.0019 -0.0029 0.0012 -0.0076 0.0019 

BARRIER -3.0263 0.2825 -1.9751 0.1992 -5.2573 0.3227 
RUMBLE -0.3976 0.1800 -0.3801 0.1718 -0.1677 0.1621 
Deviance 1884.51 1869.87 1821.64 

AIC 1900.51 1887.87 1839.64 
BIC 1931.1 1922.28 1874.04 

 
4.3. TEXAS DATA 
 
We also applied the NB, ZINB and SI GAMLSS to the Texas data, and the segment length was 
considered as an offset term. The modeling results for the Texas data are provided in Table 5. 



The SI model shows that crashes increase almost linearly with the increase in flow. Between the 
three models, the estimated coefficients of explanatory variables are very close to each other. 
Note that the coefficient values of the ZINB model are almost the same as that of the NB model. 
Moreover, the AIC and BIC values are even worse for the ZINB model and this is because AIC 
and BIC penalize the number of parameters in the model. Since the Texas data contain a 
moderate percentage of zeros (37%), the ZINB model may actually reduce to the NB model by 
letting the parameter v (probability of roadway section exists in the zero-crash state) equal zero. 
Thus, the results can be seen as the evidence that the ZINB model may not be an appropriate 
model for the Texas data. The goodness-of-fit statistics show that the SI model can work better 
than the NB and ZINB models. Compared to the fitting results for the Indiana data, the 
improvement of fitting performance of the SI model is not significant in this case. The possible 
reason is that the Texas data are less dispersed than the Indiana data and the Texas data have a 
relatively shorter tail (the maximum number of crashes for the Texas data is 97 while the 
maximum number of crashes for the Indiana data is 329). Recently, Cheng et al. (2011) fitted 
both the Indiana and Texas data by using a Poisson-Weibull model. Compared with the results in 
their study, the SI model can provide a better fit than the Poisson-Weibull model. Since the SI 
distribution is a mixture of Poisson distributions with three parameters and some other mixtures 
of Poisson distributions (Poisson-gamma and Poisson-inverse Gaussian) are special cases of the 
SI distribution, it is suspected that the SI distribution can outperform other common mixtures of 
Poisson distributions (Poisson-gamma, Conway–Maxwell–Poisson, Poisson-lognormal, 
Poisson-Weibull, etc.) used in highway safety studies. Obviously, more work needs to be done to 
verify this hypothesis. 
 

Table 5. Modeling results for the Texas data. 
NB ZINB SI 

Variable Value SE Value SE Value SE 
INTERCEPT -7.9489 0.4233 -7.9482 0.3287 -7.9984 0.3863 

Ln(ADT) 0.9749 0.0453 0.9748 0.0361 0.9926 0.0403 
LW -0.0533 0.0167 -0.0533 0.0158 -0.0600 0.0173 
SW -0.0100 0.0033 -0.0100 0.0032 -0.0100 0.0033 
CD 0.0675 0.0120 0.0675 0.0110 0.0627 0.0121 

Deviance 5122.772 5122.772 5100.453 
AIC 5134.772 5136.772 5114.453 
BIC 5166.647 5173.96 5151.64 

 
5. DISCUSSION 
 
In this paper, the modeling results are very interesting and deserve further discussion. Based on 
the modeling results in this study, the following conclusions can be made: first, the Sichel 
distribution works better than the NB distribution; second, the SI GAMLSS can provide a better 
fit than the NB GAMLSS for highly dispersed crash datasets, at least for those two datasets. Note 
that the NB distribution is a special case of the SI distribution. Based on other examined datasets 
(although not shown in the paper), the SI GAMLSS can perform at least as well as the NB 
GAMLSS. Thus, for the highly dispersed crash data, transportation safety researchers are 
recommended to consider the SI GAMLSS.  
 



One characteristic associated with crash data is that usually a large number of zeros are observed 
in the collected database. To examine the applicability of the SI model to the datasets that contain 
a large amount of zeros, the San Antonio crash data (about 88% of the segments in the data have 
zero crash) with 1903 observations used by Geedipally et al. (2012) and the Michigan data (zeros 
account for about 70% of the crash data) used by Qin et al. (2004) were modeled using the NB, 
ZINB and SI models. Although not shown here, the results indicate that SI models provide a 
slightly better fit than NB and ZINB models for those two datasets. For the Indiana and 
Michigan data, Geedipally et al. (2012) used a NB-L model and concluded that the NB-L GLM 
was much better than the ZINB and NB GLMs. Compared to the reported goodness-of-fit 
statistics in their study, it shows that the NB-L model performs better than the SI model for the 
crash data contain a large number of zeros or the crash data are highly dispersed. Although the 
NB-L model can perform better than the SI model, the SI model still offers an alternative to the 
traditionally-used NB models for analyzing highly dispersed datasets. Furthermore, the SI 
GAMLSS model could also be useful to better understand the characteristics of the dispersion, 
similar to the work done by Park and Lord (2009) and Anastasopoulos and Mannering (2009) on 
this topic. 
 
Basically, the GAMLSS consist of four different formulations: the semi-parametric additive 
model (equation 6), the parametric linear model (equation 7), the non-linear semi-parametric 
additive model (equation 8) and the non-linear parametric model (equation 9). In this study, the 
parametric linear formulation was adopted and the NB, ZINB and SI GAMLSS were applied to 
crash frequency analysis. Previous studies (see, e.g., Xie and Zhang, 2008) have indicated that 
the relationship between crash frequency and explanatory variables may not be limited to linear 
or logarithm. Thus, to explore more flexible functional forms, the semi-parametric additive 
model was also examined in this paper. Taking the cubic spline as the additive terms for the 
mean function (Xie and Zhang, 2008), the semi-parametric NB and SI models were used to 
model the Indiana data. The functional form of mean function was selected as follows, 
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Ln(ADT). The modeling results (not shown here) indicate that the fitting performance of the NB 
and SI models are improved when adding the additive terms. Although the semi-parametric 
additive model with a cubic spline term can provide better fits to the data than the parametric 
linear model, Lord and Mannering (2010) pointed out that the generalized additive models with 
spline functions are more difficult to interpret than traditional count models. Thus, the parametric 
linear GAMLSS model is recommended for crash data analysis unless a nonlinear relationship 
between logarithm of crash frequency and explanatory variables is clearly determined. 
 

The Sichel distribution has three distribution parameters. When letting 
1
2

γ = − , the Sichel 

distribution can reduce to a Poisson-inverse Gaussian distribution (PIG). The PIG is obtained by 
considering the mean of Poisson distribution as a random variable with an inverse-Gaussian 
probability. The probability density function of the PIG is defined as follows: 
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model is commonly used to model heavy-tailed count data, and most transportation safety 
analysts are not familiar with PIG models, as it has not used for analyzing crash data. As a 
special case of the SI, the PIG has a larger range of skewness than that of the NB (Zhu and Joe, 
2009). The PIG model was also applied to the crash data used in this study. Although the 
modeling results are not given here, the authors compared the PIG model with the NB and SI 
models. Interestingly, for all four datasets examined in this study (Indiana data, Texas data, San 
Antonio data and Michigan data), the modeling results indicate that the PIG model can work 
better than the NB model, although not as well as the SI model. For NB and PIG models, the PIG 
model seems to be preferred over the NB model for modeling the crash data based on the 
goodness-of-fit statistics. However, it is known that there is not one single model that provides a 
perfect fit to a given data set, particularly in the absence of knowledge of the mechanism 
generating the responses. It is recommended that transportation safety analysts should fully 
investigate the advantages and the disadvantages of the PIG model. 
 
The computation times for the NB, ZINB, PIG and SI models were recorded in this study. 
Compared to the NB model, the SI model can improve the goodness-of-fit of highly dispersed 
count data while the increase in computational effort is not remarkable. Thus, the computation 
time of the SI model is not a concern for transportation safety analysts to use this model. Even if 
the allowed computation time is limited, since the PIG model requires less computation time 
than the SI model, the PIG model might be used as an alternative to model dispersed crash data 
and can provide a better fit than the NB model.  
 
For future work, first, since crash data characterized by small size and low sample-mean values 
can cause estimation problems, the robustness of the SI model should be examined. Second, 
when the data are suspected to belong to different groups, a finite mixture of SI models should be 
used and compared to the finite mixture of PO and NB models (see Park and Lord, 2009, as an 
example). Third, an empirical Bayes modeling framework can be developed for the SI model. 
Finally, recent studies in transportation safety have shown that the dispersion parameter of NB 
models can be potentially dependent upon the explanatory variables and NB models with a 
varying dispersion parameter can provide better statistical fitting performance (Heydecker and 
Wu, 2001; El-Basyouny and Sayed, 2006) or help describing the characteristics of the dispersion 
(Miaou and Lord, 2003). Interestingly, the proposed GAMLSS are very flexible and allow 
modeling not only the mean but all other parameters (including dispersion parameter) as linear 
and/or nonlinear parametric and/or additive non-parametric functions of explanatory variables. 
Therefore, within the framework of the GAMLSS, it would also be interesting to see the results 
of using explanatory variables to model other distribution parameters (such as the dispersion 
parameter). In addition, previous studies (Geedipally et al., 2009) assumed a linear relationship 
between the logarithm of the dispersion parameter and explanatory variables. This linear 
relationship assumption might not be the best assumption. Thus, given the flexibility and strong 
nonlinear modeling ability of the GAMLSS, the GAMLSS can be a useful tool to explore 
functional forms other than the linear one that can better describe the relationship between the 
logarithm of the dispersion parameter and explanatory variables.  
 
 



6. SUMMARY AND CONCLUSIONS 
 
This paper has described the application of the SI GAMLSS for analyzing crash data. The 
proposed model was evaluated using two highly dispersed crash datasets. Traditional NB GLMs 
that have been proposed for analyzing highly dispersed count data are found to suffer from two 
methodological problems: first, NB models cannot handle high dispersion with a long tail 
efficiently; second, if the highly dispersed count response variable does not follow an 
exponential family distribution, the GLM cannot be used. The newly introduced SI GAMLSS 
offer the advantage of being able to model crash data with high dispersion. Moreover, in the 
GAMLSS,  the exponential family distribution assumption is relaxed and replaced by a general 
family distribution. The goodness-of-fit test showed that the Sichel distribution works very well 
when the count data is highly dispersed with a long tail. The modeling results showed that the SI 
GAMLSS provided better fitting performances than the NB and ZINB GAMLSS for the crash 
datasets examined in this study. In conclusion, it is believed that the Sichel distribution and the 
SI GAMLSS may offer a viable alternative to the traditionally used NB GLMs for analyzing 
highly dispersed crash datasets. 
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