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ABSTRACT 

Transportation planning models are used to estimate, as accurately as possible, future traffic patterns, peak 

periods, travel time, and various environmental or other related traffk flow by-produds. UnfoRunately, traffc 

safety is seldom, if ever, explicitly analyzed during the transportation planning process. The non-evaluation 

of safety is attributed to various fadors, including the lack of available tools neeâed to estimate the number 

of accidents on digital netwodcs or urban transportation networks. Thus, the primary objective of this work 

was to develop a series of rnodels that would allow the &mation of traffic accidents on digital networks; that 

is. before a physical transportation facility is built or upgraded. The secondary objective consisted of 

describing ail the issues surrounding their application on digital networlcs. To accomplish this goal, several 

accident prediction models that include trend were developeâ to predid accidents at nodes and on links. As 

part of this work, a new method to estimate the coefficients of models with trend is explained. A few 

illustrative applications of the models are also presented. The models were applied to three sample digital 

networks and the simulation of traffic was performed with either EMMW2 or Paramics. The resuns showed 

that it is possible to predict accidents on digital networks, but the accuracy is directly related to the precision 

of transportation planning software programs. Hence, inaccurate traffic fiow prediction leads to incorrect 

accident prediction. Thus, efforts should be made in trying to find better flow estimates. Some proposed 

models are also sensitive to how the digital network is coded and the predided number of accidents should 

be adjusted accordingly. Finally, several issues and limitations related to the application of accident 

prediction models to detemine the safest paths on digital networks and evaluate the safety effeds of 

dynamic route guidance systems are describeci in this thesis. 
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CHAPTER 1 
INTRODUCTION 

This chapter includes the problem statement, the objectives of the study, and a 

discussion of various issues relating to the urban transportation planning process and 

traffic safety. 

1.1 STATEMENT OF PROBLEM 

The losses to society caused by motor-vehicle collisions are considerable: on a global 

basis. traffic accidents on highways and urban roads kill 500,000 individuals and maim 

about 15 million people worldwide annually (Wilson and Burtch, 1992). In 1990, the 

estimated cost of such accidents for the U.S. was close to $1 37 billion dollars (Blincoe 

and Faigin, 1992). In Ontario, economic losses resulting from accidents amounted to 

$24 billion dollars between 1988 and 1993 alone (Nguyen, 1997). According to Rice et 

al. (1 989). the cost of an injured person and a fatality are estimated at $9,062 ($US) and 

$352.042 ($US) respectively. The values for Ontario in 1994 dollars for a non-fatal and 

a fatal injury are $20,084 and $831,429 respectively (Vodden, et al. 1994). An average 

property damage only (PDO) collision in Ontario is estimated at $6,136 in 1994 dollars. 

These costs include both direct costs (such as damages to vehicles and property, 

emergency services, police, hospitalization) and indirect costs (such as loss of 

productivity). 

The role of traffic safety specialists is to study and analyze the causes of traffic 

accidents in order to implement countermeasures for reducing the number and severity 

of collisions, thereby decreasing the personal and societal costs they generate. More 

specificall y, traffic and safety engineers who are responsible for the efficient and safe 

movement of people and goods on highways employ accident data to evaluate 



troublesome locations, conduct before and after studies and develop accident prediction 

models (APMs). These models are useful tools in traffic safety studies. 

The theories on how to estimate and apply APMs are generally well developed. Indeed, 

the latest development in this area is described in the Iiterature review. However, APMs 

are usually applied or used in a reactive manner. Most typically, the facility or road 

network has already been built and is being used by motorists. Only after accidents 

occur are the models used to identify dangerous locations; some cal1 such locations 

"black spots" or "hazardous locationsn while others, perhaps more appropriately refer to 

them as, "sites with promises", that is to say, sites that once identified, can be improved 

(Hauer, 1996). Thus, by the time a location has been ftagged as dangerous and 

treatable, many people have already either been killed or injured. Ideally, the number of 

predicted accidents should be estimated before a facility is either built or upgraded so 

that troublesome areas can be identified and corrected accordingly, even before the 

facility is used. 

Before pursuing this discussion further, it is important to define the urban transportation 

planning process in a way that presents problems and their potential solutions to 

decision makers (e-g., policy makers, managers, etc.). The transportation planning 

process can be separated into four stages (Meyer and Miller, 1984). These include (a) 

fully understanding the extent of the problems, (b) identifying different solutions and 

alternatives, (c) evaluating long-term and short-term consequences of alternative 

choices, and (d) efficiently presenting the best alternatives to the decision makers. The 

stage that is the most relevant to this research, however, is (c) evaluating alternatives, 

since the product of this research is used to identify the consequences of alternative 

choices. 

In this context, the three major impacts (other than travel delays) most commonly 

assessed in urban planning projects are the air quality, noise level, and fuel 



consumption. These three factors provide additional criteria for determining which 

proposed alternatives produce the least negative environmental repercussions. The 

assessrnent of these factors in urban transportation models is well established (see the 

work of the ILUTE Group at the University of Toronto). Unfortunately, safety impacts are 

rarely if ever estimated for urban transportation projects. Since the societal wsts of 

collisions are very high, it is imperative that the impact of accidents be evaluated to the 

same extent as the other impacts. 

The non-evaluation of safety can be attributed to three reasons. The first reason relates 

to the role of safety in the planning process. Although road safety is considered to be an 

important objective throughout the urban planning process, it is seldom, if ever, defined 

explicitly as such at the various levels of analysis. Indeed, many planning-for-safety 

principles already exist and have been applied, such as the design of Street layouts in 

subdivisions. However, traffic safety is never computed quantitatively (Le., compute the 

expected number of accidents). For instance, a transportation planner may choose 

specific road and intersection designs based on pre-established guidelines but still fail to 

provide numbers that would quantify the safety of the facilities. Furthermore, although 

design manuals might claim that one particular design is safer than another (e-g., traffic 

lights versus stop signs), that claim may not hold under al1 circumstances. For example, 

one facility could become more dangerous than another one as a result of different 

traffic flow volumes. In short, trafic safety should be quantified and used, along with the 

aforementioned criteria in the evaluation of designs and alternatives. A good discussion 

on safety in relation to planning issues is to be found in the work of Stogios (1 988). 

The second reason is linked indirectiy to the first. It is a widely held misconception that 

following pre-established guidelines or standards automatically renders a facility safe. 

Thus, urban transportation planners generally tend to believe that their designs will be 

accident free. And, that there is therefore no need to estimate the future safety of a 

facility. This is far from true. As discussed in a document produced by the Association of 



Professional Engineers of Ontario (PEO, 1997), there is no such thing as a safe road. 

Indeed, the document maintains that it is inappropriate to Say that a road is safe insofar 

as collisions are bound to occur. The document also suggests that one should never 

claim that a road is safe. only that it is relatively more or less safe than another. The 

PEO document also argues that standards often are outdated and thus should not be 

used to validate that a facility is either safe or unsafe. 

The third reason affecting the non-evaluation of safety is related to the lack of available 

tools needed to estimate the safety of a facility. As explained earlier, while the tools to 

identify the problematic locations are well developed, these tools cannot be used 

efficiently with current urban transportation models (see Chapter Four for issues related 

to the application of APMs on digital networks). This research projed is an attempt to fiIl 

this gap by providing new tools for evaluating traffic safety at the planning stage. 

Many different urban transportation models are used to predict travel patterns within a 

city or region and these models have advantages and disadvantages. However, it is not 

the role of this research to examine which model performs best. The most common 

travel demand model is the Urban Transportation Modelling System (UTMS). It features 

a four-stage sequential procedure (trip generation, trip distribution. modal split. and 

traffic assignment) that attempts to model the decision-making process of the driver. 

Another model, known as the choice theory model, employs the random utility 

approach. This model attempts to predict the decision-making process of individual trip 

makers in an attempt to determine the aggregated demand. More recent models include 

simulation, disaggregated modelling procedures. and an interactive !and use modelling 

approach. These models attempt to predict how many vehicles will use different 

components (Le, nodes and links) of a given transportation system or network. 

In the context of this research. only the output of the urban transportation models {i.e.. 

vehicle flow) is of interest. Therefore, the choice of the model is not important. The 



output is used to predict the number of accidents for the entire network. The tools 

developed in this research project would enable a transportation planner to quantify 

safety before a facility is either buitt or upgraded. In short, it would provide an additional 

criterion in the selection of the best alternatives for urban planning projects. Given the 

recent increase in awareness concerning trafic safety issues, both on the part of 

decision makers and the media, the findings of this research are likely to be of great 

benefit both to transportation planners and engineers. Similarly, the findings would also 

contribute to the reduction of traffic accidents in both future and existing projects. 

in summary, traffic safety is only infrequently evaluated quantitatively in the current 

urban transportation planning process. Since traffic accidents cause tremendous 

financiaf, social, and emotional loss, it is important to estimate the number of accidents 

on a transportation facility that has to be either built or upgraded. The goal of such an 

exercise is to minimize, a ptiori, the number and severity of collisions by quantifying the 

safety of each alternative that is evaluated. Unfortunately, currently available tools such 

as APMs are inadequate for predicting the number of accidents during the urban 

planning process, more specifically, on urban transportation networks (UTN) or digital 

networks. In short, the goal of this research is to create a tool to help transportation 

analysts estimate more precisely the safety of different alternatives at the planning 

stage. 

1.2 OBJECTIVES AND STRUCTURE OF RESEARCH 

The objectives of this research are: 

1. Create new a series of APMs to estimate the number of accidents at nodes and 

links with the output (Le., trafic flow) of commercially available transportation 

planning software programs. Given this objective, introduce a new method to 

estimate the coefficients of models that include trend. 



2. Describe all the issues surrounding the application of APMs for the following: 

. Investigate and quantify the safety of digital networks for different scenarios. 

Given this objective, changes in the degree of safety are examined in a network 

that has been substantially modified. The degree of assessrnent of future safety 

impacts is also explored. 

Develop a safest path algorithm to determine the safest routes on digital 

networks. This application is likely be beneficial to companies that carry 

hazardous materials or for govemrnental transportation agencies. 

Explore the use of accident risk to find the safest routes on networks. The 

accident risk is defined as the inherent risk of a driver to be involved in a collision 

on a link or node that experiences x accidents and y vehicles per day. This 

definition does not include the consequences of a collision such as the probability 

for an unbelted driver to be seriously injured or the risk of a chernical spill for an 

accident involving a truck carrying hazardous materials. 

. Investigate the use of accident risk in the context of dynamic route guidance 

(DRG) system. This system is a core component of intelligent transportation 

systems (ITS). The objective is to simulate changes in network safety when 

accident risk information is provided to road users. 

This thesis is divided into seven chapters (including the Introduction). Chapter Two 

contains the Iiterature review. The subject areas reviewed include: the digital coding 

process of physical networks; the characteristics of APMs; the description of relevant 

issues in network safety; and, finally, the application of optirnization algorithms on 

transportation networks. 



Chapter Three contains a description of the data used for this research. The data 

consisted of information on traffic accidents and traffic counts for the period 1985 to 

1996. The procedure used to estimate missing traffic counts and the various steps 

taken for the data reduction process are presented in this chapter. 

Chapter Four contains a description of the APMs. The methodology used to create the 

models is explained in the first section. Subsequent sections present the characteristics 

of models that could be used both for predicting the number of accidents on 

transportation networks and for other applications described in the objectives (e-g., 

DRG). 

The application of the APMs on digital networks is illustrated in Chapter Five. This 

chapter undertakes to explain the mechanics of how the models are applied on a digital 

network; and, also how the models can be used within the urban transportation planning 

process. The models were applied on two digital networks. The first network digitally 

represents physical urban roads located in the non-central business district (CBD) of 

Toronto. The second network. which does not represent any physical network. was 

created solely to show the changes in safety for networks that are substantially 

modified. 

Chapter Six includes a description of two useful applications of APMs on digital 

networks. The first application consists of utilizing a shortest path algorithm to find the 

safest routes on a network. The steps taken for the proposed safest path algorithm are 

presented in this application. The implementation of the APMs in the context of ITS is 

presented in the second application. The APMs are used to explore network safety 

issues for networks that have DRG-equipped road users. 

Chapter Seven contains a summary of the analysis and a discussion about the results 

of the research. Also included is a set of recommendations for future research. 



The subsequent appendices include: a sample of the various electronic databases. 

references to the theory not explained in the text, and, finally, a description of the 

computer codes created in this research. 



CHAPTER 2 

LITERATURE REVIEW 

The objective of this chapter is to review the literature in several subject areas related both 

tc urban transportation networks and traffic safety: the digital representations of physical 

urban transportation infrastructures, the characteristics of accident prediction models, 

accident prediction on transportation networks, and the least risk path rnodels in networks. 

2.1 DIGITAL REPRESENTATION OF PHYSICAL NETWORKS 

The term nefwork may refer either to physical structures (such as streets, railroads or 

airline paths) or conceptual constructions (such as the assignment of personnel inside an 

organization or affiliations between corporations). In either case, a network is 

characterized by a series of nodes (Le., vedices or points) and links (Le., arcs or edges) 

that connect these nodes. In digital networks, the nodes and links usually represent 

physical structures such as streets, intersections and interchanges. 

The digital representation of physical urban transportation infrastructures is very important 

to transportation analysts. Digital networks, as used by transportation planning software 

programs characterize, in a mathematical form, the movernent of goods and people within 

a physical network. As explained by Potts and Oliver (1972), a regularity exists in the 

habits of an urban population that establishes certain patterns of movements that can be 

described by mathematical models. Moreover, the goal of such models is to predict or 

estimate, as accurately as possible, future traffic patterns, peak periods, travel time, and 

various environmental or other related impacts. In the end, digital networks enable 

transportation analysts both to estimate the flow (vehicles, passengers, pedestrians) that 

travels through each component of the physical network and, given the flow pattern, 



evaluate several measures of interest such as travel costs operation characteristics 

(revenues, etc.), or flow by-products (e-g., pollution). 

The coding of transportation infrastructures is dependent on the scale of the studied area. 

For someone interested in examining the macroscopic movement of traffic throughout an 

extensive region, it is preferable to divide the region into sub-areas. The network should 

be divided according to a set of predetemined districts or zones. The links should 

represent the major highways, main arterial roads, etc. The links do not include al1 physical 

intersections present on the actual road corridor. The nodes usually correspond to major 

intersections or highway interchanges. However, extra nodes often are used to connect 

the network with the centroids (discussed below), and thus may not necessarily represent 

a physical infrastructure. Trafic origins and destinations are assumed to concentrate to 

a point in the middle of the zone, represented by a centroid. Each centroid is connected 

to the network by one or more centroid connectors. 

Figures 2.1 a and 2.1 b illustrate the digital representation of a physical urban transportation 

infrastructure. The actual physical network is shown in Figure 2.1 a. The network consists 

of four major arterial roads and several local streets. The digital representation of the 

physical network of Figure 2.1 a is iltustrated in Figure 2.1 b. This network has five nodes 

and four links. Four nodes (one in each corner) are used to represent the intersection of 

the four arterial roads. The fifth node (located to the left) is used to connect the centroid 

to the network through one of the three centroid connectors. This node does not represent 

an actual intersection. The four links represent the four arterial roads. The centroid and 

the centroid connectors are utilized to simulate the number of trips that occur on the local 

streets (Le., within the zone). The intersection of local streets with the major arterial roads 

is not depicted in the digital representation. 
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For the study of very small regions or neighborhoods, it is possible to digitally represent 

every sireet and intersection. For this kind of representation, no districts or zones as 

defined above are used to simulate trip attractions and productions. Instead, centroids are 

placed at the outskirts of the network to simulate onwming and outgoing traffic at specific 

gateways. As expected, this representation is very time-consuming and requires an 

enormous amount of information (e-g., turn prohibitions, traffic Iight phases, etc.). 

Consequently, this type of network representation is only infrequently used and is not the 

focus of this research. The reader is referred to Potts and Oliver (1 972) and Sheffi (1 985) 

for a more detailed discussion conceming the digital representation of urban physical 

transportation networks. 

2.2 ACCIDENT PREDlCTlON MOOELS 

This section reviews literature pertaining to four areas: (1 ) the general characteristics of 

accident prediction models (APMs), (2) APMs used to estimate the number of accidents 

at intersections, (3) APMs that predict the number of collisions on arterial road sections, 

and, finally, (4) the application of APMs on transportation networks. 

2.2.1 CHARACTERISTICS OF ACCIDENT PREDICTION MODELS 

APMs are used to predict the number of collisions at intersections, on arterial roads, or on 

any other transportation related facility. Since trafic accidents are usually statistically 

independent random events, their use is essential. In short, accident counts alone cannot 

be used to predict the number of collisions on a given transportation facility (Hauer, 1997). 

As with any statistical model, APMs are developed by drawing inferences about a 

relationship between a dependent variable and a series of covariates. In general, 

predictive models have the following form: 



where, 

E{K)= expected number of accidents per unit of time; 

x = a series of covariates, x,,x,, ... ,xp; 

p = coefficients to be estimated, Po, $,, ... ,Pp. 

Equation (2.1) is used to predict the number of accidents per unit of time on a given 

transportation facility. Models can be used to predict accidents according to severity, 

impact type or their occurrence at different time periods. The main goal of equation (2.1) 

is to find the estimate of the coefficients, P, associated with the covariates (or explanatory 

variables). The techniques for finding these coefficients are very well developed, and many 

documents exist that are related to Iinear models (Myers, 1990; and, Bowerrnan and 

OIConnell, 1 990), generalized linear models (GLM) (McCullagh and Nelder, l989), and 

non-linear models (Saber and Wild, 1989). In general, the coefficients of APMs are usually 

estimated by GLM through regression or maximum likelihood methods. 

The right-hand side of equation (2.1), f { )  can be comprised of several independent 

covariates: traffic flow, sight distance, tuming lanes, speed limit, road lighting, trafic 

control, etc. The models proposed by Kulmala (1995). and Vogt and Bared (1998) 

incorporate such covariates. The most common models, however, ordinarily use traffic flow 

as the only input. Examples of these can be found in Hauer et al. (1 988), Bonneson and 

McCoy (1 993), Bélanger (1 994), and Persaud and Nguyen (1 998). 

There are many different types of model forrns. Some model forms for APMs used for 

intersections and arterial road sections are presented in the next two sections. These 

model forms range from very simple to extensively detailed. As an example, equations 

(2.2) and (2.3) illustrate two different types of models that predict accidents on highways: 



where, 

E {K)  = expected number of accidents per unit of time; 

L = length of highway section; 

F = traffic flow on highway; 

a, pl, B2, P, = coefficients to be estimated; 
P 

x i  p i=  a series independent variables, such as sight distance, shoulder width, 
i= 3 

warning signs, private entrances, etc., for i = 3 to p. 

Equation (2.2) shows a very simple model form while equation (2.3) illustrates a very 

detailed model form with many covariates. 

According to Hauer and Persaud (1996), given that enough data points exist, it is more 

favorable to separate the data in different categories and develop a model for each 

category rather than to create one model with many covariates. They argued that models 

with categorical variables are usualiy inflexible since the outcome depends on the 

covariates simultaneously. Hauer and Persaud proposed creating a string of models with 

traffic flow as the only input and separating thern into a series of cell. To illustrate this 

approach, let us consider this APM for signalized intersections with many covariates: 



where, 

E{K} = expected number of accidents at signalized intersections per unit of time; 

F,, F, = traffic flow on each approach; 

R = type of region, 1 for urban, 2 for rural; 

TC= Traffic control, 1 for actuated, 2 for pretimed; 

ST = signal type, 1 for isolated, 2 for coordinated; 

a, p,, P1, P3, p,, Ps = coefficients to be estimated. 

\hfith the approach proposed by Hauer and Persaud, the original reference population 

could be divided into 15 distinct cells as presented in Figure 2.2. 
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FIGURE 2.2 Variables and cells for intersections with traffic signals 



For each cell shown in Figure 2.2, a simple rnodel with the following relationship would be 

created: 

The only disadvantage of this approach is related to the number of data points required 

in each cell. As the number of cells grows, the number of data points available becornes 

smaller for each cell. 

After choosing the proper approach, it is important to select the appropriate model form 

that links the accidents to the explanatory variables. Unfortunately, few tools exist to help 

an analyst choose the proper model form. The Integral-Oifferentiate (ID) method, proposed 

by Hauer and Bamfo (1997), is one tool that can assist the analyst. The ID method 

consists of creating a graph to investigate and select the proper function that links the 

dependent variable with the independent variables. Accordingly, the analyst has to create 

a graph of the Empirical lntegral Function (EIF) where the independent variable (note that 

we can only evaluate one variable at a time) is separated into a series of bins placed in 

an increasing order. The EIF graph is then wmpared to a set of predetermined graphs. 

The appropriate model form is selected by choosing the predetermined graph that either 

matches or looks very similar to the €IF graph. The reader is referred to Hauer and Bamfo 

for a full description on the selection of model forms. 

2.2.2 ACCIDENT PREDICTION MODELS FOR lNTf RSECTIONS 

Extensive research has been conducted on the prediction of accidents at intersections. 

The majority of the models proposed in the literature are for signalized intersections 

(Hauer et al., 1988, Kulmala, 1995; Persaud and Nguyen, 1998). Fewer models are for 

unsignalized intersections (Bélanger, 1994; Rodrigue2 and Sayed, 1999; Bared and Vogt, 

1999). The models developed for this research do not include categorical variables. Thus, 



a description and review of these rnodels have been omitted from this section. The APMs 

that use traffic flow as the only input can have many different forms. Some common model 

forms are shown in equations (2.6) io (2.8) (Maycock and Hall, 1984; Mountain and Fawaz, 

1 996; Brüde et al., 1998): 

where, 

E{ K )  = the expected number of accidents in a specified period of time; 

F,, F, = major and minor traffic flows (by approach or movement); 

a, p,, P1 = coefficients to be estimated. 

The model forms presented in equations (2.6) to (2.8) have various degrees of success 

in the prediction of accidents at intersections. The selection cf the model form is often 

based on the analyst's judgement and on the characteristics of the data. According to 

Mountain and Fawaz (1 996) and Nicholson and Turner (1996), the most suitable model 

form for intersection modelling is the following: 



The model form of equation (2.9) is the one most commonlv found in the safety literature. 

Equation (2.9) also has two main advantages. First, the model follows the logic of "no 

traffic flows, no accidents" (Zegeer et al., 1981 ; Satterhwaite, 1981 ; Hauer and Persaud, 

1988). Indeed, one would reasonably expect that no accidents would occur if no trafic 

were present. Second, the model follows the logic that no Iinear relationship exists 

between accidents and trafficflow. This relationship has been thoroughly investigated and 

dates as far back as 1953 (Tanner, 1953). 

Depending on the kind of outcome sought, equation (2.9) can be used either to predict the 

number of accidents for an entire intersection by using total approach flows, or for specific 

conflicting movement manoeuvres. To predict the total number of accidents at an 

intersection, the variables F, and F, are usually defined as the surnmation of both 

approach flows in any one direction (e-g., North-South or East-West) (Bonneson and 

McCoy, 1993; Rodriguez and Sayed, 1999). The estimate of the coefficients (P) for such 

modeis usually varies from 0.2 to 1 .O. The value of these estimates depend on a variety 

of factors, such as the location of the intersection (rural vs urban) and the characteristics 

of the population located near these intersections. 

To predict accidents for specific conflicting movements, APMs are built according to the 

type of impact that occurred at the intersection (Hauer et al., 1988; Persaud and Nguyen, 

1998), such as collisions between straight-through and left turning vehicles, orright-angled 

crashes. There are between 15 and 25 different categories of collisions at intersections 

(depending on the definition given by the researcher). In principle, the summation of the 

predicted accidents in the various categories for each leg of an intersection should be 

equal to the total number of accidents, as predicted in the model described in the previous 

paragraph. The main drawback of using this approach is related to enormous amount of 



information needed to develop these models. For example, the manoeuvre of each vehicle 

involved in every collision must be known. This may not be a problem when dealing with 

a few intersections, but may become problematic if the intersection and accident 

databases are very large. Sometimes, APMs cannot be created for categories that do not 

have enough accident counts. 

2.2.3 ACCIDENT PREDlCTlON MODELS FOR ARTERIAL ROADS 

Few APMs are used to predict accidents on urban arterial road sections. Available studies 

indicate that many rnodels are utilized to assess the safety of various road characteristics, 

such as the presence of a median, two-way left-turns, speed limits, the number of 

intersections, and access density. Thus, researchers are trying to determine which 

geometric characteristic could explain the occurrence of accidents on urban road sections. 

These models obviousiy include many explanatory variables. Such models were proposed 

by Brown and Tarko (1 999). They have the following form: 

where, 

E { K )  = the expected number of accidents in a specified time period; 

L = length of the road section; 

Y = number of years; 

F = flow on the road section (AADT); 

Xi = a series of independent characteristics, for i = 2 to m; 

a, B,, pi = coefficients to be estimated, for i = 2 to m. 

Brown and Tarko created a different rnodel for injury, property damage only (PDO), and 

al1 accidents combined. The final models selected on the basis of the best fit had eight 



explanatory variables each, including many dummy variables (e-g., 1 or O). Some of the 

variables included access density, presence of a median, commercial area, and two-way 

left-turn lanes. 

Vogt and Bared (1 999) used a similar approach (e-g., models with many variables) to that 

proposed by Brown and Tarko, but for rural rather than urban roads. lnstead of using one 

rnodel to predict accidents for the entire road section (as suggested by Brown and Tarko), 

they created two different models: one for intersections and one for mid-block sections. 

Their rnodel form was similar to that in equation (2.10). 

Jackett (1 993) exarnined the use of APMs for urban routes in New Zealand. He suggested 

separating accidents that happened at intersections from those that occurred between 

junctions. Thus, he proposed one APM for intersections and one for mid-block sections. 

The model predicting accidents for mid-block road sections had the following form: 

where, 

E(R) = the expected accident rate in 1 o8 Vkms; 

Xi = a series of independent characteristics, for i = 1 to 5; 

X, = 1 for residential developrnent, O otherwise, 

X, = 1 for flush medians, O otherwise, 

X, = 1 for solid medians, O other wise, 

X, = 1 for 50 km/h, O otherwise, 

& = the number of intersections per km; 

a, pi = coefficients to be estimated, for i = 1 to 5. 

Equation (2.1 1 ) includes neither the section length nor ihe exposure, as both are aiready 

contained in the accident rate. 



The development of APMs for highway road sections with minor junctions, where traffic 

counts on minor approaches were not available, was investigated by Mountain et al. (1 996) 

and Sawalha et al. (2000). Although the models proposed by Mountain et al. were created 

for rural highways, their application is still relevant for this research. Since traffic counts 

are not always performed at every intersection located along a highway corridor, traditional 

models cannot be used to predid accidents on such road sections. Thus, Mountain et al. 

and Sawalha et al. proposed a series of models to estimate the number of accidents for 

such highway sections. The suggested APMs had the following forms: 

where, 

E{ K )  = the expected number of accidents on road section per unit of time; 

1 = length of the road section; 

F = flow on the road section (AADT); 

N = number of intersections on road section; 

a, B,. p,. P3 = coefficients to be estimated. 

An important characteristic of equation (2.12) is related to the relationship between 

accidents and the length of the section. It is often assumed that accident counts are 

proportional to the length of a road section. However, this relationship may not be true in 

al1 circumstances. For instance, equation (2.12) shows that this relationship does not exist, 

since the variable L is allowed to be different than 1. Mountain et al. argued that the power 

of the coefficient in their models is below unity, which irnplies that shorter lengths have a 

higher accident count than longer lengths cetens paribus. A similar relationship was also 

found by Brown and Tarko (1999) but was not deemed significant (they forced the length 

variable, L, to equal 1). Mountain et al. attributed the relationship between length and 

accidents to the difference in density of intersections at long versus short road sections. 

They stated that the influence of intersections on accidents is probably greater than what 



has been established to date. Unfortunately, Sawalha et al. did not provide any 

explanation for the non-linear relationship. 

Ail model foms described in this section cornply with the rule, "no flows, no accidents." 

They also follow the logic that no linear relationship exists between accidents and trafic 

flow. 

2.2.4 PREDlCTlON OF ACCIDENTS ON DIGITAL NETVVORKS 

At the beginning of this research project, it was believed that issues related to network 

safety were seldorn researched and that little interest was shown by the research 

community on this subject. Since then, a few researchers have examined the application 

of APMs on transportation networks, which has lead to the publication of few research 

documents. A thorough review of these documents is thus presented in this section. 

The first attempt to use APMs for digital networks was perfoned by Al-Deek et al. (1 993). 

The authors examined the potential impact of Advanced Traveler Information Systems 

(ATIS) on accident rates in an urban highway corridor located in Orlando. Florida. The 

study area consisted of a freeway and an adjacent arterial road. The goal of the study was 

to propose a method to assess the overall change in safety if traffic were to be rerouted 

from the congested freeway to the adjacent road. The method used two APMs-one for 

the freeway and one for the arterial road-and a risk matrix that used queuing and traffic 

density as input. Unfortunately, because the authors did not apply their method on the 

network, it is not known if the method works correctly in that context. 

Since that study, the prediction of accidents on transportation networks has been 

investigated by very few researchers. Burrow and Taylor (1 995) used different APMs to 

compute the expected number of accidents on two urban networks in England. The 

CONTRAM (Leonard et al., 1989) software was used to simulate traffic on the networks 



and the number of accidents was calculated from APMs published elsewhere. Burrow and 

Taylor assessed the safety of the network for different scenarios (e-g., re-routing of traffic) 

and with different traffic calming measures. Overall, there was a reduction in the predicted 

accidents by up to 30°h for some scenarios. Burrow and Taylor's paper provided a good 

initial assessment on the quantitative aspect of network safety. However, a better 

description of the models used in their work would have been more helpful to the reader. 

Nicholson and Turner (1996) also tried to estimate the number of accidents on digital 

networks. In their research, several APMs were created from a sample of intersections 

located in Christchurch, New Zealand. No models were created or used either for links or 

arterial road sections. The models were applied on three networks and their output was 

compared with observed accident counts at intersections only. The authors found that the 

models under-estimated the observed counts for al1 three networks, and that the under- 

estimation varied from 13Oh to 34%. This article provides a thorough discussion on several 

modelling issues. What was unclear, however, was how the models were applied on the 

network, insofar as the article was almost entirely devoted to a discussion of modelling 

issues. 

Turner and Nicholson (1998) used the same APMs proposed by Nicholson and Turner 

(1 996) to study the effects of area-wide traffic management measures on traffic safety. 

These measures included the use of physical barriers to prevent vehicles from entering 

local streets from arterial roads, the banning of left-turning movements, and the 

realignrnent of arterial roads. For this study, mid-block accidents were estimated using 

Jackett's model (1 993) reviewed in the previous section. The models were applied on the 

same three networks described above and were deemed appropriate for evaluating traffic 

management measures with digital networks. This paper is basically a follow up to their 

previous paper, except that it focuses more on the application of the models on urban 

networks than on a discussion of modelling issues perse. 



The influence of Dynamic Route Guidance (DRG) on trafic accidents has been examined 

by Chatterjee and McDonald (1998). The goal of their research was to evaluate the 

changes in safety on UTN that have vehicle-equipped DRG systems. Several scenarios 

were evaluated with different levels of market penetration for vehicles equipped with ATIS. 

Chatterjee and McDonald also briefly examined the issue of least risk routes in networks. 

The simulation of trafiic was perforrned with RGCONTRAM (McDonald et al., 1995). The 

authors used APMs available from other sources in the Iiterature. The results showed that 

the DRG has a negligible influence on the overall safety of the network; also. that the 

safest routes on a network are, as expected, the routes having the shortest distance. 

Chatterjee and McDonald applied the same definition of risk outlined in the objectives of 

Chapter One. This research document provides a good preliminary analysis on safety 

issues related to DRG systems. 

The most exhaustive application of APMs on transportation networks is related to the work 

of Maher et al. (1993). The aim of their research was to develop a function that would 

optimize network flows and minimize thereby delays and accidents simultaneously. The 

objective function was as follows: 

where, 

z(x.8) = the objective function to optimize; x represents the flows, 

and 8 represents the signal settings of signalized intersections; 

T = time measured in vehicles-hour per hour; 

A = the total number of accidents in the network; 

k = a weight factor for accidents; k = O for pure travel time minimization, 

and k = - for pure accident minirnization. 



Maher et al. tried to optimize the objective function under the system-optimum (SO) 

assumption for several scenarios and for different k values. They concluded that traffic 

routing, which minimizes delay, often "contradictsn traffic routing, that minimize accidents. 

For instance, travel delay-minimization assignments usually tend to spread flows on as 

many links as possible, whereas accident-minimization assignments tend to concentrate 

flows on a minimum number of links. Furtherrnore, the final solution was found to be non- 

convex, which implies that many local minima exists. It was also discovered that the 

optimal solution is heavily dependent on the initial flow patterns. 

The work of Maher et al. is the first to optimize network flows and accidents 

simultaneously. It contains a good discussion about issues related to initial assumptions, 

user-equilibrium (UE) and SO traffic assignments, and the appropriate value of k. It would 

have been worthwhile, however, had the authors provided a more comprehensive 

description of the various APMs used in their study. 

In brief, the reviewed documents on network safety showed that few researchers examined 

the application of APMs on transportation networks. Moreover, rnany researchers used 

models developed from a reference population located outside the study area. Thus, it was 

not known what kind of models or model forms were used. A comparison between the 

predicted number of accidents and the observed counts was performed in only two 

documents (observed counts are often used to calibrate models). In those two studies, the 

APMs under-estimated observed accidents by up to 34%. Finally, it was unclear in some 

studies whether the digital network represented only the major roads and intersections, or 

whether they represented a detailed description of the physical network. 

2.3 OPTIMUM ROUTING 

The literature on minimum risk route models is briefly reviewed in this section. To date, 

these models have been applied only to the transportation of hazardous materials. As a 



result, their applicability to this research may be somewhat limited, sime the models 

proposed in the literature usually fows on inter-urban settings. In addition, many of the 

proposed models are partially optimized for safety, and incorporate other factors, such as 

transport costs. It should be pointed out that the risk in these models is usually defined as 

the societal risk. ln other words, the risk is defined as the accident likelihood (the number 

of accidents) given the volume of traffic on each link of the network. 

Since hazardous materials can create serious harm both to the population and to the 

environment if an accident occurs, private carriers of such materials are always interested 

in the application of models that minimize the risk of such accidents. These models usually 

involves five compcnents (Saccomanno et al., 1 993): (1 ) accident likelihood, (2) 

containment failure, given an accident, (3) volume of rate of material released, (4) the 

hazard area associated with each potential threat, for different releases and materials, and 

(5) the population affected by the hazard. In short, the models attempt to estimate both the 

risk of an accident on a given route and the potential damage to the environment and 

population, given this accident and its location. Obviously, the risk is also dependent on 

the type of product carried and the characteristics of the vehicle carrying the product. Also, 

most of these models are developed exclusively for inter-cities transportation networks. 

Thus, it is not uncornmon to see studies that compare the risks of transporting dangerous 

goods in different kinds of transportation networks, such as road vs. rail systems 

(Kornhauçer et al., 1993, Purdy, 1993; Leeming and Saccomanno, 1994). 

A wide variety of algorithms are available for determining the minimum risk route on a 

network. The proposed algorithms can be simple, such as the one put forward by 

Ashtakala and Eno (1 996), based on the Moore algorithm. Alternately, they can be highly 

complex such as the algorithm proposed by Miller-Hooks and Mahmassani (1 998), which 

predicts the optimal routing on a stochastic, time-dependent transportation network. These 

models are not described here since they fail outside the scope of this research. One 



should note that many of the proposed models also include a constraint imposed by the 

operating cost. In such cases, the optimal route is not optimized solely for safety. 

From the literature identified for this section, moderate deficiencies were obsewed with 

respect to several issues. First, it was noted that the safety camponent of the proposed 

models tend to be simplistic. For instance, al1 of the least risk models still use the 

traditional accident rates as input (not based on APMs) despite the fact that they have 

been found to be an inaccurate estimation of safety (Hauer, 1997). Second, the accident 

risk is assumed to remain constant for different time periods during the day. Obviously, the 

risk of being involved in an accident is however very different for a truck traveling during 

the peak period than during the middle of the night. Third, few if any least risk rnodels exist 

for urban areas, where the potential of harm to the population is more significant than in 

rural settings. Fourth, it was also noted that few models included the risk of accidents at 

conflict points, such as intersections or interchanges, despite the fact that many accidents 

occur at these locations (46%) (MTO, 1993). Sometimes however, the risk at conflict points 

is combined with the risk computed for links. While the conflict points may not be a major 

problem on inter-urban networks, they are probably more crucial in urban settings. In short, 

the models proposed in the literature should include the risk of accidents at nodes. 

2.4 SUMMARY 

This chapter contained a review of the literature on several subject areas related to digital 

networks and trafic safety. The issues related to the coding of urban networks and its 

digital representation were presented in the first section, where it was shown that the 

digital representation of networks can be performed in many different ways. An extensive 

review on accident prediction modelling issues was presented in the second section, 

where it was demonstrated that the relationship between accidents and explanatory 

variables can have various forms. Different model fonns were presented for APMs used 

for intersections and those used for urban road sections. An enormous number of studies 



are available on intersections, but far fewer are available that concern urban road 

sections. The few research documents related to the application of APMs on digital 

networks were also reviewed in the second section, and showed that network safety is now 

becoming an increasing researched subject. The application of optimum routing models 

in networks was described in the last section. Hence, the studies showed that the safety 

component of the proposed models was somewhat deficient in some areas, and that more 

research is therefore needed. The data used for this research project are described in the 

next chapter. 



CHAPTER 3 
THE DATA 

The objective of this chapter is to describe the data used for this research. The data 

included information on traffic accidents, traffic flow, and the physical characteristics of 

intersections and arterial roads located in the City of Toronto. The steps taken for the data 

reduction process and how the reference population for the nodes and links were created 

are also described in this chapter. 

3.1 TRAFFIC ACCIDENT DATA 

A list of al1 traffic accidents that occurred within the boundaries of Toronto between 1985 

and 1995 inclusively was provided electronically by the Traffic Data Centre (TDC) of Metro 

Transportation (MT), the transportation agency of Toronto. The role of the TDC is to collect 

and validate accident data, maintain the electronic database and perform trafic safety 

studies. The database included accidents at intersection, non-intersection (Le., mid-block), 

or other location, such as in private lots. 

An initial appraisal of the accident database revealed a few interesting findings. For 

instance, between 47,000 and 52,000 traffic accidents per year were reported between 

1985 and 1995, of which, 50 to 70 were fatal. The word "reportedn is emphasized here 

since many accidents are not reported (Hauer and Hakkert, 1989). From the total number 

of reported accidents, the distribution between traffic accidents that occurred at 

intersections and those occurring at mid-block locations was about 45/55 respectively. 

Very few accidents were found to have happened on private property. The percentages 

of accidents with injuries and property damage only (PDO) were about 30% and 70% 

respectively, and rernained fairly constant throughout the studied period. It is important to 



note that many variables could contribute toward the year-to-year variation in reportable 

accidents. They include the threshold of a reportable accident. weather patterns. 

improvement in the treatment of injuries by emergency personnel and hospital staff, and 

different applications of traffic laws, such as the RIDE program. 

Entries in the database (Le., each row) are defined by the person involved in a collision. 

For instance. if an accident involves two drivers and a pedestrian, each person is coded 

as a separate entry. Thus, three different entries would be recorded in the accident 

database for that collision. In addition, if a passenger of one of the vehicles is also injured. 

a fourth entry would be added to the original three entries, mainly to explain the type of 

injury. 

The characteristics of each accident can be described by 43 fields (i-e., columns) and 831 

codes. Of the 43 fields. only 31 fields were deemed useful for this research; some of the 

non ueable fields are utilized by the Toronto Police Department (TPD) for legalistic 

purposes. The TDC separates the fields into two categories. The first category includes 

the so-called incident fields. The fields in this category are common for every person 

involved in the collision and describe the same characteristic for everyone. The second 

category includes the involvement fields. These fields show a specific characteristic for 

every person involved. Some of the most important fields for both categories are explained 

below. A sample of the accident database is presented in Appendix A. 

INCIDENT FIELDS: 

ACCIDENT NUMBER: Each accident is coded with a different number. The 

accidents are usually coded sequentially by date of occurrence. 

DAY OF THE WEEK: Each day of the week is assigned a different number (1 for 

Sunday and 7 for Saturday). 



STREET NAMES: These fields are used to describe the exact location of a 

collision. There are two fields for each road connected to an intersection: one field 

for the actual street name and the other for the street category (e-g., street, road, 

boulevard, etc.). 

ACCIDENT TIME: This field is used to indicate the time of the accident. Before 

1992, 24 codes were used to denote the time of the accident, with each code 

representing a different 1-hour period. For example, the code 00 implied that the 

accident occurred between 00:OO and 00:59 am. Since 1992, the actual accident 

time is used, e-g., 10:25 or 1734. 

LOCATION COORDINATE: This field explains the characteristic of the road on 

which the accident happened, such as, at an intersection or between intersections. 

ACCIDENT CLASS: This file describes the severity of the accident according to four 

categories: fatal injury, non-fatal injury, PDO, and non-reportable. The category is 

defined by the most serious injury among al1 injured people. For example, if there 

are three injured people and one deceased person in a collision, the accident is 

categorized as fatal injury. 

IMPACT TYPE: This field explains the type of accident, such as angle, rear-end, or 

turning. 

INVOLVEMENT FIELDS: 

INVOLVEMENT TYPE: This field explains the type of person involved in the 

collision such as driver, passenger, pedestrian, or cyclist. 



INJURY: This field describes the type of injury for each person involved in the 

collision. 

INITIAL DIRECTION: This field indicates the initial direction (north, south, east, 

west) each person was facing before the accident. This applies only for the driver, 

pedestrian and cyclist. 

MANOEUVER: This field explains the actual manoeuver in which each person was 

engaged, such as turning left, stopped, or merging. 

Collisions between vehicles and pedestrians or between vehicles and cyclists were not 

used in this research. Indeed, the proportion of pedestrian and cyclist accidents in this 

database is less than 5%. Since the output of transportation planning software programs 

does not provide traffic estimates for bicycles and pedestrians, it was decided not to 

include them in the analysis. Moreover, to estimate properly the number of accidents with 

pedestrians and cyciists, it would be necessary to know the actual exposure (Le., recorded 

traffic counts). Such information was not always recorded on-site for these road users. 

3.2 TRAFFIC FLOW DATA 

The TDC maintains an electronic 8-hour traffic count database for 1,551 signalized and 

unsignalized intersections. The traffic flow data were available from 1985 to 1996. In 

general, observed traffic counts were conducted on at least 400 junctions every year. 

However, they were not conducted at every intersection, nor they were recorded for every 

year. The 8-hour database also induded observed counts carried out for special events, 

and requested by citizens or city councillors. 

Traffic counts normally are performed at intersections during the morning, mid-day, and 

afternoon peaks; also, during one off-peak period. Two-hour counts start at 7:30 a.m., 



11 :O0 a.m., and 4:00 p.m. respectively for the peak periods. For the off-peak period, trafic 

counts are performed for 1 hour, both in the morning and afternoon, and usually beginning 

at 10:OO a.m. and 2:00 p.m. respectively. Traffic counts are divided into 1 5-minute periods 

and include al1 possible movements at an intersection (e.g., 12 movements for a 4-legged 

intersection). A sample of the 8-hour database is presented in Appendix A. 

3.3 PHYSICAL CHARACTERISTICS 

The TDC maintains an electronic physical characteristics database on the 1,551 

intersections described in the previous section. Some of the characteristics contained in 

this database included the number of approaches for each intersection, the type of trafic 

control , the type of intersection (e-g., regular 4-legged, offset intersection), and the 

presence of left-turning lanes. A sample of the physical characteristics database is 

presented in Appendix A. 

The physical characteristics database did not, unfortunately, contain enough information 

to conduct a proper analysis of the data. Important pieces of information were not available 

such as the installation date of signalized intersections, or the number of lanes on arterial 

road sections. Furtherrnore, it was discovered during the data collection process that the 

TDC database included many coding mistakes and other kind of errors. Therefore, 

additional information needed to be gathered to validate and complete the physical 

characteristics database. 

The supplemental information was collected from three other sources. First, the Traffic 

Signal Control Section (TSCS) of MT provided additional information on the number of 

lanes per approach for each signalized intersection, turning lanes, signal phasing, the 

installation date of traffic controllers, and other special characteristics The information was 

gathered electronically and from maps, construction drawings, and engineering reports. 



Second. for the data that could not be provided by the TSCS, the information on the 

physical characteristic was collected from on-site visits. All unsignalized intersections, 

arterial road sections, and some signalized intersections were visited at least once. In 

total. 250 sites were visited. The data gathered included the number of lanes for arterial 

roads. street markings, location of stop signs, and other information deemed relevant for 

this research. 

Third, a hired student assernbled additional information about major intersection and road 

section modifications from the three local districts at MT. These districts are distinct from 

the TDC and the TSCS and may sometimes provide supplementaf data not available in the 

former two. These modifications included the closure or addition of a leg, the widening of 

a road, and changes in street markings. Unfortunately, information on the modification of 

intersections and on construction upgrades was very difficult to obtain, especially before 

1990. Intersections and road sections known to have been extensively modified were 

removed from the analysis. 

3.4 DATA REDUCTION 

The three steps used to perform the data reduction process are described in this section. 

The first step consisted of expanding the 8-hour traffic flow to an annual average daily 

traffic (AADT). The second step was related to the need of estimating trafic counts for the 

years that manual traffic counts were not performed. The third step consisted of selecting 

the reference population for the models used for predicting the number of accidents at 

nodes and links. 

3.4.1 EXPANSION OF 8-HOUR COUNTS TO AADT 

AI1 the expansion factors were provided by the TDC. The factors were created from various 

permanent counting stations (24-hour counts) located throughout the city and were divided 



into five categories. The first category applied to roads classified as freeways or 

expressways. The second category pertained to roads located in the downtown core. The 

expansion factors used in this category were those created by the Market Investigation 

Services of the Traffic Division during the 19801s, as data from other sources were not 

readily available. More accurate expansion factors currently are being wmputed for this 

category. The third category applied to roads classified as suburban arterial roads. The 

fourth category pertained to roads categorized as industrial roads. Finally, the last 

category applied to roads classified as residential streets. 

For each category, a different expansion factor existed for the day of the week and the 

month of the year. Thus, for each category. there were 84 different expansion factors (7 

days x 12 months). The expansion factor values generally varied from about 1.50 to 2.20 

and were applied manually to each available 8-hour manual trafficcount recorded between 

1985 and 1995. 

3.4.2 ESTIMATION OF MlSSlNG AADT COUNTS 

The accident prediction rnodels (APMs) developed in this research incorporated time trend 

(explained in Chapter Four). Thus, it was imperative that data on accidents and traffic 

flows be available for every year (Diggle et al., 1994). Indeed. missing values may lead to 

biased models and inaccurate predictions. A procedure was therefore created to estimate 

traffic counts (expanded to AADT) that had not been recorded on-site between 1985 and 

1995, and for every intersection contained in the TDC database (1,551). The procedure, 

briefly described below, is fully explained in Appendix B. 

The proposed procedure was adapted from the work of Hauer (1 993a) and modified for the 

current data set. Basically, it consisted of estirnating the missing AADT counts (left. 

through, and right, for each leg) for a given year and for a particular intersection, by 

extrapolating from other traffic counts available in the database (i.e., counts from other 



intersections andlor from other years). The missing AADT counts were estimated with a 

çeries of linear regression equations. The final output contained the traffic flow in AADT 

for each movement at the intersection and for every year in the database. The procedure 

proved to be accurate as described in Appendix B. 

3.4.3 REFERENCE POPULATION FOR NODES AND LINKS 

The EMME12 digital network, created by the Joint Program in Transportation (JPINT) at 

the University of Toronto, was used as the input network for creating the reference 

population for nodes and links. The digital network included al1 cities located within the 

Greater Toronto Area (GTA). However, only the section of the netwark representing the 

City of Toronto was utilized for this research. In this section, the links represented every 

major physical arterial road, while the nodes depicted the junction between different 

arterial roads and between arterial roads and centroid connectors. As indicated in Chapter 

Two, the minor intersections present on the physical network were not show on the digital 

network. The EMME12 digital network of the City of Toronto is illustrated in Figure 3.1. 





The reference population for the nodes wnsisted of 1,354 signalized and unsignalized 

intersections; 197 intersections were removed from the original sample owing either to 

data inconsistences (e-g., problems with trafic counts) or to significant intersection 

upgrades (e-g., construction, signakation upgrades, etc.). The reference population 

contained 868 4-legged and 250 3-legged signalized intersections, and 59 44egged and 

1 77 3-legged unsignalized intersections. This reference population was taken directly frorn 

the list provided by the TDC. Thus, data on traffic accidents, traffic counts, and physical 

characteristics were readily available. 

The reference population for the links consisted of 284 road sections. The sites were 

picked evenly across the different parts of Toronto and was based on the EMMU2 digital 

network. Further manipulations were required to obtain the number of accidents and the 

traffic flow for each Iink, since the selected road sections were not an integral part of any 

of the TDC databases. The link flows were estimated from traffic counts that had been 

recorded at different points on the link. The reference population contained 20 2-lane, 21 5 

4-lane (59 in the central business district or CBD and 161 in non-CBD Toronto), and 49 

6-lane roads. The length of links varied from 0.32 to 3.82 km, with an average of 1.40 km. 

3.5 OUTPUT DATABASE 

The final database was separated into three computer files. One computer file contained 

a description of the physical characteristics of intersections and arterial road sections in 

the sample. Another file contained data on traffic flow linked to the various intersections 

and arterial road sections in AADT. The last computer file contained traffic accident counts 

at 1,354 intersections and 284 road sections. This file included information on injury (fatal 

and non-fatal), PDO, and injury + PDO. The three files were linked together by Street name 

and the specific year. Thus, different data sets wuld be created as input for the APMs by 

combining the three files and selecting the relevant attributes of each computer file. 



The time period used for the final databases extended from 1990 to 1995 instead of from 

1985 to 1995, as originally planned. The decision to utilize this time period was based on 

two factors. The first factor was related to the acwracy of the physical characteristics 

database. The staff at MT indicated that many examples of road rehabilitations (e-g., road 

widening or the addition of a leg) occurred in the late 1 980s, especially in the northem part 

of the city. Moreover, aven after taking extensive measures to verify the data, it was 

difficult to validate changes and major upgrades that had occurred at intersections and on 

arterial roads before 1990. 

The second factor was related to the size of the three databases (1,354 intersections and 

284 links over 1 1 years). During the exploratory data analysis and the preliminary accident 

modelling process, it was discovered that the wrrent databases were too large to be 

handled by one person. In particular, many steps in the data reduction process would have 

required extensive manual manipulation. Since the databases were very large, to modify 

each one manually when specific corrections or modifications were required would have 

been extremely time-consuming. Similarly, validating the APMs promised to be extremely 

cumbersome, since each year had to be handled separately. 

Based on these two factors, it was decided that the final databases would be created for 

the 6-year tirne period 1990 to 1995, a period of time judge sufficient for providing input 

for the APMs without compromising significantly their quality-of-fit. The final databases 

consisted of the following: 

ACCIDENT DATABASE: the number of accidents, grouped according to their severity, 

occurring at intersections and on road sections between 1 990 and 1 995. 

TRAFFIC FLOW DATABASE: the traffic flow counts in AADT, from 1990 to 1995, for each 

rnovement, and at every intersection and link. 



PHYSICAL CHARACTERISTICS DATABASE: information on the physical characteristics 

of 1,354 intersections and 284 links. 

3.6 SUMMARY 

This chapter contained a description of the data used for this research. The data wnsisted 

of information on traffic accidents, traffic flows, and the physical characteristics of 1,354 

intersections and 284 road sections located in Toronto between 1990 and 1995. Electronic 

databases for traffic accidents, traffic counts and the physical characteristics of the 

intersections were provided by the TDC. Data not available electronically were gathered 

from on-site visits or other sources. The data reduction process consisted of three steps: 

the expansion of 8-hour counts to AADT, the estimation of missing traffic counts (in AADT), 

and the selection of the reference population for nodes and links. The final database 

contained three different cornputer files (traffic flow, accidents, physical characteristics) 

linked together by the Street name and year. The characteristics of the APMs utilized for 

predicting accidents on nodes and links are presented in the next chapter. 



CHAPTER 4 

ACCIDENT PREDlCTlON MODELS 

The purpose of this chapter is to describe the characteristics of the accident prediction 

models (APMs) used for predicting the number of accidents on links and nodes. The 

chapter is divided into three sections. The approach taken to create the various APMs is 

described in the first section. The regression results for the APMs used for nodes and links 

are summarized in the second and third sections respectively. 

4.1 MODELLlNG APPROACH 

The methodology used in this thesis was based on the approach proposed by Hauer and 

Persaud (1996). As described in Chapter h o ,  the authors suggested dividing the 

reference population. given a sufficient number of observations, into a series of cells. and 

creating a separate model for each cell. They argued that it is better to create many simple 

models rather than to create one single model with rnany covariates and categorical 

variables. 

The number of accidents on networks was predicted with three different types of models. 

The first type was used for predicting accidents at nodes. The second and third types were 

uti lized for predicting accidents on links. As suggested in the literature, the prediction cf 

col lisions on links could be separated into two components: mid-block and intersection. 

The mid-block component models predict the number of accidents between minor 

intersections located on the physical network but not encaded as nodes on the digital 

network. The intersection component models estimate the number of accidents at these 

minor intersections. Figure 4.1 illustrates the above description. 



P hysical network 

E{k), = expected number of accidents at nodes 

E(k), = E{k),, + E{k),, = expected number of accidents on links 

E{k),, = expected number of accidents for mid-block camponent (f{link flow)) 
E{k),, = expected number of accidents for intersection camponent (Nlink flow}) 

FIGURE 4.1 Illustration of the three model types (E(K)~, E(K),,, E(K)~,) 



The predictive models were grouped into many different cells. For the first type of model. 

APMs were divided according to whether the node was signalized or not, and whether the 

node had three or four legs. Thus, four different APMs were created for this type. They are 

illustrated in Figure 4.2, in which the selected models are located inside the rectangles. 

FIGURE 4.2 Variables and cells for nodes 

The models categorized under the second type (mid-block component) were divided 

according to the number of lanes on the link (2-lane, Clane, or 6-lane) since the links on 

digital networks are characterized as such. The 4-lane category was further divided 

according to whether the link was located in a central business district (CBD) or in a non- 

CBD area. The road characteristics between CBD and non-CBD are very different (e-g., 

number of parking manoeuvres, bike lanes. etc.) and warrant to be grouped separately. 

However. there were not enough observations for 2-lane and blane roads to further divide 

these cells as CBD or non-CBD. Thus, five different models were developed for the mid- 

block component. The models are shown in Figure 4.3 (inside the rectangles). 



Link (Mid-Block) 

FIGURE 4.3 Variables and cells for the mid- 
block component of links 

The models categorized under the third type (intersection component) were separated 

according to a pattern similar to that used for the first type. that is. on the basis whether 

or not the intersection was signalized or not, and whether it had three or four legs. Figure 

4.4 illustrates the four different models (inside the rectangles). 

Link (Intersection Component) 

Signalued Unsig nalized 
/ '., 

FIGURE 4.4 Variables and cells for the intersection 
component of links 

The model forrns for the three model types were selected after conducting several 

exploratory analyses on the data. The ID method proposed by Hauer and Bamfo (1 997) 



was also utilized in the selection process. Basical ly, the method consists of separating 

each independent variable into a series of bins (e.g., one for each intersection or a road 

section) placed in increasing order to create an Empirical lntegral Function (EIF). For each 

entity, the left boundary of the bin is located halfway between the current entity and the 

previous entity. The right boundary is located halfway between the current entity and the 

next entity. The bin height is the number of accidents that occurred at that entity. Hence, 

the vaiue of the €IF at the right boundary of the current bin is the sum of al1 bin areas, from 

the lowest value up to that boundary. For instance, take three sites that experience 5,000, 

10,000, and 15,000 vehicles per day and 10, 12, and 15 accidents respectively. For the 

second bin. the left and right boundaries are equat to 7,500 and 12,500 respectively and 

the height of the EIF at the right boundary is equal to 22 (1 0+12). The goal of the method 

is to compare the €IF graph created above with preestablished graphs of well-known 

functions (power, gamma, polynomial, etc.) (Figure 4.5). The graph having a shape similar 

to one of the pre-established graphs should indicate the proper relationship between the 

dependent and independent variables being investigated. However. this method should 

only be used as a preliminary assessment of the relationship; additional tools should be 

used to confirm that relationship. The ElFs of the parameters F,  and F, for the signalized 

4-legged intersections are shown in Figures 4.6 and 4.7 respectively. The reader is 

referred to Hauer and Bamfo (1 997) for a more detailed description of this method. 
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FIGURE 4.5 Corresponding f(x) and F(x) of well-known functions 
(power, polynomial, Gamma) (Hauer and Bamfo, 1997) 
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FIGURE 4.6 €IF for parameter F, for 
signalized 44egged intersections 
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FIGURE 4.7 EIF for parameter F, for 
signalized 44egged intersections 



The results of the exploratory analysis showed that the relationship between accidents and 

each covariate of each model could be described either by the Power function or the 

Gamma function (see Figure 4.5). To determine whether the relationship between 

accidents and each covariate followed a Power or a Gamma function, each relationship 

was investigated in tum. Several model foms were also investigated, such as those 

proposed by Brüde et al. (1998), in which the ratio of the minor entering flows to the total 

entering flows is included in the model. Brüde et al.'s model form was shown to be not as 

adequate as the model forrns proposed in the equations below, which depicted al1 possible 

types of relationships between the covariates and accidents. 

The selected model forrns for the APMs used to predict the number of accidents at nodes 

are shown in equations (4.1 a) to (4.1 d). The models can follow one of these four forms, 

depending on the relationship between each covariate and the accident count: 



F, = Power, F, = Gamma (a = 0) 

FI = Gamma, F, = Power (p, = O) 

FI = Power, F, = Power (a = 0. p, = 0 )  

where, 

E { K ~ }  = the expected number of accidents for time period t, for t = year 7 (1 990) 

to year 6 (1 995); 

F,, F,, = entering flows of the major and minor roads in AADT; 

a,, pl, P2, Pa, P, = coefTïcients to be estimated. 

The model forms for the APMs used to estimate the number of accidents for the rnid-block 

component are shown in equations (4.2a) and (4.2b). The models can follow either one of 

these two forms: 



F = Gamma 

F = Power (p' = O) 

where, 

E { K ~ }  = the expected number of accidents for time period t, for f = year 1 (1 990) 

to year 6 (1 995); 

F, = link flow in AADT (both directions) for time period t; 
L = length of section in kilometers (less 30 m per minor intersection on the physical 

network but not on the digital network); 

a,, p,, Pz, PJ = coefficients to be estimated; use f i  when warranted. 

The measured distance used in equation (4.2) is the length of the road section between 

two nodes less the distance measured for each minor intersection in between. According 

to the Traffic Data Centre (TDC), crashes are coded as an intersection accident if they 

happen within 15 meters from the center of the junction. Based on this definition, the 

distance used for each minor intersection is equal to 30 meters. To illustrate: if a link 

measures 1000 meters and there are four minor intersections located on this link, the 

measured distance is equal to 850 m (1000 m - 4 x 30 m - 2 x 15 m (or half the width of 

the node at both ends if the nodes represent intersections) = 850 m. 

The chosen model forms for the intersection component of links are shown in equations 

(4.3a) and (4.3b). The models can follow either one of these twa forms: 



F = Gamma 

F = Power (p, = O) 

where, 

E { K ~ )  = the expected number of accidents for time period t, for t = year 7 (1 990) 

to year 6 (1 995); 

F, = link flow in AADT (both directions) for time period t; 

a,, p,, P2 = coefficients to be estimated. 

The prediction model of equations (4.3a) and (4.3b) uses only one input flow. Thus. this 

model can only be used on Iink segments. 

Figure 4.8 illustrates how the models are applied to digital networks. The same network 

shown in Figure 4.1 is used in the illustration. The model forms presented in this figure are 

for the model forms of equations (4.1 d), (4.2b), and (4.3b) respectively. 



P hysical network 

4 -b 
Link Flow, F 

Digital Network 
E{k), = expected number of accidents at nodes 
E{k), = expected number of accidents on links 

a, and a, are for the intersection component rnodels; a, is for the mid-block component mode1 

Note: the rnodel forms illustrated are for a power relationship: equations (4.ld), (4.2b), and (4.3b) 

FIGURE 4.8 Illustration and application of APMs on digital networks 



The models described in the next two sections were estimated with Genstat 5, Version 4.1 

(Payne et al., 1993) and the error distribution was assumed to follow the Negative Binomial 

(NB) distribution. The NB has been shown to describe accurately the distribution of traffic 

accidents between sites (Hauer, 1993b; Kulmala, 1995; and Nicholson and Turner, 1996; 

Poch and Mannering, 1996). Since the APMs incorporated time trend (see Maher and 

Summersgill, 1 996; and Mountain et al., 1998), the built-in GEE procedure of Genstat was 

utilized (the theory is explained in detail in Appendix C). The procedure was modified and 

adapted to incorporate the NB distribution with the help of Dr. D.M. Smith of the University 

of New England in Australia since Genstat did not offer a built-in NB distribution. For each 

model type, APMs were created for injury, property damage only (PDO), and injury + PD0 

accidents. 

The issue of how to select the best regression model has been addressed extensively in 

the Ilterature. The coefficient of determination (R~) ,  the adjusted R2, and other tools such 

as the PRESS and C, statistics are very useful criteria for determining the best least- 

squared and weighted least-squared regression models (Myers, 1990). However, these 

criteria are shown to be less effecient for evaluating APMs estimated by GLMs (or GE€) 

since the error variance is not constant (Miaou, 1995). The best GLM can be selected 

based on Pearson 2 (Bélanger, 1994). deviance (McCullagh and Nelder, 1989), scaled 

deviance (Kulmala, 1995), Akaike Information Criteria (Miaou, 1996), and the dispersion 

parameter of the NB regression (Hauer, 1992; and, Nguyen, 1997). From the reviewed 

documents on the selection of the best APMs, it appears that no definitive criterion is 

superior to the other, so also, that the chosen criterion often is subject to the modeler's 

discretion. In addition, not al1 tests are appropriate for every circumstance and they often 

depend on the outcome sought, Le., models used for prediction, significance of each 

variable, etc. Thus, selecting the best models for this research was based on the following 

average indicators: the deviance ratio (output of Genstat), the scaled deviance, the 

Pearson x2,  the dispersion parameter of the NB, and the significance of each coefficient. 

The models in this thesis are used for predicting accidents. 



Some of the models presented in the next sections include not statistically significant 

variables (5%). Si nce the models are used for predicting accidents, these variables were 

left in the models since they improved the prediction of accidents. It should be pointed out 

that, when the temporal correlation is not included, al1 the insignificant variables become 

significant. Thus, these variables can still be adequately included in the models proposed 

below. 

The cumulative residuals (CURE) method, as proposed by Hauer and Bamfo (1 997), was 

plotted for each covariate of each model to identify that the rnodel having the best fit. This 

method consists of plotting the cumulative residuals (the difference between the actual and 

fitted values for each entity) in increasing order for each covariate separately. The graph 

shows how well the model fits the data. For a very good fit, the curve depicted in the graph 

should oscillate around the value of O and lie between the two standard deviation 

boundaries (see Hauer and Bamfo for a complete description of this method). A graph 

depicting the cumulative residuals for each covariate of every model is shown in Appendix 

E. 

During the course of the accident modelling process, each APM was tested for outliers and 

influence points. It is important to note that an outlier is not necessarily an influence point, 

and vice-versa (Myers, 1990). The standardized residuals were tested with the R-Student 

statistic and exarnined graphically, while the influence points were verified with the Cook's 

D method (Myers, 1990). For observations flagged by the various tests, a thorough 

analysis was performed on a case by case basis and observations were rernoved only 

when warranted. Overall, very few outliers and influence points were rernoved. 

The variance of the expected number of accidents for period t was computed with the 

following equation: 



where, 

VAR(K,)  = the variance of the expected number of accidents for time period t; 

E {K,) = the expected number of accidents for tirne period 1, 

y = dispersion parameter of the NB regression. 

The technique for finding the dispersion parameter of a NB regression is well described 

in the work of Hauer et ai. (1988), Hauer and Persaud (1988), and Hauer (1992). It has 

been successfully argued that 

where, 

VAR{K) = the variance of the accident counts; 

E { K )  = the expected number of accidents; 

y = dispersion parameter of the NB regression. 

The dispersion parameter is found through an iterative process. An initial value of y is 

assumed and the coefficients are computed with any statistical software program. The 

output of the regression is saved into a computer file. The number of accidents (K) and 

the expected number of accidents ( E { K 1) of every entity in the reference population are 

included in this file. The computer file is then fed into a maximum likelihood program 

(Persaud, 1997) and a new value of y is calculated. The new y is used again in the 

statistical software package for a second fun. The iteration process goes on until y and the 

likelihood program reach their maximum value. At that point, the values of y and al1 of the 

coefficients are final. 



The process described above was also used to find the dispersion parameter for the 

models developed in this research. Since the models have a different a for the time period 

t , the dispersion parameter had to be found with the following equation: 

where, 

VAR{K) = the variance of the accident wunts for t = year 1 to year 6; 

E { K ) = the total expected number of accidents for t = year 1 to year 6; 

E { K,) = the expected number of accidents for time period t; 

y = dispersion parameter of the NB regression. 

Equation (4.6) is basically the same as equation (4.5) except that the expected number of 

accidents for each period is added together to obtain the total expected number of 

accidents for each site. The characteristic of equation (4.6) shows that it is the variability 

in accident counts between sites that are of interest and not the variability between years 

(which is already assumed to follow the Poisson distribution). Thus, the dispersion 

parameter is estimated by using both the total number and expected number of accidents 

of each site; where each site, in principle, is independent from others. The relationship 

shown in equation (4.6) is illustrated in Figure 4.9 for signalized 4-legged intersections. 
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FIGURE 4.9 Relationship of equation (4.6) for signalized 
44egged intersections 

4.2 ACCIDENT PREDlCTlON MODELS FOR NODES 

The APMs used for predicting accidents at nodes are described in this section. The 

models developed for nodes representing signalized intersections are described in section 

4.2.1 . The models created for nodes representing unsignalized intersections are explained 

in section 4.2.2. 

4.2.1 SlGNALlZED INTERSECTIONS 

The characteristics of the intersections used as input for the models for signalized 4- and 

3-legged intersections are sumrnarized in Tables 4.1 and 4.2 respectively. There are, 

respectively, 868 and 250 signalized 4- and 3-legged junctions. It should be noted that the 

data included few intersections with low entering flows. The flows of these intersections 

were validated to ascertain that they were not coding mistakes. The intersections with very 



low flows were located either inside restdential areas (where the ratio majorlminor is 

usually equal to 50/50), at entrances of private and commercial properties, or at high 

pedestrian traffic corridors. 

TABLE 4.1 Characteristics of signalized 4-legged intersections 

Year Sewfity Accidents Major Road Flow Mimor Road Flow 
(min-m-total) (min-max) (min-max) 

Total 0-1 0-8,276 
1990 lnjury 0-21 -2,696 5,30571,798 51 61,306 

POO O-345,580 

Total O-53-8,141 
1991 lnjury 0-1 7-2,332 5,294-7 1,527 52-41,003 

PD0 0-45-5,809 

Total 0-58-8.71 4 
1992 lnjury 0-1 6-2,380 5.342-71.498 52-41 ,150 

PD0 0624,334 

Total 0-63-9,818 
1993 lnjury 0-1 9-2,641 5,369-71,450 52-41.1 31 

POO 0-5207,177 

Total 0-54-1 0,010 
1994 lnjury 0-1 992,879 5.464-72.31 0 5342.01 2 

PD0 0-45-7,130 

Total û-5610,030 
1995 lnjury O-23-3-41 1 5,469-72,178 5342,644 

PD0 0-38-6.61 9 

Total 0-63-54.989 
1990-1 995 lnjury 0-23-1 6,339 5,305-72,310 51 -42,644 

PD0 0-52-38.650 



TABLE 4.2 Characteristics of signalized 34egged intersections 

Year Sew rity Accdents Major Road Flow Minor Road Flow 
(min-maHotal) (min-ma* (min-ma* 

Total O-30-1.1 24 
1990 lnjury 0-1 4-362 1.663-73.607 155-1 7,125 

PD0 O- 1 8-762 

Total O-341,094 
1991 lnjury 0-1 2-275 1,660-73,460 155-1 7,076 

PD0 0-22-81 9 

Total 0-31-1.185 
1992 lnjury 0-9-322 1,674-74.1 22 156-1 7.21 5 

PD0 0-22-863 

Total 0-28-1.21 3 
1993 Injury 0-1 1-330 1,683074,469 1 57-1 7,340 

PD0 0-1 7-883 

Total 0-28-1.301 
1 994 lnjury 0-1 3-362 1.71 3-75.81 3 160-1 7,777 

PD0 0-23-939 

Total 0-37-1.297 
1995 lnjury 0-1 5-423 1,714-75,887 16û-17,923 

PD0 0-22-874 

Total 0-37-7 -21 4 
1990-1 995 Injury O-1 52,074 1,660-75,887 1 55-1 7,923 

PD0 O-23-5,140 

The regression results for the signalized intersection models are summarized in Table 4.3. 

The number of intersections and collisions for the 4- and 3-legged models are shown at 

the top of the table. Moreover, the number of collisions exhibited in this table is for the 

period 1990 to 1995 inclusively. The estimate of the coefficients is the actual estimate as 

computed by the GEE procedure. In other words, the estimate is not transforrned back to 

the format of equations (4.1 ) to (4.3). The estimate is left as it is to simplify descriptions 

of the standard error associated with each coefficient. The dispersion parameter of the NB 

distribution and the deviance of the models are displayed at the bottom of the table. The 

characteristics of Table 4.3 are repeated in al1 subsequent tables that show the results of 

regression models. 



TABLE 4.3 APMs for signalized 4- and 3-legged intersections 

Parameters Signalized 4-legged Signalized 3-legged 

*NI lnjury PD0 Al l lnjury PD0 

# of entities 868 868 868 250 250 250 

Collisions 54.989 16.339 38,650 7.214 2.074 5.140 

-1 1.285 
(O. 809) 

-1 1.299 
(0.805) 

-1 1.216 
(0.807) 

-11.217 
(0.805) 

-1 1.179 
(0.808) 

-11.193 
(0.803) 

-1 1.232 

0.803 
(0.079) 

0.568 
(0.043) 

0.000 

0.000 
(3.97E4) 

Y 6.91 5.64 6.87 4.51 4.35 4.33 

Deviance 5471 5282 5639 1608 1597 1572 

' Ali = (iniuiv + PDO) 

In Table 4.3, ail the models provide a good fit as is illustrated in Figures 4.10 and 4.1 1 and 

in the figures in Appendix E. The figures show that the cumulative residuals stay between 

the two standard deviation boundaries for both parameters. It should be pointed out, 

however, that two separate models could be developed for signalized 4-legged 

intersections for entering flows on the minor road over and below 15,000 vehlday, as 



illustrated in Figure 4.1 1. The models seem to underestimate accidents below 15,000 

vehlday and overestimate accidents above this value. Unfortunately, the development of 

such models is outside the scope of this work. Table 4.3 also shows that the parameter F, 

follows a Gamma relationship for the three 4-legged models, m i l e  the parameters F, and 

F, follow a power function relationship for the 3-legged models. 

Based on the standard errors of In&) in Table 4.3 (and in al1 subsequent tables), it would 

be tempting for a modeller to conclude that the year-to-year differenœs are not statistically 

significant and therefore one would select a model with a cammon a for each year. 

However, note that the values of a, for yean 4 and 5 are approximately 15% higher than 

for years 1 and 2 for the 44egged signalized intersections (al1 accidents). Thus, a model 

with a common a for each year would overestimate accidents in years 1 and 2 and 

underestimate accidents in years 4, 5, 6. This would create some difficulty in longitudinal 

studies. To see this, imagine that intersections were treated in Year 3 and, for a proper 

before and after study (see Hauer, 1997), a rnodel with comrnon a is used in the 

estimation of the number of accidents that would have occurred in Years 4, 5, 6 without 

the treatment. Since this value is underestimated, the treatment effectiveness obtained by 

comparing it to the actual number of accidents in years 4, 5 and 6 would be 

underestimated. This difficulty would be avoided by using a model with trend since this 

model captures the increased accident experience in the "after" period that would have 

materialized without the treatment. Another benefit of using the time trend is that it allows 

the jurisdiction to identify and investigate potentially dangerous trends such as the 15% 

increase in accidents noted above. AMPs with trend have also been shown to perfon 

better than traditional models since they incorporate additional information (year-to-year 

changes in weather, ewnomic conditions, etc.) that models with a common a cannot. 

Thus, on balance, it seems beneficial to incorporate trend in developing APMs since 

trends that are insignificant in the statistical sense, such as the one in our application, still 

require consideration. 
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FIGURE 4.1 1 Cumulative residuals for signalized 
44egged intersections (parameter F,) 



The relationship between accidents (injury + PDO) and the parameter F, is graphically 

shown in Figures 4.12 and 4.13 for 4- and 3-legged intersections respectively. The 

parameter F, is show on the ordinate and the expected number of accidents per year is 

illustrated on the abscissa. In these (and subsequent figures), the average coefficient a 

is used. Figure 4.12 shows the relationship for three values of F,: 1,000. 15,000, and 

30,000 vehlday. Figure 4.13 also shows the relationship for three values of F,: 1,000, 

7,500, and 15,000 veNday. Figures 4.12 and 4.1 3 reveal that accidents increase at a 

decreasing rate for the entire traffic flow range of F,. 

10000 20000 30000 40000 50000 60000 70000 80000 
Flow Fi (AADT) 

FIGURE 4.1 2 Relationship between accidents 
(injury + POO) and the parcimeter F, for signalized 

4-legged with F, = 1.000, 15.000, and 30,000 vehlday 
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FIGURE 4.1 3 Relationship between accidents 
(injury + PDO) and the parameter F, for signalized 

3-legged intersections with F, = 1,000, 7,500, and 15,000 

4.2.2 UNSIGNALIZED INTERSECTIONS 

The characteristics of the intersections used as input for the rnodels for unsignalized 4- 

and 3-legged intersections are summarized in Tables 4.4 and 4.5 respectively. fhere are 

59 and 277 unsignalized 4- and 3-legged junctions. 



TABLE 4.4 Characteristics of unsignalized 4legged intersections 
- - -  - - 

Year Semrity Accidents Major Road Flow Mimor Road Flow 
(min-max-total) (min-ma* (min-ma* 

Total 0-1 1-21 0 
1990 lnjury 0-4-52 5,681-51,924 379-8,378 

POO 0-1 0-1 58 

Total 0-1 2-21 6 
1991 lnjury 0-4-57 5,669-51,820 378-8,361 

PD0 0-9-1 59 

Total 0-14-194 
1992 lnjury 0-5-55 5,721 -52,286 382-8,437 

PD0 0-1 0-1 39 

Total dl 3-244 
1993 injury 0-4-62 5.750-52.546 383-8,479 

PD0 0-1 1-182 

Total 0-14-241 
1994 lnjury 0-4-64 

PD0 0-14-177 

Total 0-1 1-21 2 
1995 lnjury 0-4-67 

PD0 0-9-1 45 

Total 0-14-1.31 7 
1 990-1 995 Injury 0-5-357 5.857-53.531 379-8,638 

PD0 0-1 4-960 



TABLE 4.5 Characteristics of unsignalized 3-legged intersections 

Year Se* riîy Accidents Major Road Flow Minor Road Flow 
(min-max-total) (min-ma@ (min-ma@ 

Total 
lnjury 
PD0 

Total 
lnjury 
PD0 

Total 
lnjury 
PD0 

Total 
lnjury 
PD0 

Total 
lnjury 
PD0 

Total 
lnjuty 
PD0 

Total 
lnjuty 
PD0 

Regression results for the unsignalized intersection models are summarized in Table 4.6. 

The selected models for unsignalized intersections al1 provide a good fit, as illustrated by 

the cumulative residuals graphs shown in Appendix E. Interestingly, the coefficient P, (in 

combination with &)for the 3-legged injury models is much higher than the 3-legged PDO, 

and injury + PD0 models. The relationship between accidents and the major approach 

flows implies that the expected number of accidents increases, peaks and then decreases 

over the flow range of the parameter F,. The same relationship can also be found with the 

parameter F, for the 4-legged PD0 and for the 4-legged injury + PD0 models. A possible 

explanation regarding this relationship is described below. 



TABLE 4.6 APMs for unsignalized 4- and 3-legged intersections 

Parameters Unsignalized 4-legged Unsignalized Slegged 

Ali lnjury PD0 Ali lnjury PD0 

# of entities 59 59 59 1 77 177 177 

Collisions 1.317 357 960 1.690 472 1.21 8 

-1 i -061 
(2-338) 

-1 1 .O3 1 
(2.323) 

-11.151 
(2.324) 

-10.904 
(2.324) 

-10.952 
(2.331 ) 

-1 1 .O51 
(2.334) 

-1 1 .O25 

0.607 
(O. 167) 

0.903 
(0.294) 

0.000 

-2.29E4 

-7.705 
(2.553) 

-7.614 
(2.523) 

-7.658 
(2.582) 

-7.540 
(2.536) 

-7.519 
(2.558) 

-7.468 
(2.567) 

-7.504 

0.602 
(O. 182) 

0.205 
(0.144) 

0.000 

0.000 

-7.526 
(1 -534) 

-7.591 
(1 .S42) 

-7.441 
(1 -533) 

-7.555 
(1 -541) 

-7.610 
(1 -538) 

-7.670 
(1 -547) 

-7.566 

0.440 
(O. 145) 

0.565 
(0.055) 

0.000 

0.000 

Y 3.52 4.08 3.20 4.75 7.00 4.39 

Deviance 355 352 360 748 688 748 

Figures 4.1 4 and 4.1 5 illustrate the relationship between accidents (injury + PDO) and the 

parameter F, for unsignalized 4- and 3-legged intersections. Figure 4.14 shows the 

relationship for three values of F,: 500, 4,000, and 7,000 vehlday. Figure 4.1 5 shows the 

relationship for three values of Ç,: 500, 2,500, and 4,000 vehlday. 
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FIGURE 4.14 Relationship between accidents 
(injury + PDO) and the parameter F, for unsignalized 

4-legged intersections with F, = 500,4,000, 
and 7,000 vehîday 
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FIGURE 4.1 5 Relationship between accidents 
(injury + PDO) and the parameter F, for unsignalized 

3-legged intersections with F, = 500, 2,500, 
and 5,000 vehlday 



Figure 4.14 reveals that the predicted number of accidents increases, peaks, and 

decreases over the flow range of the parameter F, for the 44egged model (injury + PDO). 

Exploratory analyses conducted on the data showed that more traffic accidents occur at 

the medium trafic flows ttian at high or low traffic flows on minor approaches; hence, the 

shape of the curves illustrated in Figure 4.14. This relationship may be explained by the 

characteristics of unsignalized intersections with medium entering flows that could be 

different from intersections with high entering flows. The same argument can also be made 

for the 3-legged models described above. It is important to point out that one should be 

careful on how to interpret this relationship. Indeed, one should not interpret the results 

to mean that by redirecting and increasing trafic to minor approaches, there will be a 

reduction in the number of traffic accidents. 

4.3 ACCIDENT PREOlCTlON MOOELS FOR LINKS 

The APMs developed for links are described in this section. The models are distinguished 

on the basis of the two components previously described. The models used for the mid- 

block component are presented in section 4.3.1. The APMs used for the intersection 

component are described in section 4.3.2. 

4.3.1 MID-BLOCK COMPONENT 

The characteristics of the intersections used as input for the models for 2-lane, 4-lane 

(CBD and non-CBD), and 6-lane roads are summarized in Tables 4.7 and 4.8 respectively. 

The data include 20 2-lane, 21 5 4-lane, and 49 6-lane road sections. For the 4-lane data, 

54 road sections are located in the CBD area M i l e  161 are located in a non-CBD location. 



TABLE 4.7 Characteristics of 2-, 4- and 6-lane road sections 

2-Lane Road 4-Lane Road 6-Lane Road 

Y ear Severity Accidents Link Flow Severity Accldents Llnk Flow Severity Accidents Link Flow 

(rnln-max-total) (min-man) (min-nian-total) (min-max) (min-max-total) (min-max) 

Total 

1990 W ~ Y  
PD0 

Total 

1991 In jW 

PD0 

Tdal 

1992 Injur~ 

PD0 

Total 

1993 InbW 

PD0 

Total 

1 994 inlury 

PD0 

Total 

1 995 Injuiy 

PD0 

Total 

1990-1995 lnjury 

Total 

5,226-21,433 lnjury 

PD0 

Total 

5,238-21,306 Injury 

PD0 

Total 

5,308-21,422 lnjury 

POO 

Total 

5,358-21,453 lnjury 

PD0 

Tdal 

5,476-21,757 lnjury 

PD0 

Total 

5,505-21,702 Injury 

PD0 

Total 

5,226-21,757 lnjury 

Total 

1,425-45,002 lnjury 

PD0 

Total 

1,460-44,950 lnjury 

PD0 

Total 

1,512-45,395 lnjury 

PD0 

Total 

1,559-45,659 lnjury 

PD0 

Total 

1,626-46,510 Injury 

PD0 

Total 

1,66846,595 lnjury 

PD0 

Total 

1,425-46,595 Injury 

- - -- - - -  - 

Iength (km) 0.44-1 36-6.62 (min-average-max) 0.24-1 20-3.97 (mln-average-maw) 0.65-1.39-3.82 (min-average-maw) 



TABLE 4.8 Characteristics of CBD and non-CBO 4-lane road sections 

CBD 
Year Sevcrity Accidmts Link Fkvv scvCnty Accidcrits Link Flow 

(mirrma*-tdai) (min-miu) (minniax-taal) (min-max) 

T a 1  

lnjury 

PD0 

Tdal 

lnjury 

PD0 

Total 

lnjury 

PD0 

Toial 

lnjury 

PD0 

Tdal 

lnjury 

PD0 

Total 

lnjury 

PD0 

Total 

lnjury 

Total 

lnjuv 

PD0 

Total 

lnjury 

PD0 

Tdal 

lnjury 

PD0 

Total 

lnjury 

PD0 

Total 

lnjury 

PD0 

Total 

lnjury 

PD0 

Total 

lnjury 

PD0 
-- - 

length (km) 0.240.69-1 -69 (min-averagenia*) 0.441.37-3-97 (min-avemgemax) 

Regression results for the mid-block component models are summarized in Tables 4.9 and 

4.1 O. Models for the 2-lane, 4-lane, and 6-lane roads are shown in Table 4.9. Models for 

the CBD and non-CBD 4-lane roads are presented in Table 4.10. 
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Table 4.9 reveals four interesting findings. First, most of the models in this table provide 

a relatively good fit, with the exception of the 2-lane models. Cumulative residual plots are 

shown in Appendix E. In fact, the cumulative residuals for 2-lane rnodels do not oscillate 

randomly around the value of O, as they should. In addition, the coefficients a, and & al1 

have very high standard errors. The low quality-of-fit of the 2-lane models is attributed to 

the very small number of observations and to differences in the characteristics of 2-lane 

road sections. Despite the low quality-of-fit, these models could still be useful in some 

circumstances, hence their inclusion in the table. Second, the traffic flow for each madel 

follows a power function relationship, as indicated by the coefficient P, = O for every model. 

Third, the estimate of the coefficient f i  for the 6-lane models is greate; than 1. This implies 

that the number of accidents rises at an increasing rate as the link flow becomes higher. 

Persaud (1 992) found a similar relationship for 6-lane urban freeways. This author argues 

that 6-lane freeways have a greater likelihood of accident occurrences as traffic flow 

increases since lane changes happen more frequently on 6 lanes than on freeways having 

fewer lanes. It is possible that the same phenomenon occurs on 6-lane urban roads. 

Fourth, the number of accidents is not proportional to the distance L (in equation 4.2). In 

fact, the estimate of the coefficient p, varies from 0.257 for PD0 accidents to 0.722 for 

collisions with injuries. This result is not unique and this kind of relationship has been also 

found in the literature. As described in Chapter Two, Mountain and Fawaz (1996) found 

a similar relationship for 4-lane rural road sections. They attributed this phenomenon to 

the difference in intersection density on links of different lengths, and suggested that the 

influence of intersections on mid-block accidents is probably greater than one might 

expect. 

Other possible explanations could akount for the non-linear relationship between length 

and accidents. The results of an exploratory analysis provided useful insights into this 

relationship. For instance, it was discovered that the location of major intersections at both 



ends of the link has an important effect on the number of accidents. In Toronto, land that 

is located near the intersection of major arterial roads is often the site of major commercial 

establishments, such as shopping malls, restaurants, or gas stations. The vehicular activity 

generated by these establishments creates more collisions than with non-commercial 

establishments. The exploratory analysis showed that between 30% and 70% of ali mid- 

block accidents at a given link occur near the intersection of two major arterial roads. Since 

an important proportion of accidents occurs near the link's ends, shorter road sections, 

proportionally, would tend to have a greater number of accidents than longer road sections 

(the number of accidents per kilometer). For example, let us compare two links with similar 

trafic flow but having no intersections: link 1 is 1000 meters long and has 50 accidents, 

with 25 accidents near both ends; link 2 is 1500 meters long and has 60 accidents, also 

with 25 accidents near both ends. When the two links are compared, link 1 has 50 

accidents per kilometer m i l e  link 2 has 40 accidents per kilometer. If the number of 

accidents were proportional to the length of the link, one would expect link 2 to have 75 

accidents. 

The non-linear relationship could further be explained by such unknown factors as the 

number of private and commercial entrances located along the link, as well as the number 

of available parking spots and parking manoeuvres. The staff at the TDC indicated that al1 

accidents on public roads not classified by police officers as intersection collisions are 

usually classified as mid-block accidents. In short, the classification of accidects as mid- 

block is dependent on the person investigating the collision. During the course of the 

exploratory data analysis, the staff also specified that many accidents coded as mid-block 

collisions happen either at or near private entrances of commercial establishments, which 

sometimes, resemble the characteristic of an unsignalized intersection. Therefore, 

accidents classified as mid-block should, in principle. be coded as intersection crashes. 

Unfoitunately, it was not possible to examine every mid-block accident and evaluate the 

validity of its classification. An investigation into the physical characteristics of the links 

and the disadvantages of coding accidents as mid-block are beyond the scope of this 



work. Further research is needed in this area to understand more fully the non-linear 

relationship. 

Because of the limitations described above, it is necessary to warn the reader that the 

models for mid-block accidents can be used only for this research. specifically, to predict 

the number of accidents on a digitalized link. These models can be applied only within the 

City of Toronto boundaries and should not be used in other contexts that atternpt to identify 

a cause-effect relationship between geometric features of road sections and the number 

of accidents. As indicated earlier, better models could probably be developed given more 

detailed information about the physicôl characteristics of mid-block road sections. 

Figures 4.16 to 4.18 illustrate the relationship between accidents (injury + PDO) and the 

parameter F (link flow) for 2-lane. 4-lane and 6-lane roads. Figure 4.16 shows the relation 

for three values of the parameter L: 0.5, 1 .O, and 1 -5 kilometers. Figures 4.17 and 4.18 

also show the relationship for three values of the parameter L: 0.5, 1 .O, and 2.0 kilometers. 
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FIGURE 4.16 Relationship between accidents (injury + 
Poo) and the parameter F for 2-lane roads 

with L = 0.5, 1 .O, and 1.5 km 
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FIGURE 4.17 Relationship between accidents (injury + 
PDO) and the parameter F for 4-lane roads 

with L = 0.5, 1.0, and 2.0 km 
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FIGURE 4.18 Relationship between accidents (injury + 
PDO) and the parameter F for 6-lane roads 

with L = 0.5, 1 .O, and 2.0 km 



TABLE 4.10 APMs for the mid-block component (downtown and suburban) 

Parameters 4-Lane CBD Road 4-Lane non-CBD Road 

All lnjury PD0 Ali injury PD0 

# of entities 54 54 54 161 161 161 

Collisions 7,305 1,401 5,904 23,109 5,947 17.162 
- - -- - - 

LN(a,) -1 -334 -2.1% -1.616 -9.197 -10.852 -9.423 
(2-277) (2.01 1 ) (2-386) (1.219) (1.366) (1 -257) 

LN(aJ -1 -339 4.309 -1.600 -9.266 -1 1 .O84 -9.439 
(2.280) (2.014) (2.386) (1.219) (1.364) (1 -256) 

L W % )  -1 -282 -2.326 -1.535 -9.227 -1 1 .O95 -9.380 
(2.289) (2.01 3) (2-400) (1.21 5) (1 -363) (1 -252) 

LN(%) -1.303 -2.395 -1.541 -9.143 -10.941 -9.315 
(2.277) (1.999) (2.388) (1,214) (1.358) (1 -254) 

LN(%) -1.333 -1 -673 -1.780 -9.097 -10.730 -9.328 
(2.275) (2.000) (2.384) (2.219) (1.374) (1 -255) 

W a d  -1 S09 -2.228 -1.822 -9.193 -10.737 -9.456 
(2.287) (2.035) (2.393) (2.219) (1.364) (1.257) 

Average LN(a) -1.350 -2.188 -1.649 -9.1 87 -1 0.907 -9.390 

P, (LN-4 0.864 0.959 0.829 0.498 0.679 0.451 
(O. 102) (O. 1 12) (O. 100) (0.093) (-0096) (0.096) 

P z  (LN-FJ 0.491 0.4û8 0.499 1.205 1.233 1.197 
(0.234) (0.206) (0.245) (0.121 ) (0.134) (0.124) 

P 3  (FI) 0.000 0.000 0.000 0.000 0.000 0.000 

Y 5.19 5.96 4.89 3.60 3.90 3.42 

Deviance 319 312 316 1067 1097 1036 

The models in Table 4.10 provide a relatively good fit, as is illustrated by the cumulative 

residual plots. Despite the good fit, the coefficients a, to a, for the CBD models have very 

high standard errors. The high standard errors are attributed to the models which are 

forced to go through the origin (Le., zero flow and no accidents). The exploratory analysis 

revealed that no data points were found to be near the origin. In addition, the number of 

accidents is relatively uniform (but increases slightly) for flows varying from 10,000 to 

30,000 vehlday. Despite this drawback, and since CBD arterial roads always have 

relatively high traffic flows, the models were deemed adequate to predict the number of 



accidents on CBD 4-lane links for the range of 1 0,000 to 30,000 vehlday. Table 4.1 O also 

shows that the number of accidents for the CBD 4-lane road sections is proportional to the 

length as seen with the coefficient P,. Finally, the coefficient 4 for the road sections 

located in the subuhs is slightly above unity. 

The relationship between accidents (injury + PDO) and the parameter F for the CBD 4- 

legged models and non-CBD Clegged models is illustrated in Figures 4.19 and 4.20 

respectively. Figure 4.19 shows the relationship for three values of L: 0.5, 1 .O, and 1.5 

kilometers. Figure 4.20 also shows the relationship for three values of L: 0.5, 1 .O, and 2.0 

kilometers. 

5ûûû 10000 15000 20000 25000 30000 
Link Flow F (AADT) 

FIGURE 4.1 9 Relationship betwaen accidents 
(injury + PDO) and the parameter F for CBD 

4-lane roads with L = 0.5, 1.0, and 1.5 km 
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FIGURE 4.20 Relationship between accidents 
(injury + PDO) and the parameter F for nonCBO 

4-lane roads with L = 0.5, 1.0, and 2.0 km 

Figures 4.1 9 and 4.20 reveal that CBD roads have a higher expected number of accidents 

than non-CBD roads for similar flows. Indeed, it is believed that CBD roads have more 

accidents because many more wnflicting situations occur on CBD than on the non-CBD 

roads. For instance, conflict situations arise in relation to on-street parking manoeuvres 

and lane restrictions, such as bike lanes or Street car lines. In addition, the sight distances 

at downtown intersections are usually lower than the sight distances found in the suburbs. 

4.3.2 INTERSECTION COMPONENT 

The characteristics of the signalized intersections used as input for the intersection 

component rnodels are presented in Tables 4.1 1 and 4.1 2. A new sarnple of signalized 

intersections was selected from the original Iist of signalized intersections described in 

section 4.2.1. This new Iist of intersections was needed in order ta include signalized 

intersections connecting a major arterial road to a local connecter road. Thus, each 



intersection of two major arterial roads was removed from the sample; the major 

intersections usualiy represented nodes on digital networks. Signalized intersections 

located between two major signalized intersections along arterial roads nomally have 

moderate to low entering traffic flows coming from the local road. In fact, they often are 

installed to allow trafiïc wming from the local road to turn ont0 the arterial road; also to 

allow pedestrians to cross the arterial road. These minor signalized intersections are not 

used as nodes on digital networks. 

TABLE 4.1 1 Characteristics of signalized 4-legged intersections 
(intersection cornponent) 

Year Sewrity Accidents Major Road Flow 
(min-max-total) (min-rnw 

Total 0-1 51,198 
1990 lnjury 0-8-404 5,30544,058 

PD0 O- 1 2-794 

Total 0-1 8-1 ,t 97 
1991 lnjury 0-9-36 1 5,29453,951 

PD0 0-1 2-836 

Total 0-1 6-1.285 
1992 lnjury 0-7-367 5,342-54.437 

PD0 0-1 2-91 8 

Total 0-21 -1,447 
1993 lnjury 0 - 7 4  1 5.369-54.707 

PD0 0-1 5-1,006 

Total O-25-1,400 
1994 lnjury 0-9-460 5,464-55,679 

PD0 0-1 6-940 

Total 0-1 9-1,377 
1995 lnjury 0-1 1-522 5,46945,733 

PD0 0-1 4-855 

Total O-257,904 
1 990-1 995 lnjury 0-1 1-2.555 5,305-55.733 

PD0 0-1 6-5.349 



TABLE 4.1 2 Characteristics of signalized 3-legged intersections 
(intersection component) 

Year Sewity Accidents Major Road Flow 
(min-max-total) (min-mm 

Total 0-1 û-298 
1990 lnjury 04-99 1,663-50.954 

PD0 0-8-1 99 

Total 0-1 3-290 
1991 lnjury 04-74 1,660-51.209 

PD0 0-11-216 

Total 0-1 8-345 
1992 lnjury 0-5-1 00 1,674-52,030 

PD0 0-1 3-245 

Total 0-16-339 
1993 Injury 0 4 9 4  1,68342,650 

PD0 0-14-245 

Total û-16-355 
1994 lnjury 0-5-1 14 1.703-53.954 

PD0 0-1 2-241 

Total 0-20-31 9 
1995 lnjury 0-7-1 03 

PD0 0-1 3-21 6 

Total O-20-1,948 
1990-1 995 lnjury 0-7-584 1,660-54,374 

PD0 0-1 4-1.364 

The regression results for the signalized intersection models (intersection component) are 

summarized in Table 4.1 3. The models in Table 4.1 3 perform well, despite the use of only 

one flow as input, as is illustrated in the cumulative residual plots in Appendix E. As 

expected, the variance is much greater with these models than with those of Table 4.3. 

Table 4.1 3 also shows that the parameter F can be described with a Power function 

relationship for al1 3- and 4-legged models. In addition, the coefficient P, is below unity for 

the Clegged models and oscillates between 1 .O31 and 1.351 for the 3-legged models; this 

is very similar to the coefficient p, found in al1 4 and 3-legged models of Table 4.3. 



TABLE 4.13 APMs for the intersection component (signalized intersections) 

Parameters 4-legged signalued 3-legged signalueci 

All lnjury PD0 Al l Injury PD0 

# of entitites 288 288 288 115 115 115 

Collisions 7,904 2,555 5,349 1.948 584 1.364 

4.W 
(0.894) 

4.662 
(0.895) 

4.645 
(0.900) 

4.473 
(O. 897) 

4.437 
(O. 90 1 ) 

4.317 
(0.898) 

-6.513 

0.680 
(0.088) 

0.000 

4.951 
(O. 788) 

4.931 
(0.789) 

4.080 
(0.789) 

4.7% 
(0.782) 

4.856 
(0.784) 

-5.020 
(0.787) 

4.939 

0.589 
(0.077) 

0.000 

Deviance 1897 1752 1929 809 742 783 

The relationship between accidents (injury + PDO) and the parameter F for signalized 4- 

and 3-legged intersections is show in Figure 4.21. This figure shows that the 4-legged 

model indeed predicts more accidents than the 3-legged model. 
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FIGURE 4.21 Relationship between accidents 
(injury + POO) and the parameter F for signalized 

4- and 3-legged intersections (intersection component) 

Regression results for the unsignalized intersection models (intersection component) are 

summarized in Table 4.14. The models in Table 4.14 provide a good fit, as shown by the 

cumulative plots. This table shows that the parameter F follows a Power relationship for 

the 4-iegged models and a Gamma function relationship for the 3-legged models. The 

relationship between accidents and the parameter F of the models in Table 4.14 is very 

similar to the relationship between accidents and the parameter F, (coefficients P, and 4) 
of Table 4.6. 



TABLE 4.14 APMs foi the intersection component (unsignalized intersections) 

Parameters 4-legged unsignalued 3-legged unsignalized 

Al 1 lnjury PD0 Al l lnjury PD0 

# of entities 59 59 59 177 177 177 

Collisions 1,317 357 960 1,690 472 1.21 8 

4.549 
(1.323) 

4.51 1 
(1.327) 

4.639 
(1 -322) 

4.395 
(1 -322) 

4.430 
(1.312) 

4.524 
(1 -332) 

4.508 

0.675 
(O- 1 30) 

0.000 

4.943 
(1 -498) 

4.889 
(1 .505) 

4.800 
(1.505) 

4.724 
(1 .508) 

4.810 
(1.498) 

4.897 
(1.517) 

4.842 

0.589 
(O. 148) 

0.000 

Y 2-66 3.77 2.21 2.51 5.54 2.33 

Deviance 350 34 1 355 760 720 767 

The relationship between accidents (injury + PDO) and the parameter F for unsignalized 

3- and 4-legged intersections is presented in Figure 4.22. As in Figure 4.21. the 4-legged 

model indeed predicts more accidents than the 3-iegged model. 
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FIGURE 4.22 Relationship between accidents 
(injury + POO) and the parameter F for unsignalized 

4- and 34egged intersections (intersection component) 

A series of models that combined ail the signalized and unsignalized junctions together 

was created for the intersection component of links. It is not always possible to know at the 

planning stage the characteristics of every minor intersection on the Iink. Thus, these 

models were created to predict the number of accidents for the intersection component in 

those cases in which it is not known whether or not a minor intersection is signalized, or 

whether the junction has 3 or 4 legs. The application of these models is evaluated and 

compared to applications of the disaggregated models (described previously in this 

section) in the next chapter. 

Regression results for the general models are summarized in Table 4.15. The models 

provide a good statistical fit, with the exception of the PD0 model, and the cumulative 

residual plots can be found in Appendix E. Interestingly, the PD0 model seems to 

consistently overestimate accidents for high link flows. This may be explained by the 

different characteristics (e.g., signalized and unsignalized mixed together) of intersections 



used as input for these models. These characteristics may influence PD0 accidents 

differently. Table 4.1 5 shows that the parameter F for every model is described by a power 

funct ion. 

TABLE 4.1 5 General models for the intersection component 

Farameters General model 

All fnjury PD0 

I of entities 579 579 579 

Collisions 12.859 3,968 8.891 

-6.291 
(O. 827) 

V 2.77 2.55 2.77 

Deviance 3660 3523 371 8 

The relationship between accidents (injury + PDO) and the parameter F for the general 

model is illustrated in Figure 4.23, 
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FIGURE 4.23 Relationship between accidents 
(injury + PDO) and the parameter F for the 
general model (intersection component) 

4.4 SUMMARY 

This chapter contained a description of the regression models with trend developed for 

predicting accidents on different components of transportation networks. Three different 

types of rnodels were proposed. The first type of model was related to the prediction of 

accidents at nodes. The second and third types were associated with the prediction of 

accidents on links: the mid-block and intersection components respectively. Models for the 

mid-block component predict accidents between minor intersections, which are located on 

the physical network but are not coded as a node on the digital network. Models for the 

intersection component predict accidents at these minor intersections. All the coefficients 

of models were estimated with the GE€ method in order to handle the temporal correlation. 

The regression results revealed a few interesting findings. First, models for the nodes 

provided, in general, a good statistical fit. Second, the majority of the models for the mid- 



block component offered a satisfactory fit, with only a few exceptions. Third, models for the 

mid-block component showed that a non-linear relationship existed between accidents and 

the length of sections. In addition, the relationship between accidents and traffic flow was 

found to be above unity for non-CBD road sections. Fourth, models for the intersection 

component al1 provided a good statistical fit, with the exception of one model. despite the 

use of one input flow. Overall, the results showed that the APMs reflected the actual 

relationship between accidents and the wvariates, and were deemed sufficiently accurate 

for predicting the number of accidents on links and nodes. The next chapter describes how 

the models in this chapter are applied on transportation networks and within the urban 

transportation planning process. 



CHAPTER 5 

APPLICATION OF MODELS ON DIGITAL NETWORKS 

The application of accident prediction models (APMs) on digital networks is described in 

this chapter. The chapter is divided into two sections. The mechanics of how the models 

are applied to a digital network are explained in the first section. The application of APMs 

within the urban transportation planning process to estimate the nurnber of accidents for 

different scenarios is described in the second section. All the issues surroundhg the 

application of models are also explained in this chapter. 

5.1 APPLICATION OF MODELS 

This section shows how the three different types of models, described in the previous 

chapter, are applied on a digital network. The sample network is described in section 

5.1.1. The characteristics of the traffic flow simulation are explained section 5.1 -2. The 

steps required to compute the predicted number of accidents on the sample network are 

described in section 5.1 -3. 

5.1.1 DESCRIPTION OF SAMPLE NETVVORK 

Three types of models were applied on a sample network selected from a digital 

representation of a street system iocated in the eastern part of Toronto. This network has 

six links, six nodes, one centroid (400), four centroid connectors (or dummy links) 

connecting centroid 400 to four nodes (Figure 5.1). The network represents the street 

system bounded by Warden Avenue to the West, Birchmount Avenue to the East, St. Clair 

Avenue to the South, and Eglinton Avenue to the North. Four nodes are used to represent 

the intersections of EglintonMlarden (1 O655), St. ClairMlarden (1 O%8), St. 



C lair/Birchmount (1 û663), and Eglinton/Birchmount (1 0660). Two nodes (1 0566, 1 0661 ) 

are utilized to connect the links to adjacent centroids and do not represent a physical 

intersection. The street system in Figure 5.1 is laid out in a shape of a rectangle and is 

about one kilometer wide by two kilometers long. The digital representation was taken from 

the original EMMEJ2 (INRO, 1996) network created by the Joint Program in Transportation 

(JPINT) at the University of Toronto. 

FIGURE 5.1 Sarnple network 

91 



The characteristics of the links are presented in Table 5.1. This table includes a 

description of the attributes of minor intersections not coded as nodes, the number of 

lanes, and the measured distances of links. 

TABLE 5.1 Characteristics of links in the sample network 

Link lanes 'Sig4L 'Sig3L 'Unsig4L 'Unsig3L length Zlength - 
(km) intersections 

(km) 

1 Sig=signalized, Unsig=unsignalized, 4L=4 legs, 3L=3 legs 

2 length less 0.030 km for each minor intersedion on Iink + 0.01 5 for the node at each end, if it 

represents an intersection 

The characteristics of the four nodes representing physicai intersections are presented in 

Table 5.2. The table shows that al1 the nodes are signalized Clegged intersections. 

TABLE 5.2 Characteristics of nodes in the sample network 

10663 (BirchmounttSt. Clair) 1 O O O 

10548 (St. ClairANarden) 1 O O O 



5.1.2 ESTIMATION OF TRAFFIC FLOW 

The traffic flow simulation was perforrned with EMME/2. This software is a transportation 

planning cornputer program that often is used to assess traffic flows at a regional Level. It 

is based on the traditional 4-stage transportation modelling process (trip generation, trip 

distribution, modal split, and traffic assignment). EMME12 employs a static optimization 

algorithm (Le., not time-dependent) and providesflows in vehicles per hour. Sinœ the mid- 

70's. it has been used extensively throughout the world by various local and governmental 

agencies. 

The EMME12 traffic flow output in vehicles per hour for the selected sample network is 

presented in Figure 5.2. The output flows were provided by the JPINT. which performed 

a traffic assignment for the entire Greater Toronto Area (GTA), using the 1996 

Transportation Tomorrow Survey as the input origin-destination (0-0) matrix. It is 

important to note that the direction of the link flow in this figure (and in al1 subsequent 

figures) is the same as that used in North America (where drivers travel on the right side 

of the road). 



FIGURE 5.2 EMMU2 traffic flow output flow 
(vehlhr) for the sample network 

Figure 5.2 shows that the morning peak hour flows are much higher on Eglinton (between 

nodes 10655 and 10660) than anywhere else on the network. This is not surprising, since 

Eglinton is a 6-lane arterial road. On the other hand, the traffic flow on Birchmount 

(represented by the links connecting nodes 10660, 10661 and 10663) is extremely low. 

At first glance, the results of the simulation hardly seem credible. 

These predicted flows were compared with actual trafic counts recorded within the vicinity 

of this network between 1985 and 1995. These traffic counts are illustrated in Figure 5.3, 

in which the average value was used whenever there was more than one count that was 

recorded at the sarne location during this period. 
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FIGURE 5.3 Moming peak hour flows 
(vetûhr) taken from traffic counts 

on the physical network 

By comparing the flows of Figure 5.3 with those of Figure 5.2, one notes that the predicted 

flows of EMME12 are grossly inaccurate. Moreover, the predicted fi ows are underestimated 

for the entire network. This inaccurate prediction may be caused by a variety of factors, 

such as problems associated, respectively, with the 0 - D  matrix, volume-delay functions, 

and traffic assignment procedures. The goal of this research, however, is not to explain 

the causes of such inaccuracies. This subject is left for other researchers to explore. 

Based on the outcome of the traffic flow analysis, it can be easily argued that the EMME12 

output flow cannot be used to estimate the number of accidents in the sample network. 

Indeed, it is only reasonable to expect that an inaccurate estimation of the traffic flow 

automatically leads to an incorrect prediction of accidents. In order to pursue the 

description in this section, the EMME/;! output flows were substituted with the actual traffic 

counts appearing in Figure 5.3. The recorded flows were therefore used as the input flow 

in the APMs. 



5.1.3 PREDlCTlON OF ACCIDENTS 

Before explaining how the APMs were applied on a digital network, it is necessary to 

describe how the hourly flows were expanded into daily fiows. The output fiows of many 

transportation planning programs typically are expressed in vehicles per heur. Thus. the 

flows cannot be used directly in models that incorporate the annual average daily traffic 

(AADT) as input. The description of how the hourly flows were expanded into AADT flows 

is presented in the next two paragraphs. 

Several expansion factors were used to transform the morning peak hour flows to AADT. 

These factors were computed from actual trafic counts recorded on Eglinton, Birchmount. 

St. Clair, and Warden between 1985 and 1995 (Figure 5.4). Factors were developed 

according to whether the arterial road was located in the east-west or north-south a is .  

The exptoratory analyses showed that the factors were very similar fer the two roads 

located on the same axis. A different factor was utilized depending on the direction of 

traffic for each link. ? 
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FIGURE 5.4 Expansion factors to 
transform morning peak hour 

flows to AADT for the sample network 



The factors used in this research were wmputed from the actual area on which the digital 

network was based. However, it may not always be possible to create expansion factors 

as performed here. Consequently, it is suggested to potential users of this approach that 

they apply expansion factors available from other sources. For instance, many trafic 

engineering textbooks (see McShane and Roess, 1990; and ITE, 1992) already have 

expansion factors that can be used to enlarge moming peak hour counts to average daily 

traffic (ADT) and AADT. Nonetheless, the chosen factors preferably should be created 

from the immediate vicinity in which the analysis is performed. 

The AADT flows expanded from the rewrded traffic counts are shown in Figure 5.6. The 

traffic hourly counts were expanded with the factors of Figure 5.4. It should be pointed out 

that the majority of links in Figure 5.6 flows have balanced flows (Le., similar flow volumes 

in opposite directions on the same Iink). 

FIGURE 5.5 Expanded AADT flows from 
traffic counts on the physical netwoik 



The expanded AADT output Rows of Figure 5.5 were used as input in the three types of 

APMs. The number of accidents at nodes was estimated with the signalized 4-legged 

intersection model, since al1 the nodes are signalized with four approaches. The predicted 

accidents were estimated at nodes 10655, 10680, 10663, and 10658, al1 of which 

represent actual physical intersections, as opposed to the nodes 10656 and 10661, neither 

of which represent a physical intersection. The number of accidents on the links 

connecting nodes 10655, 10658, 10680, and 10663 was calculated by the link rnodels. 

Moreover, the number of accidents for the mid-block sections was estimated with the 4- 

lane non-central business district (CBD) and 6-lane link models. Finally, the coefficient a, 

( 7  995) was used for each model. 

The predicted mid-block accidents on Warden and Birchmount were multiplied by the 

adjustment factors indicated in Table 5.3. The mid-block models were originally estimated 

from a sarnple of road sections located between nodes representing major physical 

intersections. The mid-block models cannot be used directly on Warden and Birchmount 

since nodes 10656 (on Warden) and 10661 (on Birchmount) do not represent physical 

intersections. Since a non-linear relationship exists between the distance and the number 

of mid-block collisions, the models predict more accidents at each section individually, 

than when applied on the entire link, as they purportedly are supposed to be. Thus, 

adjustrnent factors are used to make the addition of both sections equal to the prediction 

of the entire link. The factors presented in Table 5.3 were computed for difFerent values 

of p, the power coefficient of L (i-e., ~ 6 ) .  The factors shown in this table should only be 

used if both sections are split evenly. The predicted accidents at each section is therefore 

multiplied by one of these factors. In short, the mid-block models are used on each section 

separately, but are multiplied by an adjustment factor. 

TABLE 5.3 Adjustment factors for the mid-block component 

coefficient p 0 -40 0.50 0.60 0.70 0.80 0.90 1 .O 

Adjustment factors O .66 0.71 0.76 0.81 0.87 0.93 1 .O 

98 



For uneven split sections or for digital networks that include al1 minor physical intersections 

(the original link may divided into more than two sections), the predicted accidents for each 

section has to be rnultiplied by the following equation: 

where, 

AF = adjustment factor; 

P = proportion of original link (O < P s l ) ,  where P = length of section 

divided by the total length of original link (as described above); 

f3 = power coefficient of L. 

An illustration on how the models were applied on the sample network is presented below. 

The illustration is shown for node 1 0655, which represents the intersection of Eglinton and 

Warden and the link between nodes 10655 and 10656 on Warden Avenue. The 

application is illustrated for 1995 (t=6). 

As seen in Figure 5.5, the flows F, and F, are: 

F, = 26510 + 22017 = 48527 vehlâay 

F, = 17366 + 12692 = 30058 vehlday 

Given the information above, the expected number of accidents becomes (equation 4.1 c) 



Link 10655-10656: 

As seen in Figure 5.5 and Table 5.1, the Iink fiow F and the length L are respectively: 

The estimation of accidents on links is divided into two components (see Chapter Four): 

intersection and mid-block components. 

1. INTERSECTION COMPONENT 

On this link, there are four intersections: one signalized 4-legged intersection (Cornstock 

Road) and three unsignalized 3-legged intersections(Civic Road, Sherry Road, and Malley 

Road). Thus, two models (1S4L= signalized 4-legged and IU3L= unsignalized 3-legged) 

are used to predict accidents for the intersection wmponent. They are: 

The total expected number of accidents for the intersection component becomes: 

2. MID-BLOCK COMPONENT 

The link 10655-1 0656 has four lanes and is located in a non-CBD area- Therefore, the 

estimation of accidents is computed with equation (4.2a) in Chapter Four. The predicled 

number of accidents can be computed with the following equation: 



Since the coefficient p is below unity and since the link is not bounded by nodes 

representing a physical intersection, the result of the equation immediately above has to 

be multiplied by 0.71 (as indicated in Table 5.3). The new value then becomes: 

The total expected number of accidents in 1995 for the Iink 10655-1 0656 now equals: 

The proportion of predicted mid-block accidents (53%) is very similar to the proportion 

calculated from the City of Toronto accident database (55%). 

The application results of the models on the sample network are presented in Table 5.4. 

The standard deviation and the actual number of accidents are included in this table. The 

graphical representation of the results in Table 5.4 is illustrated in Figure 5.6. The number 

inside the parentheses in this figure is the actual number of accidents that occurred on the 

physical network for 1995- 
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FIGURE 5.6 Predicted accidents (acclyr) 
on the sample network with 

expanded traffic flow counts (1 995) 

Table 5.4 and Figure 5.6 reveal that Eglinton (link 10655-1 0660) has the highest number 

of predicted accidents, while both sections of Birchmount have the lowest number of 

predicted accidents. In general, the models predict values that are very similar to the true 

accident counts that occurred on the physical network. 

In summary, this section has shown how to apply the three types of models on a digital 

network. It was demonstrated that the output flows of transportation planning software 

programs may not always be adequate to predict accidents on urban networks. In fact, bad 

traffic estimates necessarily lead to an inaccurate appraisal of network safety. Thus. it is 

imperative that the predicted flows truly reflect the traffic conditions on the physical 

network. It has also been shown that the application of models is dependent on how the 

network is coded. The predicted accidents on links have to be adjusted since the non- 

linear relationship exists between accidents and length. The application of APMs within 

the urban transportation planning process is presented in the next section. 



5.2 APPLICATION OF MODELS WlTHlN THE URBAN TRANSPORTATION PLANNING 
P ROCESS 

The APMs can be used efficiently to evaluate several scenarios during the urban 

transportation planning process. Thus, this section shows how the models can be used to 

compare the safety of networks quantitatively for different scenarios. However, the 

limitations regarding the application of the models for cornparison purposes are also 

explained. It should be pointed out that the sample network used in this section is not 

based on any specific physical network. 

The hypothetical network was built arbitrarily with EMME12. Under the assumption that the 

estimated flows were predicted accurately by the program, the expeded number of 

accidents was initially wmputed for the original layout. Next, the network was modified 

according to two scenarios. In the first scenario, two links were transfomed from a 2-lane 

to a 4-lane road. This transformation was undertaken to represent a road widening 

process. In the second scenario, a centroid was added somewhere inside the network to 

assess the effects on traffic fiow patterns and on the number of predicted accidents when 

a major traffic generator (e-g., supermarket, casino) is added to a network. No changes in 

the physical characteristics of the network were performed for this scenario. For both 

scenarios, the traffic flows and number of accidents were then re-estimated and the results 

compared with the output of the original network. Finally, the analysis also included the 

prediction of accidents for traffic flows forecasted within the next ten years. 

5.2.1 DESCRIPTION OF SAMPLE NElWORK 

The hypothetical sample network has 15 nodes, 6 centroids, 18 links, and 6 centroid 

connectors. Nine nodes are used to represent intersections, while the other six nodes are 

employed as gateway nodes located between the centroids at the outskirts of the network 

and the street system. The hypothetical physical network is illustrated in Figure 5.7a and 

its digital representation appears in Figure 5.7b. 



FIGURE 5.7s Hypothetical physical network 

FIGURE 5.7b EMMUZ digital representation 



The sample network is four kilometers wide by two kilometers long. The attributes of the 

links and nodes are presented in Tables 5.5 and 5.6 respectively. It should be noted that 

only the links and nodes located inside the rectangle bounded by nodes 11, 13, 15, and 

17 are presented in the two tables. The prediction of accidents was perfoned on these 

links and nodes exclusively. The other links were used only to wnnect the centroids with 

the rectangular network. The application of the models to the sample network is presented 

in the next section. 

TABLE 5.5 Characteristics of links in the sample network 

Link lanes Sig4L Sig3L Unsig4L Unsig3L length length - 
(node to node) (km) intersections 

11-12 1 1 O O 1 1 .O0 O. 94 

12-1 3 1 O O 2 O 1 .O0 O. 94 

13-14 2 O O O 2 2.00 1.94 

14-1 5 2 2 O O O 2.00 1.94 

15-16 1 O O 1 O 1 -00 O. 97 

16-1 7 1 O O O 1 1 .O0 0.97 

17-1 8 2 O 1 1 O 2-00 1.94 

18-1 1 2 O O 2 O 2.00 1.94 

12-1 9 3 1 O O O 2.00 1.97 

14-1 9 2 O O 1 O 1 .O0 0.97 

16-1 9 3 O O 1 O 2.00 1.97 

18-1 9 2 O O 1 O 1 .O0 0.97 



TABLE 5.6 Characteristics of nodes in the sample netwoik 

5.2.2 PREDlCTlON OF ACCIDENTS FOR THE ORIGINAL LAYOUT 

The O-D input matrix used for the sample network is presented in Table 5.7. This matrix 

has a total of 9800 vehicle-trips. The traffic assignment output is presented in Figure 5.8. 

TABLE 5.7 Origin-destination input matrix in vehlhr for the sample network 

Total 

1 2 3 4 5 6 1 Total 



FIGURE 5.8 EMME12 traffic flow output (vehhr) for the sample network 

The output flows were expanded to AADT with an average factor computed from the 

Toronto data. The flows were then used as input in the three types of APMs. The models 

used for each element of the network included those for 2-lane, 4-lane, 6-lane roads and 

signalized 3- and 4-legged intersections. They also included both specific (3-legged, 4- 

legged, signalized, unsignalized) and general models (nodistinction between the attributes 

of non-node intersections) for the intersection component. The accidents were predicted 

for injury, PD0 and injury + PDO, and with the average coefficient a. 

The application results of the APMs on the sample network are presented in Table 5.8. 

The graphical representation of the results is shown in Figure 5.9. To improve the clarity 

of the tables and graphs, the standard deviation of the expected number of accidents is 

not shown. 



TABLE 5.8 Expected number of accidents on the sample network 

Lin WNode Mid-Block Intersection Intersection Total 
Component Component Component Columns 1 + 2 

(Specific models) (General mode!) 

Total 139.3 375.0 515.0 

'Note: I = iniuw. P=PDO. I+P = iniurv + PD0 

The results in Table 5.8 show two interesting findings. First, the addition of the output of 

the injury and PD0 models is equal to the output of the models that combine both injury 

and P D 0  collisions (within 11 accident). The proportion of accidents with injuries (27Oh) 



is also similar to the proportion computed from the City of Toronto accident database 

(30%). Second, the general model used for the intersection component of links predids 

values quite similar to the specific models for most links. Thus, the use of the general 

model seems to be appropriate for analysts who do not know the exact characteristics of 

non-node intersections. Finally, the link accidents account for about 70% of al1 accidents 

on the network (the ratio of accidents predicted on the mid-block and intersection 

components respectively is 8211 2). 

FIGURE 5.9 Predicted accidents (acdyr) on sample network 

5.2.3 PREDlCTlON OF ACCIDENTS FOR THE MODlFlED NETVVORKS 

In scenario 1 , the sample network was modified by altering the characteristics of two links. 

Links 15-1 6 and 16-1 7, located in the righthand side of the network, were upgraded from 

a 2-lane to a 4-lane arterial ïoad. A trafk assignment was then perfomed with the same 



O-D rnatrix presented in Table 5.7. The traffic flow output in vehicles per hour is presented 

in Figure 5.1 0. 
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FIGURE 5.10 EMMEl2 traff~c flow output (vehfhr) for scenario 1 

With the addition of a second lane on the links located between the nodes 1 5 and 17, an 

important shift in the traffic pattern occurred on the right side of the network. Indeed, links 

16-1 7, 16-1 9, and 15-1 6 had an increase of about 800, 600, and 300 vehlhr respectively. 

On the other hand, the biggest losses occurred on links 17-1 8, 18-1 9, and 14-1 9, with a 

reduction in traffic flow of about 800, 750, and 300 vehlhr respectively. As expected, the 

left side of the sample network was less affeded, with Rows oscillating below 200 vehlhr. 

In scenario 2, a seventh centroid was placed in the rniddle of the network to simulate the 

impacts of a new important traffic generator (Figure 5.1 1). This centroid is connected to 

the network halfway between nodes 16 and 19 with a signalized 3-iegged intersection. To 



keep things simple, a trip-attraction of 150 veh/hr and a trip-destination of 150 vehlhr 

between the new centroid and each of the other centroids were added to the 0-D matrix 

described in Table 5.7. As a result, an additional 1,800 vehicle-trips were generated on 

the network. The EMME12 traffic flow output for sœnario 2 is presented in Figure 5.12. 

FIGURE 5.1 1 Network for scenario 2 



FIGURE 5.12 EMME/2 traffac flow output (vehlhr) for scenario 2 

Figure 5.12 shows that the bulk of the traffic can be found on links 17-1 8, 18-1 9, 14-1 9, 

and 12-1 9. The output shows that the addition of centroid 7 leads to an important shift in 

the traffic pattern on the network. Indeed, about 60% of the vehicles using link 16-1 9 in the 

original network shifted routes to the aforementioned links. 

The predicted accidents were computed for the two modified network with the output of 

Figures 5.1 O and 5.12 respectively. The 4-lane model was used for links located between 

nodes 15 and 1 7 for scenario 1. The difference in predicted accidents between the network 

of scenarios 1 and 2 and the original network is presented in Tables 5.9 and 5.10 

respectively. The results are also illustrated in Figures 5.13 and 5.14 respectively, in which 

the number inside the parentheses represents the difference in predicted accidents. 



TABLE 5.9 Difference in the expected number of accidents 
(scenario 1 - original layout) 

LinklNode Mid-Block Intersection Total 
Component Component Columns 1 + 2 

(S~ecific models) 

Total 1.06 12.97 14.29 

* a positive number indicates an increase in the expected number of accidents. 

Underline: change in predicted accidents significant (5%) 

Table 5.9 shows that the total number of accidents increased by about 14 acdyear. Similar 

to the trend shown in Figure 5.10, accident counts increased significantly on links 15-16, 



16-1 9 and 16-1 7, while a reduction in the accident counts occurred on links 17-1 8, 18-1 9, 

and 14-19 respectively. Interestingly, the intersection component of links does not 

significantly influence the changes in the expected number of accidents, despite an 

increase of 10,000 veh/day on some links. Here, the change in accident counts is 

attributed primarily to the mid-block component. Similarly, the expeded number of 

accidents at nodes does not change drastically. The greatest increase in accidents 

occurred at node 16 with a gain of 4.41 acdyear, while the largest decrease happened at 

node 18, with a reduction of 4.37 acdyear. Based on the results in Table 5.9, it c m  be 

concluded that the addition of a second lane on the right side of the sample network leads 

to a decrease in safety. 

Note: the number inside the parentheses represents the 
difference between modified and original neiworks 

37.3 (-7.3) 29.3 (-3-3) 

FIGURE 5.13 Pndicted accidents (acclyr) for scenario 1 
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TABLE 5.10 Difference in the expected number of accidents 
(scenario 2 - oriqinal layout) 

Link Mid-Block l ntemection Total 
Component Component Columns 1 + 2 

{SpecifÏc models) 

11 0.21 0.35 0.56 

12 0.86 2.33 3.19 

13 0.44 1.29 1.74 

14 0.96 2.45 3.55 

15 0.59 1.45 2-05 

16 0.21 0.37 0.59 

17 0.70 1.30 2.33 

18 0.79 1-90 2-70 

19 1.37 2.95 4.58 

Total 19.37 49.57 69.75 - - 
a positive nurnber indicates an increase in the expected number of accidents. 

Underline: change in predicted accidents significant (5%) 

Table 5.10 reveals that an increase of 1,800 vehicle-trips (-16%) leads ta an increase 

of about 13% in the predicted accidents on the entire network. The biggest increases 



occur on every link that connects to node 19. For link 16-1 9, the increase in accidents 

is attributed primarily to the new node 26. 
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FIGURE 5.14 Predicted accidents (acclyr) for scenario 2 

Based on the results shown in Tables 5.9 and 5.10, it would be possible to implement 

additional measures to minimize the increase in accidents for links and nodes plagued by 

a high decrease in safety. One could, for example, implement procedures that would 

redistribute the flow of trafic within the network. Alternately, one could attempt various 

localized interventions (site specific) to improve safety, such as at nodes 19 and 26 for 

scenario 2. 

The application of APMs for comparison purposes can be problematic however. The 

models were applied with the assumption that al1 the characteristics with the exception of 

the selected modified ones remained unchanged. Obviously, it is unreasonable to expect 



that a modification for one road characteristic will not affect other factors that influence 

trafic accidents. For instance, increasing the capacity of a road rnay influence the land- 

use located along the modified links or nodes (private entrantes, parking, etc.). In other 

instances, transportation agencies rnay automatically wnduct minor road improvements 

within the vicinity of an added traffic generator. Unfortunately, the models proposed in this 

thesis rnay not be able to capture such changes. Thus, they rnay not be adequate to 

evaluate changes in safety for highly detailed networks nor for minor road upgrades such 

as the addition of a raised median on road sections. 

More detailed models could be used to capture minor changes such as the ones described 

above. However, the main issue here is the availability of information about the physical 

characteristics of the network. lt rnay be difficult to know, at the planning stage, the exact 

physical characteristics of roads and intersections or the type of land-use located within 

different sections of the network. Consequently, it rnay be difficult to use detailed niodels 

when the analyst has incomptete information about the network. Nonetheless, the models 

proposed in this thesis provide a good base of comparison since traffic flow is the one of 

the most important exploratory variables that is associated with accidents. 

5.2.4 FORECASTED ESTIMATES 

The APMs can also be used to quantify safety at the planning stage for traffic flows 

forecasted for the future. For instance, transportation agencies are always interested in 

estimating future traffic and its various impacts (delay, congestion, air pollution, etc.) within 

a 5-, 10- or 20-year span. With the models developed in Chapter Four, the safety benefits 

or drawbacks of different scenarios can also be estimated for the same time span. For 

instance, the coefficients a, of APMs can be used to establish a possible trend (through 

regression or othewise) in the expected number of accidents. For example, in this work, 

it was decided to employ the average a, for the last three years for each model and to 

predict the number of accidents for the original network and scenario 1. The average of 



the last three years was shown to predict more accidents than did the average ovei six 

years. With the assumption that both the trend and al1 of the other variables (such as the 

definition to report an accident, etc.) would remain constant, a 1 O h  yearly increase was 

applied to the trafic flow. The predicted accidents were estirnated for the next 10 years for 

the two networks. The application results of the APMs on the two networks are presented 

in Table 5.1 1. 

TABLE 5.1 1 Forecasting of predicted accidents for the 
original netwodc and scenario 1 

Year Original Layout 1 Difference 

O 526.9 543.3 16.4 
'(56 3) (57.2) 

10 581 .5 600.4 18.9 
(61.9) (62.9) 

Total 5564.1 5741.3 177.2 

' standard deviation 



Table 5.1 1 shows that, over 1 1 years (including year O), there are approximately 177 more 

accidents on the network of scenario 1 than on the original network. For each year, the 

change in the number of predicted accidents was significant at the 5% level of accuracy. 

With a yearly increase of 1% in traffic flow, the expected number of accidents also 

increased by about 1 % annually. It is interesting to note that the gap widened over the 1 O 

year periods, as is shown in the last column of the table. 

The main issue regarding the application of models for this purpose resides in the 

availability of information for long term studies. As explained above, it may be difficult to 

know how many intersections will be built on a physical network that has yet to be built or 

upgraded, especially in within a 10 or 20-year span. In addition, many characteristics that 

influence accidents (economic conditions, introduction of new laws and city by-laws, etc.) 

may change over time. Thus, the models may not be able to predict accurately the number 

of accidents when used for forecasting accidents in long-terni analysis. 

5.3 SUMMARY 

This chapter contained a demonstration of the application of APMs on digital networks. 

The mechanics of how the models are applied on a digital network and how the rnodels 

can be used within the urban transportation planning process were explained in the first 

and second sections respectively. Two networks were used to illustrate the application of 

the models on digital networks. The first digital network represented a system of arterial 

roads located in eastern Toronto. The second digital network, which was not based on any 

physical network, was created solely to show the changes in network safety when that 

network is substantially modified. Two scenarios were evaluated for the latter network. 

The steps needed to apply the models and to predict accidents on a digital network were 

methodically described in the first section. Several issues were raised concerning the 

application of models on digital networks. First, inaccurate predicted flows will 



automatically lead to an incorrect number of predicted accidents. Thus, the predicted flows 

must be estimated as accurately as possible. Second, the application of models is 

dependant on how the network is coded. Indeed, adjustment factors must be employed for 

link (mid-block) models since a non-linear relationship exists between accidents and 

length. 

The results described in the second section showed that an important change in accident 

counts occurs if a network is substantially modified. Accident counts increased for both 

scenarios. The results showed that it wouId be possible to pin-point problem areas before 

a facility is built or upgraded; moreover, that it would be possible to implement localized 

or area-wide safety measures that wouid minimize, a priori, the increase in number of 

predicted accidents. However, the models showed various limitations when applied for this 

purpose. For instance, they may not capture minor changes in the physical characteristics 

of the network. Furthermore, availability in information may be problernatic, especially for 

long-term studies. Thus, APMs should be used with care when applied on digital networks. 

Two other useful applications of APMs on digital networks are presented in the next 

chapter. 



CHAPTER 6 

NETWORK SAFETY 

The aim of this chapter is to describe two useful applications of accident predidion models 

(APMs) on digital networks. In the first application, the APMs are used to find the safest 

paths between any pair of centroids on a sample network. In the second application, the 

models are used to examine the safety effects of dynamic route guidance (DRG) systems 

on digital networks, when accident risk information is communicated to road users. The 

DRG system is a core component of intelligent transportation systems (ITS). All the issues 

and limitations related to the application of models for network safety analysis are 

described in great detail. 

6.1 COMPUTATION OF ACCIDENT RlSK ON NETWORKS 

This section shows how to compute the accident risk on transportation networks. The steps 

needed to modify the network are explained in section 6.1 .l. These steps are required to 

apply the proposed algorithm described in the next section. The amputation of accident 

risk is described in section 6.1.2. The application of accident risk on a network is 

demonstrated in section 6.1 -3. 

6.1 -1 MODIFICATION OF NETWORK 

The safest path in this analysis was found by locating the route between each pair of 

centroids for which a driver has the lowest probability of being involved in an accident. The 

computation of accident risk is explained in the next section. Since the risk of a collision 

depended on the type of manoeuvre at a node (e.g., tuming right, left or travelling 

through), it was necessary to modify the nodes the sample network used for this 



demonstration since very few commercially available transportation planning software 

prog rams can handle external cost factors for optimization purposes. For instance, 

EMME12 (INRO, 1996) cannot assign extemal cost factors for different turning manoeuvres 

at nodes. The modification of transportation networks was perfarmed by transfoming each 

node and creating a new series of additional nodes and links that reflected the various 

turning manoeuvres at the intersection. Note that it would not have been required to rnodify 

the network if the same risk was assigned for all turning flows at nodes. 

The modification process had to be perforrned in such way that unusual paths on the 

digital network were not created. Indeed, the safest path algorithm depended on the 

direction assigned to a Iink and unusual paths were created if the network was not re- 

coded properly. For instance, during the initial recoding of the network, the safest path 

indicated that a driver, who wanted to turn left, made a right turn, followed by a u-tum, and 

then travelled straight through the node. Obviously, this kind of travelling behaviour was 

highly unlikely in a real traffic situation. Thus, a proper modification procedure was 

developed that eliminated unusual paths. This procedure was separated into five different 

steps. Each node in a network had to be rnodified with this five-step procedure (the steps 

are illustrated in Figures 6.1 a and b): 

1) Create two extra nodes for each leg connected to the original node (node 5 in 

Figure 6.1 a); one node is used to represent outgoing flows at the intersection and 

one node is used as the receiving node (Figure 6.1 b). 

2) Label each new node according to whether the node is an outgoing or an 

incoming node. It is suggested ta use a simple but concise labelling systern, as 

illustrated in Figure 6.lb. For instance, the label 5W0 indicates that it is an 

outgoing node located West of node 5. It is important to label the nodes accurately 

since the simplest coding mistake automatically leads to a wrong estimate of the 

safest route. 



3) Create a new sefies of links that connect the outgoing and incoming nodes for 

each leg (Figure 6.1 b). Thus, there is a possibility of 12 new links for a 4-legged 

intersection. 

4) Assign the proper accident risk to each new Iink. This is explained in the next two 

sections. 

5) Repeat steps 1 to 4 above for al1 other original nodes. 

The new set of nodes and links is used only to find the safest path on a network and is not 

intended to evaluate flows. In addition, the five-step procedure is only required if the 

algorithm is used outside a comrnercially available transportation planning software 

program. 

FIGURE 6.1 a Original layout 



FIGURE 6.1 b Modified layout for node 5 

6.1.2 ACCIDENT RlSK 

The risk was estimated with equation (6.1) for each link and node on the sarnple network. 

The definition based on this equation is a widely used measure of individual risk; it is 

extensively applied in epidemiological studies. This definition has also been applied in 

various traffic safety studies (see Garder, 1989; Davis et al., 1989; and. Chatte jee and 

MacDonald, 1998). Equation (6.1 ) can be defined as the driver's risk of being involved in 

a collision given a certain level of exposure, that is, the probability that a driver would be 

involved in an accident on a link or node that has x accidents per day (or year) and y 

vehicles per day. The equation is as follows: 

accident nsk = 
expectd number of accidents 

exposure 

The accident risk in equation (6.1) is estimated by dividing the expected number of 

accidents per unit of time with the traffic flow in vehicles per unit of time for any given link 

or node, as applied by Chatterjee and MacDonald (1998). By computing the expected 

number of accidents with an APM, equation (6.1 ) becomes: 



AR = 
flow 365 

where, 

AR= the accident risk defined as the number of accidents per vehicle per link or 

per passing intersection; 

E{K)= the expected number of accidents per year; 

flow = the traffic flow (in AADT) on the link or for the manoeuvre at a node 

(right, through, left) in vehicles per day; 

365 = the number of days in one year. 

The relationship of equation (6.2) can also be written as follows: 

Equation (6.3) exhibits a special characteristic for p < 1 . Most models in this research 

contain a coefficient p below 1. When the power coefficient of the parameter F ( P - 1 ) is 

negative, equation (6.3) indicates that the individual risk decreases as the flow increases- 

In fact, the relationship implies that it is less dangerous for a driver to travel under heavy 

flow conditions than under light flow conditions. For example, let us assume that an APM 

has the following form 0.01 x ~ l o w ~ . ~  (single vehicle accident). When the model is applied 

on links with traffic flows equal to 100 veh/unit of time and 10 vehlunit of time, one gets 

0.1 O acchnit of time and 0.03 acdunit of time respectively. In principle, 10 vehicles out of 

the 100 vehicles and 0.3 vehicle out of the 1 O vehicles should be involved in a collision 

respectively. Consequently, the probability for a driver to be involved in a collision 

becomes 0.01 and 0.03. This result shows that a driver has a greater Iikelihood of being 

involved in an accident if he or she travels on the link with 10 vehlunit of time. The special 

characteristic of equation (6.3) merits a thorough analysis. 



The characteristic exhibited in equation (6.3) appears to be wunterintuitive. Common 

sense would dictate that the individual risk of being involved in a an accident should 

increase as more road users share the same limited space on the road. Similarly, when 

one looks at human factors, the driving task should became more complicated as traffic 

increases. The driver should have greater difficulty absorbing information. Thus, the 

probability for a driver to make errors should be larger leading to a the greater likelihood 

of being involved in an accident. Recent work on traffic safety and capacity also showed 

that as the level of service (LOS) decreases, the risk becomes higher. Persaud and Look 

(2000), and Persaud and Nguyen (2000) developed APMs in relation to the LOS for 

freeway sections and signalized intersections. The results showed that, for similar Rows, 

more accidents were predicted when the LOS decreased. 

Despite what intuition and the preliminary empirical workon this subject might indicate, the 

relationship of equation (6.3) shows that it is safer to travel on roads with higherflows than 

with lower flows when the coefficient p < 1 . The issue about the diminishing risk is directly 

related to the coefficient B. As explained in Chapter Two, studies have show  since 1953 

that the number of accidents usually increases at a decreasing rate when the flow 

increases. Thus, the individual risk indeed becomes less as traffic flow increases. Even 

the rnodels proposed by Persaud and Look (2000), and Persaud and Nguyen (2000) 

contain a p < 1 for the parameter F. Consequently, for a given LOS, it is safer to travel on 

a road or through an intersection that has more vehicles than less vehicles, everything 

eke being equal (i .e., same road characteristics). 

So far, there has been no explanation in the literature to interpret the relationship of P < 1 . 

This relationship may be explained by various factors. It is possible that drivers may 

change or adapt their driving behaviour according to the level of traffic present on the 

road. They may become more alert as traffic increases. They may undertake less risky 

manoeuvres knowing that space on the road is limited. Another explanation might be 

related to speed. As traffic flow increases, the vehicles travel at a lower speed. The speed 



usually slightly decreases until near capacity conditions where, at that point, it sharply 

goes down. The damage caused by an accident to both the vehicle and its occupants is 

less severe at lower speed. Thus, perhaps accidents that were once serious rnay become 

less serious; that slight accidents rnay become PDOs (they are less Iikely to be reported), 

etc. The speed distribution rnay also play an important role. The variance in speed is 

probably higher for lower traffic flow than for higher traffÏc flow conditions. The speed rnay 

become more uniform when traffic density increases. Consequently, the likelihood for a 

conflicting situation to arise between vehicles is higher at a lower density. In short, the 

issue of diminishing risk should be explored in much greater detail since it rnay have 

important consequences on transportation policies and ITS strategies. 

In other instances, it rnay be of interest to look at the societal risk. The goal, in this case, 

is to compute the accident Iikelihood for a given level of exposure. In other words, the 

predicted number of accidents per unit of time is computed for a given Row. Carriers of 

dangerous chernical materials usually apply this definition of risk, as discussed in Chapter 

Two. The accident Iikelihood is usually estimated from accident rates rather than from 

APMs. For this definition, the relationship of equation (6.2) becomes: 

Amdent likelihood = E{K ) = a F @  (6.4) 

Equation (6.4) rnay be estimated for different categories of road users such as for heavy 

vehicles or trucks. 

Equation (6.4) shares the same characteristic as in equation (6.3) for Q < 1 when used for 

the optimization of network safety. When one is interested in minimizing societal risk, the 

flows on networks will tend to concentrate on few links rather than disperse on many links 

since risk decreases with flow. 



6.1.3 APPLICATION OF ACCIDENT RlSK ON LINKS AND NODES 

The cornputation of accident risk for the links (those found in the original network) was 

performed by applying equation (6.2) for each link in the network. In the analysis, the same 

risk was assigned to drivers travelling in opposite directions on each link. The 

disaggregation of accident risk by direction was not possible with the models developed 

in Chapter Four. 

The computation of the accident risk for the nodes was a little more wmplicated and 

required further manipulation. As explained above, the risk of a collision at intersections 

depended upon the respective manoeuvre or movement (left. through, right). Since the 

models developed for the nodes in this research were not separated by collision type, few 

steps were necessary to separate the predicted accidents by type. It should be mentioned 

that the best approach would be to develop specific APMs for each accident type. In the 

first step, the proportion of accidents by type was examined for signalized 3- and 4-legged 

intersections in the accident database. Based on this exploratory analysis, it was possible 

to compute the proportion of accidents for drivers who tum left, right, or travel straight 

through the intersection. In the second step, the total expected number of accidents 

computed for each intersection was multiplied by the proportions calculated above. This 

resulted in finding the predicted number of accidents for each turning rnovement at the 

intersection. In the third step, the risk was computed with equation (6.2) for each 

manoeuvre at the node. In the end, a different accident risk value was used, depending 

on whether a driver turns left, right, or travels through a node. 

After the accident risk was computed, it was then assigned to the modified network. The 

risk computed from the original link had to be allocated to al1 the modified links (between 

the receiving and outgoing nodes each leg) located between any adjacent nodes. For 

every node in the network, the risk was assigned to al1 additional links that represent the 

various turning movements at the intersection. The description can be better understood 



with the help of an example. With the network described in Figure 6.1, let us assume that 

the risk between node 5 and each of the other adjacent nodes is equal to 0.0500 acdveh; 

that a left-turn is equal to 0.0045 acdveh; Mat travelling through an intersection is equal 

to 0.0035 acdveh; and that tuming right is equal to 0.0020 acdveh. The assignment of the 

various risk factors is presented in Figure 6.2. The application of the algorithm is 

presented in the next section. 

0 
FIGURE 6.2 Assignment of risk on the network of Figure 6.1 

6.2 APPLICATION OF SAFEST PATH ALGORITHM ON THE SAMPLE NEWORK 

Different accident risk values, as computed by equation (6.3). were applied on the sample 

network of section two in Chapter Five. This sample network was modified according to the 

procedure described in the previous section. The number of nodes increased frorn 15 to 

66 in the new modified network. 

Figure 6.3 shows the accident risk on the sample network. The number in parentheses in 

this figure is the expected number of accidents per year. The different values of accident 

risk at nodes are presented in Table 6.2. Note that the high risk values ir! this table are due 



to extremely low flows on the network (to be discussed below). The blank cells indicate 

that this particular tuming manoeuvre is not possible for that node. 

FIGURE 6.3 Assignment of risk (acclveh) on the sample network 
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TABLE 6.1 Accident risk (acclveh) at nodes 

Node Acdyr NB-L NB-T N u  S u  SB-T SB-R EB-L EB_T E8-R WB-L WB-T WB-R 

11 12.7 1.2E-6 6.3E-8 1 .OE-6 1.3E-6 8,3E-8 8.358 

12 8.0 1.9E-6 8.6E-8 6.5E-7 1.9E-6 1.4E-7 5.8E-8 

13 12.3 1 .O€-7 2.7E-6 1.2E-6 7,9E-8 1.9E-5 8.6E-7 

14 25.2 1 .OE-6 8.3E-7 7.1E-7 1.QE-5 7.5E-7 2.OE-7 1.2E-6 1 .SE-6 5.OE-7 2.2E-6 3.E-6 2.7E-7 

15 116 2.257 7.9E-8 9.7E-7 2.2E-7 5,3E-7 1 .OE-6 

16 8.5 6.7E-7 1.1E-6 8.9E-7 2.5E-7 2.1 E-7 1,lE-7 

17 37.1 8.3E-7 1.8E-6 4.3E-7 9.8E-7 2.2E-6 1.6E-7 8.2E-7 1 .SE-6 1.4E-7 1.9E-6 1.2E-6 3.3E-7 

18 15.2 1 .OE-7 3.3E-7 2.2E-6 1 .SE4 t.5E-6 8.1 E-8 

19 20.6 1.2E-6 7.2E-7 1.2E-6 1.1E-6 7.4E-7 1.2E-6 1.2E-6 1 .BE-6 2.3E-7 6.E-6 2.OE-6 2.4E-7 



A computer program written in QuickBASlC (Nameroff, 1989) was created to facilitate the 

search of the safest paths in the sample netwark. The Dantzig algorithm was coded in the 

corn puter program acwrding to the rnethod proposed by Yen (1 977). The details about this 

algorithm can be found in Appendix D, The codes for the computer program are shown in 

Appendix F. Another computer program was also written with the Floyd algorithm to 

validate the results of the first program's output. 

The total risk for the safest path between each pair of œntroids is presented in Table 6.2. 

The graphical representations of the safest paths between centraids 1 and 5, and between 

centroids 3 and 4 are shown in Figures 6.4 and 6.5 respectively. 

TABLE 6.2 Total risk (acclveh) for the safest path between each pair of centroids 
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FIGURE 6.4 Safest path between centroids 1 and 5 
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The numbers in parentheses represents the ewpeded number of amdents (adyr) 

FIGURE 6.5 Safest path between centroids 2 and 3 



Figure 6.4 reveals that the safest route is laid out in a stepwise fashion, with three right 

tums and two left turns. This path initially may appear inappropriate, since the addition of 

the risk factors associated respectively with links 16-1 9, and 16-1 7 (without including the 

risk at the nodes) is less than those associated with links 18-19 and 17-18. Since the 

accident risk for a right-tum is 8 to 16 times safer than travelling through at nodes 19 and 

17, the sum of the risk factors on route 19-1 8-1 7 (7.5E-6 acdveh) becomes less than that 

on route 19-1 6-1 7 (8.OE4 acdveh). 

Figure 6.5 shows that it is safer to perfom a detour through nodes 19-16-1 5 than to make 

a left turn at node 14 and travel on link 14-1 5. In real traffic conditions, it would be unlikely 

that a driver would take such a path. In fad, the shortest path is often the path with the 

lowest risk (Chatterjee and MacDonald, 1998). Since the left-tuming trafficflow at node 14 

is very low, the accident risk is very high. The risk for that particular left tum is about 20 

to 30 times higher than the risk of tuming left at other nodes in the network. Thus, it is 

safer to perform a detour than to use the most direct route, as unrealistic as this may 

seern. It is important to mention that this hypothetical digital network did not represent an 

actual physical network and that al1 the variables were set arbitrarily. Furthemore, the 

expected number of accidents for turning manoeuvres was not estimated from APMs but 

from an average value that was extracted from accident data. Therefore, it is not surprising 

that unusual routes could be selected in this network. 

The main purpose of this section was ta explain how the safest path algorithm could be 

implemented for digital networks. The safest path wasfound by incorporating the exposure 

and then computing the individual risk of a collision for a driver who travels on links and 

nodes that have x accidents and y vehicles per day. An algorithm was developed to find 

the path between any pair of centroids with the lowest probability of a collision. To find this 

path, it was necessary to substantially modify the network so as to include the various 

turning manoeuvres at nodes. Unfortunately, the computation of accident risk and 

modification process had a few drawbacks. 



The first disadvantage was related to the number of additional links required to apply the 

algorithm properly. In fact, eight additional nodes were required for each original node. 

Thus, for an extended network, a very large number of additional links would be required 

which could be very difficult for a single user to handle (for a 20,000node network, it may 

go well above 80,000 additional links). In addition, the network could even be too large for 

a single personal computer to handle. For instance, the algorithm took few minutes to 

converge to find al1 of the paths in this small network with a Pentium 11, 400 MHz. Unless 

the turning flows are already coded in the transportation planning software program, it may 

be preferable to compute one risk for the overall node. 

The second disadvantage was related to the computation of accident risk on links or nodes 

with extremely lowflows (this is in addition to the issues explained in the previous section). 

The risk applied in this situation may sometimes be disproportionally large, owing to the 

low denominator. This result was illustrated in Figure 6.5. To avoid this problem, 

Chatterjee and McDonald (1 998) suggested setting the links or nodes with minimum flow. 

They proposed to set the minimum flow equal to the lowest flow in the sample of sites 

producing the APMs. 

The third disadvantage was associated with the APMs. In the analysis, the AADT flow was 

used as the input variable into the various models. These models, unfortunately, were not 

adequate when the true accident risk is sought for a particular time period (other than 24 

hours). In that case, it would be preferable to use APMs that predict the number of 

accidents for the time period for which the trafic was simulated. Similarly, models should 

be used to predict accidents by type at nodes, rather than estimate the type of accident 

by other methods. Several safety issues related to the application of DRG systems on 

networks are described in the next section. 



6.3 SAFETY ISSUES IN DYNAMIC ROUTE GUIDANCE 

This part of the analysis was perfomed in cooperation with the Intelligent Transportation 

Systems (ITS) Group at the University of Toronto. This work was only a demonstration of 

the application of accident risk to networks provided with a DRG system. At the time of the 

analysis. the ITS Group was still in the process of fully integrating Paramics to ITS 

applications. Thus, the scope of this analysis was fairly limited, since many components 

of Paramics were not yet readily available. For instance, it was not possible to assign 

accident risk for the various turning manoeuvres at intersections. Nonetheless, the 

analysis provided useful insights about how to improve network safety by cammunicating 

relevant information to drivers. 

Three issues must be addressed before pursuing the description of the methodology and 

the results. First. the analysis was a theoretical exercise. and it relied on the assumption 

that drivers completely optimize their route choice based on delay and the applied cost 

factors (Le., accident risk). Several issues related to this assumption are discussed at the 

end of this section. 

Second, the aim of the current analysis was related to the prediction of accidents based 

on the aggregate change in traffic over a fixed time interval. Paramics is a microscopie 

simulation software that simulates trafic on a given network in a real-time setting. Thus. 

each car on the network is simulated individually and the various measurements such as 

traffic flow or delay are computed at the end of each simulation run. The APMs were 

applied with the final output of each simulation run, once the measurements were 

calculated. Since the models employ a static average annual flow as input, they cannot be 

used to evaluate the actual effects of DRG systems on traffic safety (e-g., changes in 

headway. improvements in human factors, driver behaviour. etc.). But, they can be used 

to evaluate the effects on safety for changes in aggregated traffic flow on networks. 



Third, APMs that employ trafficflow as input may not be adequate for estimating accidents 

on congested networks since traffic fiow is highly unstable near capacity conditions. For 

a given flow, two possible trafiic conditions can occur: high speed and low density or low 

speed and high density. Underfree-flow condition, the use of models that incorporate flow 

is adequate. It is when the flow reaches capacity that the use of these models becomes 

problematic. Thus, it may perhaps be better to utilize density as the independent variable 

rather than flow for this situation. Unfortunately, information on density is not easily 

obtainable since it is measured infrequently. With new ITS technologies, it may be 

possible to record information on density very easily and in a real-time manner. Therefore, 

further work on the use of density for safety applications shoutd be explored. Potential 

suggestions related to the microscopie evaluation of traffic safety for congested networks 

are proposed in the next chapter. 

Advanced Traveler Information Systems (ATIS) and related dynamic route guidance are 

core components of ITS. AT6 provide traffic management and control centers the ability 

to communicate with suitably equipped road users in real time, and supply them with route 

guidance instructions. The objective of communicating guidance and routing instructions 

is io reroute traffic around congested portions of the network, either to minimize user costs 

or optimize system performance. Guidance is usually formulated on the basis of travel time 

as the sole cost element, with little attention given to other costs such as environmental 

impact (pollution) or traffic safety on the selected routes. Safety considerations are 

particularly important bath for user-optimal and system-optirnal routing. For instance, a 

route guidance system should avoid sending traffic to less safe routes in order to Save 

time. The purpose of this section is, then, to investigate the integration of the models of 

Chapter Four with the DRG system. 

The sample network used for the case study was located in the same vicinity as the first 

sample network presented in Chapter Five (the sample network of Chapter Five is a subset 

of this network). It covered a larger area and wntains a total of 44 links and 18 nodes. Its 



boundaries were defined by Victoria Park Ave to the west, Kennedy Ave to the east, St. 

Clair Ave to the south, and Lawrence Ave to the north (Figure 6.6). In each direction, an 

additional link beyond the boundary node was included to simulate the trafficflow entering 

and exiting the study area by the various arterial roads. No cantroids were used inside this 

network. All of the links are either 4- or 6-lzne road sections, and all but one of the 

intersections were signalized. 

FIGURE 6.6 Sample network for the dynamic route 
guidance application 

The characteristics of the simulation are briefly explained below. The trafic flow on the 

network was simulated for the morning peak hour, initially without taking any safety factors 

into consideration. The Rows were expanded and adjusted with the factors described in 

Chapter Five. The simulation was performed five times and the average value was used 

to estimate the network safety and link costs (e-g., accident risk). In the first simulation 

sequence, it was specified that 50% of drivers would be infonned of updated link costs 

throughout the simulation. This condition represented regular cornmuters who know the 

morning traffic conditions very well. The simulation provided reasonable delay and queue 



iengths. ln the second set of simulations, 85% of drivers received these updates to study 

the network performance of improved DRG and increased market penetration. The 

difference in link flows between the first and second simulation nins is presented in Figure 

6.7. 

AADT (vehlday) 

FIGURE 6.7 Difference in link flows (AADT) between 
simulation runs 1 (50% familiarity) 

and 2 (85% familiarity) 

With the output of these first two simulation sequences, the expected number of accidents 

was estimated for the entire network with the models of Chapter Four. The difference in 

the expected number of accidents between first and second simulation runs is shown in 

Figure 6.8. The numerical difference at the nodes is not shown in this figure (nor in al1 

subsequent figures) to improve the clarity of the graphic. Instead, a shaded circle is used 

to show a decrease in the predicted number of accidents at nodes, while the unshaded 

circle is used to a show an increase. 



to show a decrease in the predicted number of accidents at nodes, while the unshaded 

circle is used to a show an increase. 

FIGURE 6.8 Difference in the expected number of 
accidents (acclyr) between simulation 

nrns 1 (50% farniliarity) and 2 (8S0h familiarity) 

The accident risk as defined in the previous section was estimated for the al1 the links and 

nodes with the output of second simulation (Figure 6.9). For the third simulation, the 

accident risk calculated from the second simulation set was applied as cost factors on the 

links and nodes in the networ~. This led to a shifting of traffic from links with a relatively 

hig h accident risk to links those having a lower risk. The difference in link flows between 

second and third simulation runs is illustrated in Figure 6.10. This figure shows that an 

important change in traffic flow can be seen on Pharmacy. 



FIGURE 6.9 Accident risk on links based 
on simulation fun 2 

FIGURE 6.10 Difference in link flows (AADT) 
between simulation mns 2 (without 

cost factors) and 3 (with cost factors) 



The difference in the predicted number of accidents on links between the second and third 

simulation runs is illustrated in Figure 6.1 1. It should be pointed out that the changes at 

nodes, both positive and negative, are usually below two accidents per year. Figure 6.1 1 

shows that the overall reduction in network accidents is concentrated along Phamacy. On 

the other hand, very slight increases or decreases can be seen in other parts of the 

network. 

ACCNEAR 
lncrease O 
Decrease 

FIGURE 6.1 1 Difference in the predicted accidents (acclyr) 
on links between simulation Nns 2 (without cost factors) 

and 3 (with cost factors) 

The summary results for all three simulation sequences are presented in Table 6.3. The 

table also presents the overall average trip time on the network. The number in 

parentheses shows the actual difference between the second and third simulation runs, 

for 85% farniliarity. 



TABLE 6.3 Results of the simulation with and without cost safety factors 

Simulation Characteristics Familiarity Average trip E{K) 
time (acc/y ear) 

1 No cost factor 50% 362.2 1556 
2 No cost factor 85% 350.5 1554 
3 Cost factor applied 85% '(+55.8) 406.3 7-37) 151 9 
* difference between the second and third simulation runs 

Table 6.3 reveals two interesting findings. First, the table shows that an increase in the 

percentage of drivers who are familiar with the network decreases the average trip time, 

as expected, yet has almost no effect on the expected number of accidents. This result is 

very similar to the conclusions of Chatterjee and McDonald (1998). Safety is inelastic 

relative to flow at high volumes, since the expected number of accidents increases at a 

decreasing rate. Therefore, a slight change in the flow on the various links will not 

substantially change the number of accidents, as is the case here. This result does not 

irnply that DRG systerns by thernselves cannot not irnprove traffic safety. As explained at 

the beginning of this section, the âpplication of ITS technology to networks may reduce the 

number of accidents by improving human factors conditions. 

Second, the table further illustrates that when the accident risk is used as a cost factor, the 

safety of the network as a whole improves by about 2.5%, and 37 accidents are prevented. 

Based on the unit accident cost in MicroBENCOST (TTI, 1993), this would lead to annuat 

savings of approximately US $260,000 (1990) for this small network. On the other hand, 

the average trip time for the network increases substantially. This result is expected as the 

flows are no longer optimized solely to reduce delay. As discussed by Maher et al. (1 993), 

the optimization of flows on networks based on accidents and delay always produces 

contradictory results. 

The results also demonstrate that the inclusion of the safety cost factors greatly influenced 

the route choice of drivers. The influence is more significant for drivers who have greater 



choice in the selection of routes, and they will more likely choose a safer route. The 

outcome of the analysis shows that some link flows increased or decreased by up to 60%. 

The biggest changes occuned on links with low flows. 

In conclusion, the results in this section demonstrated that wmmunicating information 

about the risk of collisions to drivers could improve, in principle, the overall safety of a 

network. However, a substantial increase in the average trip time ocairred. since the 

network no longer was solely optimized for delay. It was worth noting that the safety gains 

may not always compensate for other systern costs such as increased delay and air 

pollution. Furthermore, it was unrealistic to assume that everyone in the system will be 

influenced by accident risk in the same manner. In fad, some driven may not even 

consider safety at al1 in their route choice. To attain the sarne safety benefits, it would be 

possible to transform the system cost factors in monetary value (road pricing) which would 

have a more direct impact on the route choice of drivers. Different values for the cost 

factors could also be applied to obtain greater safety gains. In the end. the ultimate goal 

for future ITS applications would be to find an appropriate balance between safety costs 

and other system costs, and to incorporate the varying perceptions of risk among road 

users within the applications. 

6.4 SUMMARY 

This chapter contained a demonstration of two applications of APMs on digital networks. 

The first application consisted of using the APMs to find the safest routes on a 

transportation network. A five-step procedure was proposed, namely to apply the Dantzig 

algorithm on a sample network to find the safest paths in the network. The procedure 

should be used only if extemal cost factors cannot be used within a commercially available 

transportation software program. In fact, very few cornputer programs allow the complete 

use of external cost factors. The accident risk was computed for every link and node in the 

network by dividing the predicted nurnber of accidents with the link and node flows. Since 



the coefficient p is below unity for most APMs, the individual risk of being involved in an 

accident was shown to be decreasing as the number of vehicles increases on links and 

nodes. It has been hypothesized that speed and changes in driver behaviour may explain 

the diminishing risk. The results showed that the algorithm works very well. However, the 

algorithm may be difficult to implement on a very large network, particularly in the event 

that transportation planning software programs do not have turning flows at nodes. It was 

suggested that such flows should be no less than the minimum flow in the original sample 

of site producing the APMs. 

The second application consisted of examining the safety of transportation networks by 

communicating accident risk information to road users through the use of DRG systems. 

The aim of this application was to assess the (theoretical) route choice of drivers who are 

provided with accident risk information and the impact of this route choice on the number 

of accidents on links and nodes. The simulation was performed with Paramics, an ITS 

oriented simulation software. The results showed that, by communicating to driven the risk 

of being involved in a collision, the overall safety of a network could be improved, albeit 

with a significant loss in the optimization of delays. It was believed that drivers, in real 

traffic conditions, rnay not optimize their choices based on this information. Other system 

costs (road pricing) that simulate the same effect on the route choice of road users could 

be used. A sumrnary of this research and a discussion on network safety issues are 

presented in the next chapter. 



CHAPTER 7 

SUMMARY AND CONCLUSIONS 

The objectives of this thesis were to develop a series of accident predidion models (APMs) 

with trend to estimate the number of accidents on digital networks and describe al1 the 

issues related to their application on the networks. The summary of the work performed 

in this thesis is described in section 7.1. The results and issues related to the application 

of the APMs on digital networks are discussed in section 7.2. Recommendations for further 

research are explained in section 7.3. 

7.1 SUMMARY OF WORK 

Several subject areas related both to traffic safety and digital networks-the graphical 

representation of physical networks-were extensively reviewed for this research project. 

This review showed that digital networks, as used by commercially available transportation 

planning software programs, are very important to transportation analysts in that they can 

be used to predict future traffic patterns, peak periods, travel time, and various 

environmental or other flow by-products. Unfortunately, the programs seldorn if ever are 

used to predict the number of accidents, despite the fact that traffic accidents cause 

trernendous financial, social, and emotional losses. The non-application of safety was 

attributed to three reasons: 1 ) the fad  that traffic safety is not explicitly defined within the 

urban planning process; 2) the belief that following established guidelines will 

automatically render a design as safe; and, 3) the lack of available tools to predict the 

number of accidents on digital networks. The reviewed documents also showed that the 

digital representation of physical networks can be performed in many different ways. For 

instance, a network could be created in a very detailed manner, such that each street and 

intersection is coded on the network. More often than not, digital networks only 



represented important arterial roads and intersections. Minor roads and intersections were 

therefore not shown on the digital network. 

The literature review showed that APMs are used to estimate the number of accidents at 

intersections, on arterial road sections, or on any other transportation facility. The models 

were built by drawing inferences between trafic accidents and a series of covariates (e.g. 

traffic flow, traffic control, road geometry, etc.). Furthemore, the relationship between 

accidents and the covariates could have many various forrns. The emphasis of the review 

was placed on models used to predict the number of accidents at intersections and on 

arteriai road sections. It was proposed in the literature to use a large number of simple 

models rather than to use a few modets with many categorical variables to describe the 

relat ionship between the accidents and the covariates. Thus, the data should be separated 

into a series of cells and a different model created for each cell, given that enough data 

points exist in each cell. 

The application of APMs on digital networks has been researched only infrequently. In 

fact, a total of six documents were reviewed and briefly criticized. The identified documents 

showed that researchers frequently used APMs that were published elsewhere. Thus, the 

information related to their use was often inadequate or inwmplete. It was found that the 

application of models on digital networks varied from one study to the next. In one study, 

for example, the number of accidents was predicted only for intersections and not for mid- 

block sections. ln other studies, accidents were estimated for the entire network, including 

non-intersection sections. A cornparison between the predicted and observed number of 

accidents was found in only two documents. Finally, in many of the reviewed documents, 

it was unclear whether the digital network represented actual major roads and 

intersections, or whether it was simply a more detailed description of the physical network. 

The characteristics of the data were explained in Chapter Three. Electronic databases for 

traffic accidents, traffic counts, and the physical characteristics of signalized and 



unsignalized intersections were provided by the Data Traffic Centre of Metro 

Transportation, which is the transportation agency of the City of Toronto. Data not 

available electronicaily were gathered from on-site visits or other sources. The data 

reduction process consisted of three steps: the expansion of 8-hour counts to average 

annual daily traffic (AADT); the estimation of missing traffic counts (in AADT); and, the 

selection of the reference population for nodes and links used in the creation of the APMs. 

The reference population wnsisted of 1,354 intersections and 284 road sections 

respectively. The data on traffic counts and traffic accidents were available between 1990 

and 1995 inclusively. The final database consisted of three different cornputer files (traffic 

flow, accidents, physical characteristics), Iinked together by the street name and year. 

The characteristics of APMs were presented in Chapter Four. Three different types of 

model were created in this research. The first type was used to predict the number of 

collisions at nodes. The second and third types were used to predict the number of 

accidents on links: one for the mid-block component and one for the intersection 

component. The models for the mid-block component were used to predict accidents 

between minor intersections; these intersections were located on the physical network but 

were not coded as nodes on the digital network. The models for the intersection 

component were used to predict accidents at these minor intersections. This type of model 

only used the link flow as input. Models were estimated for injury, PDO, and injury + POO 

for each type of model. The coefficients of the models were estirnated with the generalized 

estimating equations (GEE) procedure, since each model included time trend. Genstat 

(Payne et al., 1993) was used for this purpose. 

The application of the APMs on digital networks was described in Chapter Five. The 

mechanics of how the models are applied on a digital network and how the models can be 

used within the urban transportation planning process were explained in this chapter. The 

models were applied on two sample networks. The first sample network represented a 

street system located in Toronto. The second sample network did not represent any actual 



physical network. The simulation of traffic for the moming peak hour was peffomed with 

EMMU2 (INRO, 1996) for both networks. Two scenarios were evaluated for second 

sample network. The first scenario consisted of analyzing changes in the predicted number 

of accidents on the network, when one of the 2-lane roads was expanded to a 4-lane road. 

The second scenario assessed the overall safety impacts when an important traffic 

generator, such as a casino or major grocery store, was added to the network. The output 

of the two scenarios was compared with the results of the unmodified sample network. 

Two other useful applications of APMs on digital networks were presented in Chapter Six. 

The first application was related to the implementation of the Dantzig algorithm to find the 

safest routes on one of the sample networks of Chapter Five. A five-step procedure was 

proposed to apply the algorithm properly since most commercial!y available transportation 

planning software programs cannot handle external wst factors. The process included a 

modification of the digital network, The safest paths were found by computing the 

individual risk of collision on every link and node. The accident risk was computed by 

dividing the number of accidents by the trafic flow (E{~) / ( f lowx365)) .  The computation 

of risk showed an unusual characteristic for P < 1 (the coefficient of the parameter F in 

APMs). When the coefficient Q is below unity, the risk of collision was shown to be 

decreasing as trafic flow increases. It has been hypothesized that speed and changes in 

driver behaviour may explain the diminishing risk. 

In the second application, the models were used to examine the safety of transportation 

networks by providing accident risk information to road users through the use of dynamic 

route guidance (DRG) systems. This analysis was a theoretical exercise, since it was 

assumed that every driver optimizes his or her road choice based on the risk of a collision. 

The accident risk for this application was computed the same way as in the first 

application. The analysis was perfomed on a sample network representing a 

neighbourhood in located in eastern Toronto. The trafficflow was simulated with Paramics 

(Quadstone, 1998). The next section presents the results of this research. 



7.2 DISCUSSION 

The results and issues related to the data collection process, the estimation of APMs, and 

the application of the models on digital networks are presented in this section. 

7.2.1 DATA COLLECTION AND REDUCTION PROCESSES 

The models created in this thesis required an extensive amount of information. Thus, 

several problems were encountered during the data collection process. For instance, the 

information needed to build the reference population had to be gathered from many 

different sources. Since these sources were very different from one another (e-g, electronic 

database, hard copy, etc..), it was quite difficult to combine each source into a common 

database. Sorne of the difficulties encountered included street names at intersections that 

varied from one database to the next or unusual traffic counts recorded for special studies. 

During the data collection process, it was also found that some of the information was 

either incomplete or inaccurate, which added to the dificulty of creating one common 

database. Consequently, an important amount of time had to be perforrned to validate and 

reformat each source of data into a common configuration. 

More problems were also encountered during the data reduction process. Since the 

reference population for the nodes and links consisted of 1,354 intersections and 284 road 

sections respectively, the resulting database was too unwieldy to be handled by one 

person. In particular, almost al1 the steps required for the data reduction process had to 

be done manually. As a result, the original scope of the research had to be reduced to 

complete the project within a reasonable amount of time. 

Based on the issues mentioned above, it is suggested that transportation agencies 

maintain a highly detailed and up-to-date electronic database on traffic counts, trafic 

accidents, and physical characteristics. The databases should include information on 



important ph ysical changes or improvements of the transportation facilities. Special 

attention should be given to the wmmon identifier at intersections (such as street names) 

to facilitate the connection between databases. In fact, a specific number should be 

assigned for each intersection and road section to help the location of accidents and trafic 

counts during the data reduction process. The best approach would be to code 

intersections, road sections, and accidents in a geographical information system (GIS) 

format, an upcoming and promising new technology. It would also be very useful to 

automate the steps that were perfarrned for the reduction process. 

7.2.2 ESTIMATION OF ACCIDENT PREDlCTlON MODELS 

The models of Chapter Four revealed interesting results. First, the models that estimate 

accidents for nodes provided, with a few exceptions, a good statistical fit. Second, most 

models that predict accidents on mid-block sections also provided a relatively good 

statist ical fit and showed that a non-linear relationship exists between accidents and 

length. Third, the models for the intersection cornponent of Iinks al1 provided a good 

statistical fit, despite the use of one input flow. Overall, the APMs reflected the actual 

relationship between accidents and the covariates, and were deemed accurate to predict 

the number of accidents on Iinks and at nodes. 

The models used to predict accidents on mid-block sections provided a relatively good 

statistical fit, except for one model (Le., 2-lane road sections). The results also revealed 

that a non-linear relationship exists between the length of a section and the number of 

accidents. This kind of reiationship was also found by other researchers (Mountain et al., 

1996). Since very little research has been perfomed on the development of APMs for 

urban corridors (particularly for mid-block sections), it was difficult to pin point the reasons 

for such a relationship. Obviously, this relationship implied that some factors are not 

homogenous for the entire length of the section. It was discussed in Chapter Four that the 

influence of end points on links, i.e. the intersection of two major arterial roads, could 



greatly influence the occurrence of accidents on a given link. However, the relationship 

could be also explained by other contributing factors. For example, the density of 

driveways and minor intersections, or the number of street parking manoeuvres, may 

further contribute to this relationship. As a result, additional research is required on this 

topic. 

Another relevant issue that relates to the models developed in this research is the 

transferability of rnodels. Transferability implies that the APMs should be able to predict 

accidents within a reasonable level of accuracy (Le., re-catibration may be necessary) on 

networks other than that upon which the models were built. However, the models proposed 

in this research project were not tested on other networks because the limited resources 

available such an activity. Moreover, to apply the models appropriately, an extensive 

amount of information on traffic counts, the number of collisions, and the physical 

characteristics of networks would be required. As discussed in the previous section, the 

information requested for this research proved to be very diffïcult to obtain and one would 

expect the same level of difficulty with a data set provided from another jurisdiction. Finally, 

digital networks rnay not always be readily available. 

7.2.3 APPLICATION OF MODELS ON DIGITAL NETVVORKS 

The application results of the models on digital networks, illustrated in Chapter Five, 

showed that the accuracy of the prediction of accidents is directly linked to the output flows 

of transportation planning software programs. In fact, bad flow estimates lead to an 

inaccurate appraisal of network safety. The simulation results demonstrated that EMME/2 

greatly under-predicts link flows. Hence, the models could not be used as input into the 

three types of model. Nonetheless, the recorded morning counts were substituted for the 

EMME12 output flows and used as input into the rnodels. The results showed that the 

models can be used to predict the number of accidents on links and nodes, as long as the 

flow predicted by the software is adequate. 



The estimated flows of transportation programs must be validated whenever the APMs are 

applied on transportation networks. If not, the analyst may select the wrong scenario. For 

instance, if several alternative scenarios are being evaluated, based on the number of 

predicted collisions, it would be possible to select the alternative with the least number of 

predicted accidents. In this hypothetical situation, the safest alternative would be deemed 

safer than al1 other alternatives because of the poorly predicted flows. Thus, once the 

alternative is implemented, the physical network may be plagued by a higher number of 

collisions than that which initially was estirnated. As a result, it is suggested that sensitivity 

analyses be conducted with different values of predicted flows. Obviously, it would be 

necessary to re-evaluate the prediction of accidents for each alternative accordingly. 

The best way to improve the prediction of accidents is to ameliorate the estimation of flows 

within the simulation process. These improvements may include upgrading the 

characteristics of the O-D matrix, the delay-volume function of links or the parameters of 

the microsimulation. More often than not, however, it is not possible to improve or change 

the flow output of transportation programs. In such a case, it is proposed that one 

incorporate the actual traffic conditions taken from the physical networks to create 

adjustment factors in order to improve trafficflow estimates. This, however, is left for others 

to attempt. 

The models developed for this research were not used directly within the transportation 

software programs. Instead, the traffic flow output of these programs were used in another 

computer program (e-g., spreadsheet) to calculate the predicted accidents on the digital 

network. Unfortunately, this computation process turned out to be very long and 

cumbersorne to perform, thereby, making the process very inefficient. It would be possible, 

however, to include the models directly inside the software, as performed in 

MicroBENCOST (TTI, 1993). An additional module could be added to transportation 

planning computer programs that would use the output flows directly without any further 



manipulations from the analyst (that is, if the predicted flows are adequate). This topic is 

currently being investigated at the University of Toronto. 

One critical aspect of the models developed in this thesis is related to the amount of 

information required to perfom the analysis. For instance, the location and the 

characteristics of each minor intersection on links must be known before the link models 

for mid-block component can be applied on digital networks. Obviously, it may not be 

always possible to know the exact location of these minor intersections on networks that 

are yet to be built. Thus, additional models requiring less information should be created 

and evaluated. This topic is addressed in the next section. 

Another topic relevant to traffic impact studies is the ws t  associated with accidents. The 

decision to upgrade or improve a transportation facility is often based on wst-benefit 

analyses (or other kind of measurements) that include various cost factors. Thus, for 

analyses that include the prediction of accidents, the direct and indirect societal cost of 

collisions probably should be evaluated. Since the purpose of this work was related to the 

actual prediction of accidents on urban networks, it was decided that issues related to 

accident costs would not be explored in great depth (they were briefly touched upon in 

Chapter Six). These issues are left to the analyst who will apply the models developed in 

this work. The main reason for not exploring this topic at this time has to do with the 

problems associated with the proper estimation of accident wsts. Indeed, many methods 

for estimating accident costs currently exist. However, none has proved itself to be 

superior to the others. In fact, al1 have important drawbacks. Therefore, it would be easy 

to dispute why a particular cost was selected for analysis over another. The reader is 

referred to Lawson (1 989), Miller et al. (1 991 ), and Hauer (1 994) for additional information 

regarding the estimation of accident costs. 

The initial aim of the two applications illustrated in Chapter Six was to investigate areas 

of research that could be of interest to transportation agencies, private companies and 



specific road users (e.g., truckers, regular commuters). This research has also included 

a prelirninary demonstration of the assessment of the safes? routes and safety issues 

related to DRG systems. Accordingly, the applications were relatively simple and more 

sophisticated analyses most certainly could be performed. Other areas of research 

regarding these two applications are presented in the next section. 

The application results for the least risk paths algorithm showed that the algorithm can be 

used effectively on digital networks. However, unusual routes were established when 

specific turning manoeuvres had a high risk of collision. Thus, APMs used to predid 

accidents for these manoeuvres should be utilized whenever possible (instead of 

estimating the type of accidents from the sample population average). The proposed five- 

step coding process for networks was found to be problematic for substantially large 

networks. For instance, eight additional nodes were needed for each original node. 

Therefore, for a 20,000-node network, over 80,000 new nodes may be required. 

The application results of accident risk to DRG networks showed that, by communicating 

to drivers the risk of being involved in a collision, the overall safety of a network could be 

improved. The assumption was that every driver optimizes his or her route based on 

safety. Drivers, in real traffic conditions, however, rnay not always consider safety in their 

route choices. Thus, road pricing strategies could be used to attain the same safety 

benefits. The results also demonstrated that important increases in delay occurred, since 

traffic flows no longer were optimized solely for delay. Furthermore, the safety gains were 

not very substantial. It is possible that they may not even compensate for increases in 

other system costs. Thus, a thorough cost-benefit analysis that would include safety and 

other variables should be performed before implementing a DRG system on a network. 

The APMs used in this research were developed with the number of vehicles per day (in 

AADT) as input. For more accurate results regarding the evaluation of different scenarios 

and the application of accident risk, it is suggested either to use or create models 



developed for specific time periods; also, to use the number of vehicles per hour as input. 

In addition, it would be preferable to use models disaggregated by collision type at 

intersections. With these models, small area-wide traffic impact studies (e-g., no left-tum 

signs, trafic calming, etc.) could be performed adequately and could be useful to many 

govemmental agencies and private engineering fimis. Similarly, the risk should reflect the 

actual time at wtiich the vehicle travels on the network. Models that use the nurnber of 

vehicles per hour as input would be more appropriate for this application. 

The objectives of this research were related to the prediction of accidents at intersections 

and arterial road sections. In short, the models were not created (or used) forfreeways and 

freeway interchanges (which are also wmponents of urban networks). It would be possible 

to estimate the number of collisions on these two transportation facilities on the basis of 

rnodels avai lable in the literature. The research on the prediction of accidents for freeways 

is well developed and many models are readily available (Persaud and Dzbik, 1993; 

Persaud et al., 1996). Unfortunately, there exist few models to predict accidents at 

interchanges. Moreover, the available models are often inadequate for predicting the 

number of accidents. Accident prediction models for interchanges can be especially 

difficult to create because many variables (e-g., type of interchange, number of ramps, 

curvature, elevation, etc..) can influence the occurrence of collisions. Additional research 

is needed in this area. Nonetheless, the reader is referred to Harwood et al. (1994), 

Janusz and Hauer (1 995), and Bauer and Harwood (1 998) for additional information on 

models for ramps or interchanges. 

In summary, this thesis has demonstrated that: 

1. Important issues related to netwark safety, such as the application of APMs on 

digital networks have seldorn been researched and investigated. Although, few 

documents, articles or papers are available in the Iiterature on this topic, an 



accrued interest in the analysis of network safety has been noticed, nonetheiess, 

within the past few years. 

2. APMs cen be used efficiently to predict the number of accidents on digital networks. 

However, not al1 models available in the literature are adequate for predicting 

accidents on networks. In addition, no models exist that are able to predict the 

number of collisions for particular components of networks. Thus, new models were 

developed to predict the number of accidents on urban roads. The proposed 

models also included trend which improves the accuracy of the prediction. 

3. A non-linear relationship exists between mid-block accidents and the length of links. 

This relationship can possibly be explained by a variety of factors, including the 

density of intersections on road sections and the influence of major intersections 

located at both ends of the road section on mid-block accidents. 

4. The prediction of accidents is directly linked to the traffic flow output of 

transportation planning programs. Thus, grossly incorrect predicted flows lead to 

inaccurate predictions of accidents. It is therefore imperative that the traffic flow 

estimate be as accurate as possible. The application of models is also dependent 

on how the network is coded and the predicted number of accidents should be 

adjusted accordingly. 

5. The safest paths on urban networks can be found efficiently with the algorithrn 

proposed in this thesis. However, it is necessary to substantially modify the network 

to properly apply the algorithm, which may not always be easy to undertake 

especially in the case of a very large network. Furthermore, several issues must be 

examined and evaluated when APMs are used to cornpute accident risk and applied 

on digital networks. 



6. Communicating the risk of collisions to motorists who are equipped with ATlS can 

improve, in principle, the overall safety of digital networks. The safety benefits may 

not always be substantial however. In fact, the safety benefits may not even 

compensate for inaeases in other system costs. Thus, the ultimate goal for future 

ITS applications would be to find an appropriate balance between safety and other 

system costs. 

7. Whenever possible, the predidion of accidents should be estimated by APMs 

developed specifically for the time period for which the trafic flow is simulated. 

Similarly, models that predict the number of collisions by accident type at nodes 

are preferable to models that use approach flow as input. 

The next section presents recommendations for further research. 

7.3 RECOMMENDATIONS FOR FURTHER RESEARCH 

The scope of this research was limited to a few topics on network safety, and there are 

many other areas of research that could be fruitfully explored. These areas include the 

development of APMs, their application on urban networks, the creation of more 

sophisticated algorithms that would incorporate simultaneously the costs of other variables 

(such as delay, pollution, etc.), and the incorporation of APMs with the ITS technology. 

In the future, it may be worthwhile to investigate the non-linear relationship between mid- 

block accidents and street length. In fact, such variables as the density of minor 

intersections, the presence of private and commercial driveways, and the number of on- 

street parking manoeuvres should be examined more closely and included in the modelling 

process. 



Additional models for nodes should be developed. The models should be separated by 

accident type. Moreover, models should also be built for different time periods (e-g., peak 

periods. nighttime, etc.). With better models, the assignment of risk to links or nodes would 

reflect more accurately the true risk for specific manoeuvres at intersections and different 

time periods. The new models could alto be used to evaluate traffic calming measures 

such as prohibiting left-tums at key intersections on small scaled networks. 

In this research. the models used to predict accidents on links were separated into two 

components. To simplify wmputation of accidents, APMs that combine both components 

should be investigated. As it stands now, the analyst has to use three series of models 

which may be curnbersome to handle if the analysis is conducted manually (Le., when the 

models are used outside the computer program). The output of the suggested models 

(both components together) should be compared with the output of models proposed in 

this research to evaluate how the models fare with the ones proposed in this research. 

Simpler models that require less input information (e-g., non-coded minor intersections) 

should be evaluated. 

The APMs should be directly incorporated as a separate module inside transportation 

planning software programs. By including the modets in the program, it would be easier 

to assess visually the predicted accidents on the network with the graphical tool of the 

software. In additional, the extra module would greatly simplify the work of the analyst. 

However, care should be taken regarding the accuracy of the estimated flows, if they are 

used without being validated and adjusted accordingly, as discussed above. 

Additional work is needed regarding the estimation of traffic flows by transportation 

planning software programs. Despite the fact that this issue is outside the scope of this 

work, it is important to argue for improvements in the prediction of flows. Fortunately, 

research is still ongoing with respect to this issue, but there is still a long path that must 

be pursued before we are able to obtain better traffic flow estiniates. 



The next area of research is related to the estimation of safety for other components of 

digital networks. For instance, it would be of great benefit to predict the number of 

accidents at centroids. They usually represent subdivisions bounded by major highways 

or roads. Thus, the goal would be to predict the number of accidents on the streets located 

inside this subdivision. This area of research has been seldom investigated, but may have 

great potential in an attempt to reduce the number of collisions (Henning-Hager, 1986). 

However, it is anticipated that the prediction of accidents at centroids may be dificult to 

model since many factors (e.g., the design of streets, nurnber of intersections, parking 

density, or characteristics of the population) can influence the number of accidents in a 

subdivision. Furthermore, the large amount of information required to perfarrn such a task 

may be difficult to gather. 

With the advent of ITS technology, it would be possible to implement useful safety 

applications on urban networks. In that respect, more detailed algorithrns that optimize for 

safety and vehicle delay should be devetoped, similar to that proposed by Maher et al. 

(1 993). Factors that influence risk should also be examined such as the speed of vehicles 

on links (Davis, 1998). In addition, different road pricing strategies should be evaluated 

to improve vehicle delay and minimize the number of accidents. In the near future, specific 

models should be developed that would predict accidents both for AITS-equipped and non- 

equipped vehicles. This would allow their benefits and drawbacks to be evaluated 

properl y. 

It would also be important to investigate models that predict the number of accidents (or 

the risk of a collision) in real-time settings and for wngested networks. Since the DRG 

technology is a time-dependent system, there is a need to develop tools that would 

evaluate safety in a time-dependent manner. Similarly, further research should be 

performed for predicting accidents for unstable traffic conditions. Preliminary work on this 

subject has already been performed by Hughes and Council(1999). Although the work of 

Hughes and Council is not related to DRG systems, they examine the relationship between 



safety and "trafic fiow changesn during peak periods. One may also want to look at 

exploring the use of density as an input variable for the prediction of accidents. Other 

measures of safety could also be assessed, as proposed by Minderhoud and Bovy (2000), 

who use an extended time-to-collision method to evaluate the safety of Autonomous 

Intelligent Cruise Control systems (an ITS application). This area of research promises to 

become increasingly important in the coming years. 

In conclusion. this thesis has show that it is very important to estimate the safety of 

transportation facilities at the planning stage, insofar as specific designs or alternatives 

may turn out to be more hazardous than others, would not be noticed until the facility is 

built or upgraded, and would be only identified after accidents had occurred and people 

got injured, al1 of which increase the cost to society. The tools developed in this research 

would allow analysts to add a very useful criterion to the evaluation of different alternatives 

and to identify future potential unsafe locations before drivers use the facility. Moreover, 

given the increased liability of transportation agencies regarding traffic safety issues, it is 

important that they take action at the planning stage, which will allow them to show that 

proper steps were taken to reduce the number and severity of accidents. As stated by a 

speaker at a recent seminar on road safety audits: "...an organization that audits, that 

recognizes that audits are a process intendeâ to help road safety, that gels an audit done 

and then follows through and reports and documents what it will and will not do with 

respect to the audit report, suffers a better chance in a court of Iaw than an organization 

that buries if's head in the sand and says, 'We don7 want to find out about these things, 

we Ire better off to be blind to themm (MTO, 1 998, pg. 40). Although additional work needs 

to be done regarding the integration of traffic safety models into the urban transportation 

planning process, the product of this thesis should help other researchers pursue 

~nteresting and useful areas of research that would help reduce the number and the 

severity of collisions on urban roads. 
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BATHURST BUEEN 

1 
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BAY IST  HARLES JST I 
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BAY PT ~ A R B O U R  P T  
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BAY PT ~ELLESLEY IST 
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# 

, 
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BAWIEW k V  ~AWSVILLE k V  

BAY MlLLS B V  BIRCHMOUNT ROAD BONIS 
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J 

7 
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AV 
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1 1 
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BAWIEW P V  ) . ~ E S B I ~  PR 
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pv ~EGLINTON pv 
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BAWIEW pv IFLEMING PR 
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BAWIEW pv ~WRENCE 
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AV 
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1 
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I 

BAWIEW b V  ~HEPPARD 

SOUDAN )9v 
1 

1 I 
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1 
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1 
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IBEECROFT I I 
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I 
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BENTWORTH h V  ~UFFERIN IRANEE 
~BERGAMOT 

1 

k v  LSLINGTON Lnv I 1 

DR 

ST 
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I 
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ST 
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BIRCH FV PONGE PT 
BIRCHCLIFF k v  IKINGSTON ROAD 
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BIRCHMOUNT BOAD FUNDY BAY BV LW BUSH AV 
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~ O A D  bAURA SECORD WALK 1 I 
1 1 1 1 1 
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I 
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BLOOR PT ~ N S D O W N E  
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ST 
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BROADVlEW )9v PUNOAS P T  
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IAV ~ENNEDY ROAD I 1 - - .  
I 1 

COSBURN AV ~OXWELL ~v I 1 
COSBURN A V   ONL LANDS k V  

I 1 1 I I J 

COUGAR P T  FUELLA P T  ~ R K H A M  POAD 
COURAGE kv  DANE IÇT I 1 

1 1 1 

COSBURN pv PREENWOOD ~nv 
COSBURN kv  WOODB~NE IAV 

ICOURCELE~E 
L 1 

ROAD MNGSTON ROAD 1 1 1 

1 

I 1 1 1 L 

COXWELL pv ~OXWELL pv ~ C O N N O R  PR 
COXWELL kv  BANFORT H kv 1 1 

1 1 1 

OXWELL pv PUNDAS PT I 
OXWELL kv EASTERN kv 

1 1 1- 1 I 
- 

COXWELL )9v PANSON PT 1 1 
COXWELL k v  LICESHORE B V  

1 1 I - 1 1 

oxwELL L ~ V  BAMMON kv  I I 1 

1 1 1 

COXWELL FV ~ORTIMER p v  
COXWELL kv  PLAINS ROAD 

ICRAIGTON I x 1 
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I ~ T  ROGERS ROAD I I 1 
'DUFFERIN 

I 1 I 

PT POWAN pv 
DUFFERIN )ST  AMO OR POAD 
DUFFERIN P T  ~HANLY P T  
DUF FERlN IST BT. CLAIR &V 

1 1 1 1 1 
- 

DUFFERIN BT BTEELES 1 1 1 
IDUFFERIN I 

LST ISUPERTEST ROAD I I î 

l 1 1 l 1 
- - 

DUNCAN /sT MCCAUL $T DUEEN BT I 
L I 

DUNCANWOODS P R  ~ I N G T O N  PV POWNTREE MILL POAD 
DUNDALK ELLESMERE WE VALLN 

1 J I 1 1 
- - 

DUFFERIN IST PYLVAN )9v 

IDUNDAS L ~ T   EAST MALL I I 1 

DUFFERIN 
DUFFERIN 

ST 
ST 

OUFFERIN S T   ILS SON 

1  I 1 1 
- - 

DUNDAS P T  PILMOUR 

DUNDAS IST ~REENWOOD )4V 

1 1 -  1 1 

DUNDAS IST DARVIS BT 1 1 1 

AV 

 COS b R  

DUNDAS fST 
DUNDAS B T  

DUNDAS 
DUNDAS 
EUNDAS 

1 

1 1 A 1 1 

DUNDAS $T KEELE 1 1 1 

WALLACE 

GLENLAKE P V  
GRACE BT 

DUNDAS 
DUNDAS 

IDUNDAS L 

IST LANSDOWNE kv  I I 1 

AV 

ST ~ G H  PARK )4v 
ST FIGHFIELD kOAD 

S f  INDIAN RD PR 
S T  LSLINGTON kv  

ST ~OWLAND 
DUNDAS ST ~UMBERSIDE 

AV 
AV 



DUNDAS PT FSLIE PT 
DUNDAS IST LOGAN h V  

L I J 

DUNDAS p T  PNNING )9v 
I 

DUNDAS fST WEDLAND 

I I I I 

DUNDAS PT PACIFIC FV 
DUNDAS BT PALMERSTON 

- - -  
I ~ I I I I 

DUNDAS p T  PEILSON PR P E S T  MALL p~ 

1- I I 1 I 

DuNDAs BT PARLIAMENT BT I I 1 
I 1 I I 1 

DUNDAS PT POPLAR pv  PUBWAY pu 
DUNDAS b T  PRINCE EDWARD b R  I i 

ROAD DUNDAS p T  ~ L D  OAK PR 
DUNDAS PT ~NTARIO PT 
DUNDAS  ST bSSlNGTON kv  

WIMBLETON 

~ U N D A S  
I 

IST RUNNYMEDE ROAD I I 1 

1 I , I 

DUNDAS PT  FIVER p T  
DUNDAS BT ROYALAVON JCR 

I I I 1 1 

DUNDAS p~  CARL LET^ POAD I I 
DUNDAS k T  ~ H A V E R  h V  BHORNCLIFFE ROAD 

I 

IDUNDAS I I 

IST ISHAW LST I I 1 
I- I 1 -  I I 

DUNDAS BHERBOURNE 1 I I 
I I I I 

DUNDAS pT ~PADINA FV 
DUNDAS IST BT. CURENS ~Iv 
IDUNDAS I 1 I I 1 

IST ISTERLING ROAD I I 1 
1- I I I 

DUNDAS ]ST ~ U M A C H  PT 1 
DUNDAS IST ht NlMRSl lY k v  

I - I I 1 1 

DuNDAs IST WINDERMERE ptv I I I 
1 -  I I 

DUNDAS PQ ~ O N G E  PT 
DUNN k V  BUNG IST 

1 I . 
DUNN FV PUEEN JST 
DUNVEGAN ROAD $T. CUlR k V  

IDUPONT I 1 

IST BHAW IST I I 1 

1 I 1 I I 

I L I I 

EARLSCOURT PV PT. CLAlR P V  
EAST IDR &JANE IST OUTLOOK 

AV DUPLEX )9v  EDB BURGH POAD LAWRENCE 

I I I I I 

EASTERN k v  LESLIE $T I 1 1 

DUPONT P T  ~ U R O N  

1 I I I 

DUPONT P T  PPADINA POAD 

ST 

DUPONT P T  PT. GEORGE 
DUPONT ]ST ~YMINGTON - 

1 DUPONT )ST p4NSOOWNE 

ST 
AV 

AV 

DUVAL b R  LAWRENCE kv  

DUPONT Isr IOSSINGTON Isv 



EASTERN ~v  PAPE bv I I 

EASTPARK Bv MRKHAM ROAD BTEVENWOOO POAD 
L I 1 I 

EDDYSTONE FV PANE PT 1 1 
EDEN VALLEY bR EGUNTON kv  RUSSELL ROAD 

L I 

EDITHVALE )DR ~ N C H  PV 

I 1 I 3 

EGLINTON pv  EXPLORER PR I 1 
EGLINTON IAV FALMOUTH k V  ~GILDER DR 

EDWARD 
EGLINTON 

I 1 m 

EGLINTON PV FMMETT PV 
EGLINTON IAv ENNERDALE ROAD 

ST PONGE PT 
P V  EGLINTON BQ 

I 

1 

1 I m I 1 4 

EGLINTON p V  PLEN CEDAR POAD pLD PARK POAD 
EGLINTON ~AV ~GLENARDEN ROAO ~WESTOVER HILL POAD 

1 I 1 

EGLINTON )9V )FIANDERS POAD 
EGLINTON k V  IFORMAN kv  

L . I J 

EGLINTON kv ~LENHOUIIE ~v 1 
EGLINTON kv  IAv RONALO 

1 

1 1 -  I 1 I 

EGL~NTON ~RETHEWM I 

EGLINTON 
EGLINTON 
EGLINTON 

1 1 - 1 1 1 

EGLlNToN IAV ~ P L I N G  I I I 
1 I 1 

EGLINTON pv CASCELLES pv 
EGLINTON PV LESLIE P T  
EGLINTON WRKHAM POAD 

EGLINTON k V  LIANE 6T 

EGLINTON AV P R T l N  GROVE POAD 
EGLINTON AV  SON ROAD 

1 1 I 

AV )IOLLY PT 
AV )ONVIEW ROAD 

I I I 

EGLINTON KV PTHESON PV 
EGLINTON k v  ~ACCOWAN ROAD 

AV   LING TON 

1 I - 1 L 1 

EGLINTON MOUNT PLEASANT ROAD 1 1 

AV 

1 1 1 1 I 

EGL~NTON DCONNOR MCTORIA PARK lprv I 
IEGLINTON 1 t 1 1 1 

k V  ~ L D  FOREST HILL POAD 1 1 
~EGLINTON 

1 1 1 I 

BV PARK HILL POAD WINNETT BV 1 
i 

SPECTRUM WAY 

, 
a 

O 

EGLINTON ~v PHARMACY 
EGLINTON )9v ~ K E L Y  

AV 
CT 

EGLINTON FV PEDPATH PV 
EGLINTON )9v PENFORTH PR 
EGLINTON FV ~ X A R D S O N  P V  
EGLINTON 

EGLINTON 

AV POSEMOUNT PR 
AV POYAL YORK POAD 



'EGLINTON 
< 

JAV ~ C A R L ~  POAD 
EGLINTON pv (SINNOTT POAD 
EGLINTON PV  PAD DI NA POAD 
EGLINTON ~UTHERLAND 
~GLINTON kv  HE EAST WLL I I 1 

1 1 1 1 I 

L ~ v   THERMOS ROAD 1 1 1 
I 

- 
1- 

EGLINTON p V  f/lCTORIA PARK P V  
EGLINTON P V  WARDEN FV 
EGLINTON kv  PESTON POAD 
EGLINTON AV PINONA P R  

AV PONGE PT 
AV ~CARLETT POAD 

PR FINCH pv YORK GATE BV 
ELEVENTH CINE PTEELES P V  
ELINOR rnv LAWRENCE LSV 

1 1 1 1 1 

ELIZABETH BT IELM BT I I 1 
I 1 1 -  1 1 1 

(ELLESMERE R o ~ o  ~ELICON IGATE ~CARBOROUGH GOLF POAD 1 
I I l ~ L U B  1 

ELLESMERE ROAD NENNEDY ROAD 1 1 
L 

- - 
1 1 1 

ELLESMERE POAD ~(AUKHAM ROAD I I I 
1 1 I 1 1 

ELLESMERE ROAD MEADOWVALE ROAD 1 1 

~LLESMERE 
1 1 -  I 1 1 

ROAD NEILSON ROAD 1 1 1 

IELL~S 1 1 

kv  FHE QUEENSWAY I I t 

I 1 1 I 

1 1 I 1 1 

ELM MURRAY 1 1 

ELLESMERE POAD PARKWOODS VILLAGE PR 
ELLESMERE ROAD PHARMACY k v  

1 
- -- 

1 1 1 

DR ~ C T O R I A  PARK k V  1 1 1 
I 1 

EMERALD PNE  TEEL LES PV PLIAGE FATE 
EMPRESS b V  PARK HOME L ~ v  WONGE ET 

f/lcTORlA PARK AV 

1 I 1 I I 

ESNA PARK PR PHARMACY BV  TEEL LES BV 1 

L L m I 

EMPRESS pv ~ILLOWDALE pv 
ESANDAR DR ILAIRD )DR 

L I 

EVANS AV   ORNER )9v 
EVANS P V  LSLINGTON 

1 

I 



 EVANS kW ROYAL YORK 1 1 
r I I I I 

EVANS k v  VHE EAST I I 
1 - 1 

- 

FAIRFAX k R  PARDEN p V  
FAIRLAWN 

I I m 

FALSTAFF pv FELE PT I .- 
FAYWOOD lev BHEPPARD IAV JWILMINGTON 

AV FONGE P T  

pv 
L 1 I 

I 1 I 1 

FENWOOD PTS WNGSTON POAD 1 
FERNCREST ~ A T E  MAN HORNE (AV VlCTORlA PARK 

FAlRVlEW MALL P R  ~ O D S T O N E  POAD 
FALLINGBROOK ROAD KINGSTON ROAD 

FELSTEAD pv ~REENWOOD pv 
FENLEY DR ISUNGTON (AV 

I I 1 I I 

1 
WINNIPEG POAD 

1 1 1 1 

FINCH pv FELE PT 1 
FINCH k v  HENNEDY ROAD 

FENMAR P R  PINE VALLEY P R  

IFINCH 1 L 

k v   ENN NE TH lnv 1 I 1 

&TEELES 
FENMAR PR 
FENN PV 

1 

AV 

AV 

AV 

WESTON POAD 
YORK MIUS POAD 

1 

TORRESDALE 

TOLLERTON 

1 1 1 

FIFTH BT ~ K E S H O R E  p v  

IFINCH I 

k v  MCCOWAN ROAD 1 1 

FENSIDE )DR WORK MILLS ROAD 

FINCH 

FINCH 
FINCH 

FINCH 

FINCH 

AV FINCHDENE Fa 
AV ~GOLDFINCH P T  
AV PRANTBROOK PT 
AV ~EATHVIEW pv 

I 1 1 1 1 

FtNcH ~sv PHARMACY I I I 

FINCH )9V ~JMBERLINE P R  
FINCH Lsv IH\NYn I 

FINCH AV MRTIN GROVE ROAD 

1 1 

AV ~ A R K H A M  POAD 

C 1 1 I I I J 

1 

T 

FINCH pv ~ILLIKEN IBV I 
FINCH P V  FILVAN P R  ~ M K E  
FINCH kv ~EILSON POAD l 

ROAD 

1 I I 

FINCH pv ~ENTINEL POAD 

FINCH kv INORFINCH DAKDALE 

FINCH 
FINCH 

FINCH 

AV ~ Y M A R K  P R  
AV 
AV 

PALBOT POAD 
TANGERS POAD 



I . I I 

FLETCHER PL ~SLINGT ON pv 
FORBES ROAO KNNEDY ROAD 
IFOREST HILL 

I I 

ROAD IST. CLAIR IAV I 1 

' T A P S C O ~  POAD 
TOBERMORY PR 
VlCTORlA PARK FV 

FINCH Fv 
FINCH PV 

1 I 1 

GARYRAY P R  PIGNET P R  1 
GARYRAY DR MESTON ROAO 

FlNCH AV 
FINCH PV pVAROEN pl 
FINCH FV PESTMORE P R  
FiNCH FV PESTON POAD 

1 1 1 1 1 

ERRARD tsr DARVIS I I 

FINCH 

FINCH 

FINCH 

1 1 1 1 1 

1 I 1 

GERRARD IST LOGAN F V  
GERRARO IST M I N  b T  

AV PILFRED BV 
AV ~VILLOWDALE BV 

1 
WESTON POAD 

GAUDAUR POAD  TEEL LES pv 

IGERRARD 
I L 

IST RIVER lsr I I i 

AV 
FINCH fiV 

GAYDON 

I I 

GERRARD PT ~ L V E R N  
GERRARD IST WRJORY 

1 -  1 1 1 1 

ERRARD IST (SHERBOURFIE IÇT I I I 

WILMINGf ON FV 
YONGE PT 

AV CltAC )9V 
GENTHORN 

AV 
AV 

1 1 1 t 1 

ERRARD ET MCTORIA PARK I I 

FIRVALLEY ET ~NAROEN k V  

AV ~ P L I N G  ~v f I 

IGERRARD 
I 

IST WOODBINE kv I t 

GEORGE ANDERSON DR REELE IST 

1 1 1 1 1 

ERRARD BT WONGE I I 1 



1 
- - 

1 1 1 

LAMORGAN WNNEDY ROAD PROGRESS 19v 1 
LLEBEMOUNT I r I I 

lnv IO'CONNOR IDR RAYLOR DR I 
I I L 1 1 

1 1 I 

GLENGOWAN ~ O A D  POUNT PLEASANT POAD I 
GLENGROVE IAv E/ONGE (ST 

GLEN EDEN PR ~ELWVN FV 
GLEN EVEREST ROAD klNGSTON ROAD 

1 
- -- 

1 

GLEN WATFORD )DR PHEPPARD PV 
GLENCAIRN P V  ~ A R L E E  PV 

1 
- - -  

1 1 1 

LENLAKE LAv kEELE IST 1 1 1 

1 

1 

1 1 1 
LENWOOD PR JO'CONNOR IDR 1 
ODDARD BT BHEPPARD IAV 

ST. CLAIR 

GLENDINNING i ~ v  IGOROON BAKER ROAD PHARMACY kv  

AV 

IGOVERNMENT 
. m 

ROAD RHE KINGSWAY I I I 1 

I I a 

GORDON BAKER POAD IVlCTORlA PARK FV 
GORMLEY ~Av  RIOL LE 

I 1 - I 1 1 

OWER MCTOR~A PARK LSV I I I 

1 

1 1 1 1 

GUILDWOOD PKY ~ A N G S T O N  POAD 
GULLIVER POAD P GRAM PR KEELE ST 

GUNNS POAD (ST. CLAIR 

~GUNNS ROAD WESTON ROAD I I 1 

1 1 1 1 1 

HEATH WONGE 1 1 1 

1 1 I 

HARBORD 
HARBORD 

ST PNNING FV 
ST PONTROSE 

HARBORD PT PSSINGTON 
AV 
AV 

HARBORD IST PALMERSTON BV 



HENDERSON Fv ~ O M E  (Sv  TEEL LES bv 
HICKORY TREE ROAD LAWRENCE k V  bT'TLE I ~ v  

IHOSKIN 1 I I 

k v  ~ U E E N S  PARK JCR I I 1 

1 1 1 1 

. . - .. 
1 1 1 

HouNsLow HEATH ROAD ISILVERTHORN kv  ET. CLAIR k v  I 

HlGH PARK IBv PARKSIDE P R  

HIGHLAND FR ~ P P E R  HIGHLAND FR 
HlGHVlEW FV ~ X F I E L D  p V  

1 I I 1 

HOWARD PARK p v  PARKSIDE PR I 1 
HOWDEN ROAD LAWRENCE b V  IUNDERWRITERS POAD 

1 1 J 

HULLMAR P R  PANE P T  
HUMBER COLLEGE IBV mW27 1 

1 
YORK MILLS ROAD 
WILSON AV 

AV HIGHWOOD )9V ~ E R W O O D  PV 
HlLDA FV  TEEL LES PV 

I J 

HUNTINGWOOD P R  P N N E D Y  POAD 1 1 
HUNTINGWOOD P R  ~ C C O W A N  POAD ~IDDLEFIELD POAD 

1 1 1 I 

HWY 27 1 IÇTEELES pv i 
IDAGROVE !GATE BHEPPARD k V  

HILLCROFT PR  TEEL LES pv ~TRAWBERRY HILLS PR 
HOLSWADE P o A o  )SUNRISE p V  PCTORlA PARK P V  
IHORNER kv IKIPLING LAv i I 

WARDEN 

HWY 27 
HWY 27 

1 1 1 

INDUSTRY IST FRETHEWM P R  

INGLEWOOD P R  POUNT PLEASANT POAD 
INGLEWOOD BT. CLAIR 

AV 
HUNTINGWOOD PR  IDL LAND pv 
HUNTINGWOOD P R  ~ L D  SHEPPARD FV 
HUNTINGWOOD b R  NARDEN k V  

I 1 I 

PUEENS PLATE ]DR 1 
IREXDALE B V  

VICTORIA PARK 

1 1 1 1 1 

ISLINGTON k V  UUTLAND ROAD 1 1 1 

IRONDALE PR PEARCE POAD P TEE LES 
ISABELLA PT PARVIS P T  
ISLAND ROAD PORT UNION ROAD 

AV 

1 

IStlNGTON PV p H €  QUEENSWAY 
ISLINGTON  HE WESTWAY 

I 1 1 1 1 

ISLINGTON FITAN 1 

2 

AV 
ISLINGTON PV PILADY POAD 1 
ISLINGTON 

ISLINGTON 

ISLINGTON 
ISLINGTON 
ISLINGTON 

AV POPLAR HEIGHTS PR PRINCESS MARGARET PV 
p4V ~WTHBURN POAO 

AV ~ILLWICK PR 
AV ~ONOGRAM PL 
AV PEW TORONTO P T  

ISLINGTON pv PEXDALE IBV 
ISLINGTON )9V ) S A ~ E R L Y  POAD 
ISLINGTON BTEELES 

WUIR 



JAMESON )4v FNG IST 
JAMESON FV PKESHORE p3V 
JANE PT ~ O H N  PT 
JAN€ P T  pM6TON PV 
JANE LAWRENCE bv  
LANE I I 

IST PRITCHARD k v  I I 1 
1 1 r 1 1 

JANE PT  PUEENS [DR 1 1 
JANE PT  PITA PR ~TANLEY POAD 
JANE PT PHEPPARD Fv 1 
JANE IST ~HOREHAM b R  

1 1 I 4 

JANE PT  PT. CLAIR )9v 
JANE IST BT. JOHN'S ROAO 

1 I- 1 1 
- 

JARVIS P T  ptAlTLAND PL WITLAND PT 
JARVIS b T  ~ U E E N  IST 1 1 

I 1 I 1 1 , 

LARVIS I 

JST BHUTER IST 1 1 1 

JANE PT   TONG PT 
JANE PT PESTON POAD 
JANE PT  )#ILSON P V  
JARVIS BT WNG b T  

1 1 1 1 

JARVIS PT  HE ESPLANADE I 1 
JARVIS IST  WELLESLEY b T  

YORK GATE )BV 

1 1 1 - 1 1 

ESMOND k v  1 1 1 
1 I I 1 1 

JOEL SWIRSKY PV PILSON HEIGHTS PV 
JOHN KING (ST 

I I 1- 

JOHN PT PICHMONO PT 
JOHN PT   ELLINGTON PT 
JOHN PT PESTON POAD 
,JOHN STONER DR MORNINGSIDE k v  

I I I I I 
KAN E F V  PVENDER POAD OLD WESTON ~ O A D  

KANE ROGERS ROAD 

I 1 1 

KEELE PT ~ P L E  LEAF P R  1 
KEELE I ~ T  MURRAY ROSS PKY 
~KEELE 

1 m 1 t I 

IST WORTH PARK  DR I I 1 
I I 1- 1 1 

KEELE BUINAN DR WNDALE f 
IKEELE 1 

IST ROGERS kOAD 1 1 

I I I 1 1 

KEELE PT PT. CLAIR )9v PESTON POAD 
KEELE BT. REGIS E R  1 1 

1 I 1 

KEELE PT pus~ic p o ~ o  
KEELE IST BHEPPARO k V  

1 



I 1 J 

KEELE IST P E S T  TORONTO PT 
KEELE hrvHlTBURN ER 
~ E E L E  

I L 

IST  VILS SON lr~v I I 1 
m 

KELVIN GROVE P V  PUTNAM (GATE PTEELES )9V 
KENNARD IAV W .  R. AUEN POAD 1 

  KENNEDY ROAD AIIERRIAN ROAD I 1 1 
1 1 -  1 m 1 

KENNEDY POAD  ORC CAP )9V 1 i 
KENNEDY ~ O A D  PASSMORE k v  PURCELL BV 

I 1 1 

KENNEDY POAD WONOR PV 
KENNEDY k 0 A D  WNSTONE ~ D N S  

1 1 m 

KENNEDY POAD ~HEPPARD pv 1 
KENNEDY R o ~ o  bT. CLAIR kv 

I I I 

KENNEDY POAD  TEEL LES PV 
KENNEDY ROAD ~RANSWAY E R  

1 1 

KENNEDY POAD FROJAN PTE I 
KENNETH LEONA ~HEPPARD 

1 1 1 1 1 
- 

KINGSTON ROAD MAORNINGSIDE 1 1 1 
/KINGSTON 

1 

BOAD bLD KINGSTON ROAD 1 1 

I I 
- 

1 

I I I 1 I 

KINGSTON POAD PVERTURE POAD PAVZAC PV 
KINGSTON POAD POPLAR POAD 1 I 
KINGSTON POAD PORT UNION ~HEPPARD YV 

IKINGSTON ROAD MASON ROAD WHITECAP I 

SOUTHWOOD 

KING 
KING 

KING HlGH 
KINGSTON 

I m I 

KINGSTON POAD PIDGEMOOR pv SHARPE ST 

KINGSTON ~ O A D  RYlANDER BV 

DR KINGSTON POAD P I N  P T  
KINGSTON POAD P N S E  POAD 
KINGSTON POAD )(~IARKHAM POAD 

ST PESTON POAD 
ST PONGE PT 
AV /WILSON 
ROAD PWRENCE 

1 1 1 
- - 

KINGSTON PO AD ~CARBOROUGH POAD 
KINGSTON ROAD ~CARBOROUGH GOLF ROAD 

1 L 

KINGSTON POAD ~OODBINE )4v 1 1 1 

AV 
AV 

I 

1 
I ~ L U B  

KINGSTON POAD P VICTORIA PARK 

KINGSTON BOAD MARDEN 
AV 
AV 1 



KIPLING bv ~ K E S H O R E  Fv 
KIPLING kv  MATTIC€ b V  
/KIPLING 

m 

IAV WUNT OLIM IDR PANORAMA ET 1 
1 1 I I 1 

- - 

PLlNG k V  NEW TORONTO B T  1 1 1 
1 I 

KIPLING FV  ORT TH QUEEN P T  , 
KIPLING AV PRINCESS MARGARET pv  
KIPLING AV PATHBURN POAD 
KIPLING AV PEXDALE pv t 
KIPLING ISNARESBROOK 

1 1 I 1 

LAUESHORE pv ÇESLIE )ST 1 
LAKESHORE Bv LOGAN Isv 

1 L 

KIPLING P V   HE QUEENSWAY 

1 L I I 

LAKESHORE p V  FONG BRANCH P V  1 1 
LAKESHORE BV MILES ROAD ~ Y M o N S  (ÇT 

KIPLING k v  WIDDICOMBE HILL BV 
ZR 

KIPLING 
KIPLING 

AV 
DR 

1 1 1 m 

LA ROSE kv POVAL YORK po AD I 
LAIRD P R  ~ C R A E  P R  ~,~ICKSTEED 

1 

LAIRD P R  ~ILLWOOD POAD 
LAKESHORE B V  LEGION ROAO 

1 I 1 

LAKESHORE p V  PARK LAWN POAD 
LAKESHORE IBv PARKSIDE b R  

AV 
AV 

SOUTHVALE 

1 I I 

LAKESHORE PV ~AIMICO FV 
LAKESHORE B V  PALACE PlER ICT 

I m I 

LAKESHORE pv PARLIAMENT PT 
LAKESHORE B V  ROYAL YORK ROAD 

VHE WESTWAY 
TORLAKE 

I 

1 I L 

LAKESHORE pv ~HERBOURNE )Sr 
LAKESHORE B V  BTADIUM BOAD 
ILAKESHORE I I L 

lev  TRACH HAN kv  I 1 1 

ILAKESHORE 1 L I 

BV BENTH LST I 1 
1- 1 - 1 1 

LAKEsHoRE ~v RHIRTEENTH (ÇT I I 1 
1- 1 l 1 I 

- 

UiKEstioRE BV RHIRTY-SEMNTH BT I I I 

IMKESHORE , 
lev WINDERMERE k v  1 1 

1 I 1 

LAKESHORE P V  

LAKESHORE IBv 

1 1 
- - 

1 

- - 
I - 

- 
1 1 1 

LAURA R o ~ o  ISHEPPARD kv I 1 1 

WEN~SECOND PT 
TWENTYSEVENTH 

LAMBTON )4v 
LANARK PV 

iANSDOWNE 
LANSDOWNE 

I 

LAURELEAF POAD P TEE LES pv 
LAWRENCE k v  LEDBURY IST 

WENTYTHIRD PT 
1 

WESTON POAD 
OAKWOOD )4V 

1 

AV PT. CLAIR P V  

AV WALLACE 1AV 

1 m I I 

LAWRENCE pv LESLIE P T  I I I 

LANSDOWNE (4V RUEEN B T  



LAWRENCE bv ~ R K H A M  FOAD 
LAWRENCE IAv 

I I I 

LAWRENCE )9V ~AORNINGSIDE PV 
LAWRENCE P V  POUNT PLEASANT POAD 
LAWRENCE kv PRTON PARK p o ~ o  
LAWRENCE i ~ v  ~ M R T U R E  ROAO 

I 
LAWRENCE AV ~CARLETT POAD 
LAWRENCE k v  ~HERMOUNT k v  1 

1 m 1 1 1 

LESLIE PT FALWOOD pu 1 1 
LESLIE $T PANGLE ~ R V W  IVAN HORNE IAv 

1 1 1 - 

ILESLIE I I 1 

b T  WORK MlLLS HOAD 1 1 1 

LAWRENCE )9V 
LEE PV 

ILONSDALE BPADINA ROAD 1 I 1 

VONGE P T  
3UEEN PT 

1 

INSHEP POAD ~VESTON POAD 
LVERN BT BHEPPARD kv  

LESLIE PT WROWYNE ]DR 
LESLIE fST NYMARK IAv 



AANOR (ROAD WNGE FT I I 
AARCOS Bv MIDLAND k v  ROMULUS b~ 1 

1 1 

AARMAM POAD WCLEVIN )Qv PUGGET AV 
~AARKHAM POAD MCNICOLL Lsv I 

1 I I 

AARMAM ROAD MILNER k v  I I i 
1 1 1 -  1 1 

AARMAM ROAD NASHDENE ROAD 1 1 1 
I I 

JARKHAM ROAD PAlNTED POST b R  1 1 1 

I I 1 

uîARTlN GROVE POAD PERCURY POAD PESTHUMBER JBv 
URTtN GROVE ROAD PORTERFIELD ROAD 1 1 I 
irlARTIN GROVE ROAD ISTEELES k v  1 1 1 

I I 1 I 
MCCOWAN P o A D  PTEELES )9V 

MCCOWAN POAD FRITON PO AD 
inC LEVI N )9V ~EILSON POAD 
MCNICOLL MIDLAND IAV 

I I L 

WCNICOLL kv PHARMACY LAv I 1 
l I 1 1 i 

WCNICOLL AV  VICTORIA PARK )4v 
WCNICOLL AV WARDEN BV 
WCRAE P R  ~~ILLWOOO POAD 
MEADOWVALE R o ~ o  BHEPPARD bv 

I 1 I 

MEDONTE AV FIAGO P V  ~ICTORIA PARK FV 
WELROSE REDDlNGTON PARK L ~ v  ~ O N G E  BT 

I 

WERTON IST MOUNT PLEASANT I 1 
1 1 I 

MERTON P T  VONGE PT 
METROPOLITAN POAD WARDEN P V  
MIDLAND pv ~ROGRESS )4v 
MIDLAND PRUDENTIAL I 

1 1 1 l 1 

VllDLAND (ST. CLAIR 1 1 1 

MIDIAND AV PERDUN Fv 
WILITARY TR ~ORNINGSIDE P V  
MILITARY FR ~EILSON ~ O A D  
MILL ~ S T  WONGE IS T 

I L 1 -  1 1 - - 

WLLWICK ROAD 1 1 1 
1 1 1 1 

UILLWOOO PEDWAY ROAO MLLAGE STATION ROAO 1 
WILNER kv MILNER BUSINESS I I 1 



ILNER pv FORNINGSIDE Fv 
IMlCO P V  POVAL YORK POAD 
OORE FV POUNT PLEASANT POAD 
ORECAMBE lGAfE PAWNEE PV VICTORIA PARK AV 

ORNINGSIDE F V  p V V E U S  POAD 
MORNINGSIDE F V  IÇHEPPARD AV 1 

ORNlNGSlDE )4V FOUTH KlNGSWAY 

kv  WINDERMERE InV I 1 

1- I - 1 I 1 
- 

URRAY ROSS M Y  NIAGARA IBv BENTINEL ROAO 1 
1 I 1 I l 

NASSAU iST SPADINA k V  1 1 1 
1 1 - I 1 

ROAD BEWELLS ROAD ITAPSCOIT Po AD 1 
1 1 ¶ 1 ! 

NEWTON P R  PLEASANT )4V YONGE ST 

NORTH QUEEN 'THE EAST k A L L  
NORTH QUEEN THE QUEENSWAY 

t 

NORTH WEST IGATE 6TEELES AV  
INORTHCLIFFE 1 I I 1 

B V  k T .  CLAIR k v  1 1 1 
1- 1 r -  

NORTHLAND FV PESTON POAD 
O'CONNOR P R  PAPE PV 
O'CONNOR (DR BT. CLAIR 

1 1 t 

O'CONNOR PR ~VOODBINE Fv 
OAK P T  WESTON POAD 
OAKDALE POAD PHEPPARD )4v 
OAKDALE ROAD  ORB BARRIE BOAD 

r - - -  - - 

~~AKVVOOD 
1 1 

LSV BT. CLAIR kv 1 1 1 

IOLD FOREST HILL 
I 

ROAD (SPADINA ROAD I 1 1 
1 1 1 1 1 

LD WESTON ROAD BT. CLAIR 1 1 
1 1 I 1 1 

LD WESTON ROAD BURNBERRY kv I I 1 
1 1 -  1 1 1 

RMONT DR WESTON ROAD I I l 
  OSCAR ROMERO 

m I 1 I 

WAY b ~ .  CLAIR k V  1 1 1 
1 

- - 
1 1 1 

ssINGToN ~sv BUEEN I ~ T  I I 1 
m . 1 I 

OVERBROOK P L  ~TEEPROCK P R  p. R. ALLEN POAD 
OVERBROOK P L  IUVILMINGTON IAV 1 1 

IPAGET L I 

~ O A D  IVICTORIA PARK k v  I I I 

~VERLEA 
I 1 I I 

PV PILLIAM MORGAN PR 
OXFORD DR  ESTO ON ROAD 

I 



t 1 1 

PATRICK pv ~CTORIA PARK pv 1 I 
PETER IST  QUEE EN E T  BOHO B T  

PARK LAWN POAD  HE QUEENSWAY 
PARLIAMENT IST MUTER 

LUEEN L 

LST ISHERBOURNE IST I I 1 

S T  

I I 1 J 
UEEN P T  ~ J M A C H  )çT 
UEEN IST ~NIMRSITY IAV 

I 

I n 

PETER P T  PICHMOND P T  

PETROLIA POAD ~TEELES kv 
PHARMACY F V  ~HEPPARD )9V 

PHARMACY PV PT. CLAIR )9V 
PICKERING TOWN FINE  TEEL LES )9V 
PLAINS POAD ~VOOOBINE PV 
PLAXTON JDR PT. CLAIR P V  

PLEASANT HOME P V  -WILSON 'AV 

1 I I L 1 

QUEEN PT ~OOOBINE pl I I 
QUEEN bT WOODFIELD ROAD 

POYNTZ AV PONGE P T  
QUEEN S T  RIVER 1 

TANDEM 

TAUNTON 

I 1 1 1 

QUEENS PUAY PONGE PT 1 I 
QUEENS ~ U A Y  ~ O R K  B T  

ROAD 

ROAO 

AV PLEASANT VlEW P R  

1 I I 

QUEENS PARK PR ~ ~ E L L E S L E V  )ST 
QUEENS PLATE b R  REXDALE BV 

VlCTORiA PARK 

1 1 1 1 1 

RATHBURN IROAD RH€ EAST 1 1 1 

POPLAR PLAINS POAD 

IUATHBURN L I 1 

ROAD PHE WEST I I I 

ST. CLAIR )9v 

I n n 1 1 

RAY WESTON POAD I I I 

PORTLAND PT PICHMONO PT 

1 I 1 I 1 

REXLEIGH DR ET. CLAIR IAV 1 1 1 

I I 1 I 1 

RICHMOND (sT WORK I I 1 

IROGERS 1 I 

ROAD  WESTO ON ROAD I 1 1 
1 1 1 1 I 

ROAD VHE Q~EENSWAY I 1 I ! 
IRUNNYMEDE 1 1 1 I 

~ O A D  IST. CLAIR k V  1 1 f 
1 I 1 l I 

- 

RUSSELL HILL ROAD BT. CLAIR k V  1 1 1 



~ANTAMONICA BV Br. CLAIR LSV 1 1 1 

1 1 1 4 

SHEPPARD pv  VICTORIA PARK pv 
SHEPPARD #IV W. R. ALLEN ROAD 

4 A I 

SHEPPARD 

SHEPPARD 

1 I 

SHEPPARD FV PONGE P T  

SHERBOURNE P T  PHUTER P T  

SHERBOURNE IST ~NELLESLEY b T  

SCARLETT P o A D  ~CARLETTWOOD 
SCARLETT POAD PT. CLAIR 
i 

AV PARDEN )9V 
AV PESTON POAD 

1 I m 4 

1 1 I I 

SIGNET P R   TEEL LES )9V 1 1 
SILVERDALE (CR IVALENTINE DR WORK MILLS POAD 

CT 

AV 

SHEPPARD A V  WILFRED hv 
SHEPPARD pv ~ILLOWDALE pv 
SHEPPARD h V  WILSON HEIGHTS BV 

1 

SENTINEL POAD ~HEPPARD pv 

- ~p 
1 -  

- - -  

SLOANE pv ~CTORIA PARK 
SPADINA ROAD tsr. CLAIR 

k ~ .  CLAlR 
I I I 

kv  IVAUGHAN ROAO I I 1 

SETTLERS POAD ~HEPPARD 

SHAUGHNESSY P V  ~HEPPARD 

1 1 

SPADINA )9V ~ULLIVAN 

r 1 I 1 1 

T. CLAIR BV lVlA ITALlA 1 1 1 1 

AV 
AV 

AV 
AV 

IST. CLAIR kv  MCTORIA PARK kv  1 1 1 

SHEPPARD FV FUSCAN ]GATE 
SHEPPARD k V  hlANDORF B T  

1 

I 

ST. CLAIR inv LWEEDSMUIR AV 
ST 

I 1 1 

ST. CLAIR )9V PARDEN PV 
ST. CLAIR k v  WARREN ROAD 

/ 

LT. CLAlR 
1 m 

k V  WELLS HILL k V  1 1 1 
1 1 1 

ST. CLAIR kv  ~ESTBOURNE pv 
ST. CLAIR inv WINONA b R  

1 1 1 

ST. LAWRENCE pv  HE QUEENSWAY 1 
ST. PHILLIPS ROAD MESTON ROAD 

I 

1 
1 I 1 

1 1 1 1 

STARVIEW  NE PESTON POAD 1 
STEELES FV PTEINWAY PV 
STEELES k v  ~ A P S C O ~  kOAD 1 

ST. CLAIR 

ST. CLAIR 

ST. DENNIS b R  WNFORD b R  

1 1 1 

STEELES )9V FHURMAN POAD 
STEELES k v  ~OWNSEND ROAD 

AV 
ST 

AV 
AV 

1 1 I 

- - 
1 1 1 J 

TEELES PV VONGE b T  
TEPHEN P R  THE QUEENSWAY 

URREY PV VICTORIA PARK AV 

~ C H W O O D  
YONGE 

TORRESDALE 

STEELES 

STEELES 
I I 

STEELES PV PARDEN P V  
STEELES kv  WESTON ROAD 

AV 

AV ~ C T O R I A  PARK pv  
A V  WAGGONER WELLS ~ N E  

I 



  HE EAST 
1 I 

WLL  HE QUEENSWAY 1 1 1 
1 1 1 1 I 

HE ESPLANADE 1 ~YONGE B T  1 1 

LTAYMALL bv 
TEMPO k V  

1 
- - - - 

1 I 

HE QUEENSWAY 1 WINDERMERE IAV 1 1 

AV 
?HE QUEENSWAY 
VICTORIA PARK 

1 r 1 1 I 

HE WEST M L L  WEST MALL ICR 1 1 

~ADSWORTH IBV 
1 

 TIPPETT ROAD WILSON inv WILSON HEIGHTS BV 
~ O R Y O R K  

1 I r 

PR PESTON POAD 
TOWER P R  PARDEN P V  
TRANSIT POAD W .  R. ALLEN POAD 
TRANSIT POAD WILSON F V  
TRETHEWEY P R  YORE POAD 
UNIVERSITY F V  WELLINGTON P T  
VAUGHAN POAD PINONA PR I 
~ICTORIA PARK WORK MUS 1 

 YARDE EN 1 1 I 

pv PAYNE piv 
WATERLOO k V  WILSON HEIGHTS BV 
LVELLINGTON 

I m I 

pf PONGE PT 
WENDELL k V   VILS SON k V  
 ILS SON 

I I , I 1 

~ O R K  MlLLS POAD 
1 

p V  
YONGE PV 

'YONGE P T  
YONGE P T  



LlNK DATABASE 

ADELAIDE P T  ISPADINA AV IIJNlVERSITY )9V 
ADELAIDE IST (UNIVERSITY AV WONGE 

1 I 1 I m I 

ANNETTE PT PANE /sT PUNOAS PT 
AVENUE ROAD EGLINTON h V  LAWRENCE IAV )JS 

1 1 

ALBION POAD puy27 

1 1 1 1 I I 

BATHURST IÇT ~COLLEGE B T  )IARBORD B T  N S  

1 1 

FINCH PV 

BATHURST PT PUNDAS PT ~COLLEGE PT JNs 
BATHURST fST )(ARBORD b T  BLOOR ET )Js 

ALBION ROAD (KIPLING AV LSLINGTON LaV 

L 1 1 L 1 1 

BATHURST PT PT. CUIR bv FGLINTON pv ps 
BATHURST IST WILSON b V  ~HEPPARD I~v  t*cS 

I m 1 1 I I 

BAY P T  ~OLLEGE P T  )BLOOR PT ).(S 
BAWIEW hv FINCH k V  BTEELES k V  blS 
IBAWIEW 1 I 1 m I 

k v  MOORE hv ÉGLINTON kv h S  r - 
- -  - 

€ 1 1 

B~RCHMOUNT ROAD ÉGLINTON Isv DWRENCE IAV bls 
L I L 1 1 

BIRCHMOUNT POAD FINCH BTEELES 

1 -  1 1- 1 1 

ARLTON (ST WONGE BT DARVIS IST 

1 I 

DANF ORTH /Av NICTORIA PARK DANFORTH POAD 
OAVENPORT POAD ~ATHURST PT PUPONT PT 
OAVENPORT POAD PLIFFERIN PT  bSSlNGTON )9V )EW 
DAVENPORT POAD PUPONT PT AVENUE POAD F W  
DAVENPORT POAD P L 0  WESTON POAD PuFFERlN )ST 



DAVENPORT POAD ~SSINGTON AV )BATHURST PT 
DAWES POAD PANFORTH AV PCTORIA PARK p V  ).'S 
DIXON ROAD LSLINGTON ROYAL YORK ROAD )EW 

1 1 1 1 1 t- 

DON MlLLS ROAD IFINCH ' k V   TEEL LES L ~ v  )JS 
L I . I 1 

DON MILLS POAD PMRLEA PV PGLJNTON BV PS 
DUFFERIN Bf  BLOOR B T  DUPONT BT )Js 

CDUFFERIN 1 

ÈGLINT ON kv LAWRENCE Lus 

DUPONT P T  ~ATHURST P T  PAMNPORT POAD FW 
DUPONT P T  PUFFERIN P T  PSSINGTON p V  
DUPONT B T   UNDA AS BT ~UFFERIN b T  
L L 1 1 I 

DUPONT PT PSSINGTON pv BATHURST PT 
EASTERN BROADVIEW PAPE P ~ v  

L L 

EGLINTON PV ~ATHURST IST  VENUE (ROAD p~ 
EGLINTON DIRD b R  

L 1 I 1 1 I L 

EGLINTON FV PANE P T  PESTON POAD PW 
EGLI NT0 N BELE DUFFERIN b T  

EGLINTON 
EGLINTON 

1 I 1 1 r 

EGLINTON ~ P L I N G  LSLINGTON IAv 

1 
- - -  

1 
- - 

AV  ON MIUS POAD PCTORIA PARK PV FW 
4.V ~SLINGTON kt/ ROYAL YORK ROAD h~ 

I I I 1 

EGLINTON )9v POYAL YORK POAD JSCARLET~ POAD p~ 
EGLINTON kv  ISCARLE~ ROAD LJANE BT 

1 
- - 

1 -  
. . 

L 1 I 

EGLINTON PV LESUE IsT PON MIUS POAD p~ 

1 1 I 

EGLINTON pv ~PECTRUM ~ A Y  PENFORTH IDR 
EGLINTON MCTORIA PARK WARDEN 

EGLINTON 
EGLINTON 
EGLtNTON 

IEGLINTON kv W. R. ALLEN ROAD BATHURST I ~ T  

AV WRKHAM POAD WNGSTON (ROAD )EW 
AV ~AIDLAND PV ~RIMLEY POAD p~ 
AV MOUNT PLEASANT ROAD ~BAYWEW kv 

1 1 I 1 1 

EGLINTON BV NARDEN k V   IRC CH MOU NT ROAD )EW 
I 1 

EGLINTON PV PONGE PT POUNT PLEASANT POAD pt~ 

ELLESMERE POAO  BIRC CH MOU NT POAD BNNEDY ROAD Ew 



1 I E I . 1 

FINCH FV PAYVl EW P V   LIE P T  
FINCH kv BIRCHMOUNT ROAD ~ N N E D Y  ROAD EVV 

EVANS 
FINCH 

IFINCH I 

kv  b o ~  MILLS ROAD IVICTORIA PARK kv 

AV  HE EAST WU FPLING FV 
AV   BATHURST E T  IYONGE BT 

r I I I I I 

FlNCH AV )DUF FERIN P T  ~ATHURST P T  
FlNCH AV   LING TON )9V PESTON POAD 
FINCH AV PANE P T  FELE P T  
FINCH AV LcEELE DUFFERIN /ST 

1 1 I 1 1 

Lsv KIPLING BSLINGTON 
IFINCH k v  LESLIE BT BON MILLS ROAD )EW 

IFRONT 1 I L L 1 1 

BT BATHURST B+ ISPADINA kv 

1 I 1 m I 1 

FINCH BV PRKHAM POAD )JEILSON POAD p u  

1 1 I 1 1 I 

FRONT P T  PARVIS P T  PARLIAMENT )ST 
FRONT IST BPADlNA k V  ~NIMRSIM b V  

FINCH 

FINCH 
FINCH 

AV  IDL LAND pv ~RIMLEY POAD JEVV 
AV VESTON POAD PANE P T  
AV MNGE ET IEWVEVU ~Av 

1- 1- I - 1 

HARBORD PT PSSINGTON AV ]BATHURST JST 
ISLINGTON FV FGLINTON AV (DIXON ~ O A D  F(S 
ISLINGTON )9V FINCH AV  TEEL LES AV [NS 
ISLINGTON )4v PEXDALE Bv   ALBION ROAO tJs 

1 -  I 1 1 1 

GERRARD P T  PARVIS PT PARLIAMENT k T  

LANE I 

IST BHEPPARD lnv FINCH kv  k s  

1 -  I 1 1 1 -  
-- ~ 

KEELE IST ROGERS POAD ~EGLINTON k V  h S  

AV 
AV 

GERRARD b T  PARLIAMENT P T  ~ROAOVIEW 

IKEELE 1 1 1 I 

IST ISHEPPARD kv  FINCH kv  h s  

GREENWOOD kv CERRARD BT DANFORTH k v  INS 
GERRARD 

1 1 1 I 1 1 

KENNEDY POAD ]LAWRENCE P V  IELLESMERE POAD ~ J S  
KING B T  DAMESON kv  DUF FERIN IST 

ST ~ O O D B l N E  P V  PCTORlA PARK 

IKING I 1 

IST @PADINA kv  WNNERSITY kv  kw 
1 1 1 1 1 1 

KING IST PONGE PT PARVIS JST 
WNGSTON POAD IBRIMLEY POAD ~ C C O W A N  POAD p~ 
KINGSTON POAD ~ R K H A M  POAD ~ORN~NGSIDE PV 
KINGSTON ROAD MCCOWAN ROAD ~ R K H A M  ROAD IBN 

- - 
1 1 

~ - 

KlNGSTON POAD 'VICTORIA PARK j4V PARDEN PV 
KI NGSTON POAD WARDEN AV  IRC CH MOU NT POAD p v  
KINGSTON POAD WOODBINE AV ~CTORIA PARK )9v 
KIPLING k V  BURNHAMTHORPE ROAD BATHBURN ROAD (Ns 

I - 1 1 1 1 
. - 

KIPLING P ~ v  REXDALE B V  ~LBION ROAD (Ns 

1 1 1 1 I 1 

LAKESHORE PV ~ P L I N G  P V  ~ISLINGTON PV F W  



[LAWRENCE 
1 

k V  bON VALLEY PKY MCT ORiA PARK L&v 1 
1 

- - 
1 1 1 1 

LAWRENCE )9v PUFFERIN )ST )BATHURST PT 
LAWRENCE piV ~ E L E  fST PUFFERtN )ST 
LAWRENCE L ~ v  KENNEDY BOAD MIDLAND 
ILAWRENCE 1 1 

k V  ~ N G S T O N  ROAD PORT UNION ROAD ÈW 1 
1 1 - 1 1 1 I 

kv  LESUE BT DON VALLEY pw I 
m m 

LAWRENCE FV WRKHAM POAD PNGSTON POAD p~ 
LAWRENCE L ~ v  MCCOWAN ROAD WRKHAM ROAD (EW 

I m 

CNICOLL FV PARDEN )9v  IRC CH MOU NT POAD p~ 
EADOWVALE ROAD ELLESMERE ROAD BHEPPARD 

1 I , I 

O'CONNOR PR ~ O O O B I N E  B V  PT. CLAIR FV 
OSSINGTON k v  EOLLEGE IST IHARBORD IST NS 



PARLIAMENT PT ~ARLTON Csr ~BLOOR FT Fs 
PROGRESS pv JKENNEDY POAD ~IDLAND )SV 
PROGRESS )9V FIIDLAND p V  ~RIMLEY POAD piv 
QUEEN b T  BATHURST b T  SPADINA 
~ U E E N  

I 1 1 

IST L~ARVIS I ~ T  PARLIAMENT 1 

IQUEEN 
1 I I 1 

k T  PAPE IAV ICOXWELL k V  1 . . 
I - I r - t I 

. . 

RATHBURN POAO FPLING AV ~ N G T  ON AV 
REXDALE IBV pw 427 pwvn 
REXCALE IBv WPLING AV LSLINGTON AV 

IRICHMOND t 1 

IST UNIVERSITY IAV MONGE IST 1 
1 -  I r 1 I 

- - 

RICHMOND IST WONGE BT LARWS l 

IROGERS 1 1 

kOA0 k L D  WESTON ROAO EALEDONIA ROAD ÉW 1 

r I r I L 

HEPPARD kv  BIRCHMOUNT BOAD WNNEDY R o ~ o  )Ew 1 
1 L 1 I 

SHEPPARD AV ~RIMLEY POAD WCOWAN POAD FW 
SHEPPARD AV DON MILLS ROAD IVICTORIA PARK I~v  

I~HEPPARD 
1 - 1 1 1 I 1 

kv KENNEDY ROAD MIDLAND k V  1 
~HEPPARD 

1 1 1 

kv CESLIE k T  bON MlLLS kOAD ÈW 1 
l I I 1 I 

SHEPPARD PV PCCOWAN POAD WRKHAM POAD FW 
SHEPPARD k v   IOL LA NO k V  IBRlMLEY ROAD EW 

1 1 1 1 1 

HEPPARD P V  ~ORNINGSIDE F V  ~ A D O W V A L E  POAD FW 
HEPPARD k v  NEILSON ROAD MORNINGSIDE L ~ v  

I 1 I 1 

SHEPPARD AV PARDEN )9V )BIRCHMOUNT POAD FW 
SHEPPARD AV WESTON ROAD UANE bT k W  

1 1 1 1 l 1 

T. CLAIR LAv IAMNUE ROAD WONGE 1 
k ~ .  CLAIR 

1 

kv BATHURST  VENUE ~ O A D  Ew 1 
1 I 1 1 1 

T. CLAIR kv  BIRCHMOUNT ROAD WNNEDY R o ~ o  (EW 1 
1 I 1 1 L 

ST. CLAIR pv PUFFERIN PT ~ATHURST PT 
ST. CLAIR kv  UANE b T  BELE BT 

1 1 1 L I 

ST. CLAIR )4v PNNEDY POAD FIIDLAND )9V 

ST. CLAIR k v  MIDLAND !KINGSTON ROAD Evv 

I 1 1 

TEELES pv  IRC CH MOU NT POAD ~ N N E O Y  I 



STEELES FV ~RIMLEY POAD ~ C C O W A N  ~ROAD IEW 
STEELES k V  DON MILLS ROAD MCTORIA PARK 
~STEELES 

1 I 

k V  ~uFFERIN 6ATHURST E T  1 

1 1 - I 1 L 1 J 
STEELES PV FNNEDY POAD PIDIAND P V  
STEELES AV PPLING PV ~ISUNGTON PV 
STEELES AV LESLIE P T  p O N  MIUS POAD 

MRKHAM ~ROAD RHEEND STEELES AV 1 

1 I I 1 1 

STEELES kv pwn I ~ P U N G  pv 
STEELES 
STEELES 

1 1 1 1 1 

STEELES P V  PESTON POAD PANE P T  
STEELES k v  WONGE IST i e ~ w i ~ w  WV 

STEELES 

STEELES kv ~ E E L E  IST bUFFERlN B T  

AV LSLINGTON P V  PESTON POAD p u  

r -  I I I I 

AV ~AIDUND p V  ~ W L M  POAD )EW 

 HE QUEENSWAY 
1 I I L 

1 hHE EAST ~ L L  WPLING k V  1 

AV 

STEELES A V  MCTORIA PARK kv WAROEN k V  

1 I 1 . 

1 
- - - - I 1 

TRETHEWEY P R  PANE IST PLACK CREEK P R  
UNIVERSITY PV PUNDAS P T  ICOLLEGE P T  P S  

I 

UNIVERSITY p V  PUEEN P T  PUNOAS P T  )Js 
VAUGHAN ROAD INORTHCLIFFE BV BT. CLAIR k v  EW 

JANE IÇT ~ E L E  PT 

HE QUEENSWAY 
HE QUEENSWAY 

1 1 1 1 1 L 

VICTORIA PARK AV ~ N G S T O N  POAD FERRARD ST ps 
VICTORIA PARK AV FHEPPARD F V  FINCH AV ).'S 
WARDEN AV PNGSTON POAD PANFORTH AV FS 
WARDEN A V  BT. CUIR IEGLINTON A V  ]NS 

IISLINGTON P V  POVAL YORK POAO 
kPLING hv LSLINGTON 

 ILS SON 1 1 € 1 1 

AV  VENUE POAD YONGE )ST 
WILSON AV ~ATHURST PT !VENUE POAD ptv 
WILSON AV PUFFERIN P T  ~ATHURST P T  
WILSON - k v  DANE IST ~ E L E  

~ O O D B I N E  
1 1 - 1 1 I 1 

pv PANFORTH pv ~ C O N N O R  PR p s  
WOODBINE )4v PUEEN PT PNGSTON POAD p S  
YONGE PT PUNDAS )ST ~ A R L T O N  PT t ~ s  
YONGE b T  BHEPPARD hv FINCH b V  lNS 
~YONGE 

I . m 

IST IST. CLAIR kv ~EGLINTON k v  k s  1 
1 1 1 1 1 

- 

ORK MILLS ROAQ BAW~EW k V  LESLIE (ST 1 
)YORK MILLS 

I I I 

kOAD b O N  MILLS ROAO MCTORIA PARK k V  1 
1 1 1 i 1 I 

YORK MILLS POAD CESLIE IST p o ~  MILLS POAD pt 
YORK MILLS POAD PONGE PT p ~ w m  )9v 



AQPENOIX B 

PROCEDURE TO ESTIMATE MlSSlNG COUNTS 



INTRODUCTION 

The purpose of this paper is to describe a procedure to estimate the Annual Awrage Daiiy Tram (AADT) 
for the years that trafk counts are not amilaMe at intersections. This work originated ftom a research project 
at the University of Toronto that stud'ied the dewlopment of accident predidion models (APM5) at signalized 
and unsignaleed intersedions. In this projed, the modeis incorporate the year-to-year wriaüon or accident 
trend (1). A complete database is requned wheneer this type of model is used; indeed, the employment of 
incomplete data may lead to biased rnodels (2). 

The original database consists of 1,551 intersedions located in Toronto, Ontario. They are under the 
juridiction of Metro Transportation (the transportation agency of the City of Toronto). This database prouided 
data for the creation of several APMs with trend. In order to have reliable models, a large sample S Q ~  and 
detailed information on each intersedion in the sample are needed. In addition, it is important to ha* data 
fcr as many years as possible. Unfortunately, since the field recordmg of traffic counts is expensiue and the 
resources of Metro Transportation (or any other transportation agencies) are limited. traffic counts can only 
be recorded for a restricted number of sites each year. These counts are also recorded during a lirnited 
number of hours. For instance, aî Metfo Transportath, traffic counts are performed at intersections ewry 
two or three years. They are also recorded for a total of 8 hours per day (6 hours during the peak periods and 
a 2-hour off-peak period). ît is, therefore, necessary to e t i i a t e  the counts of the misshg pars  for e w y  
intersection in the sample. Thus, this paper presents the steps and the procedure that was used to estimate 
the missing trafic counts at these 1,551 intersedions. The estimation of hourly flows s also descfibed in this 
procedure. 

Four steps were required to estimate the missing traffic fiows. The first step inwlved the ewansion of 8-hour 
trafic counts to Annual Aerage Daily Traflk (AADT) for ewry mowement at an intersedion: lefi-tums, 
through, and Rght-tums of each kg. The expansion was performed for the years for which counts are 
available. The second step dealt with the estimation of the missing AADTs for ewry intersection. In this step, 
the AADT of eery movement was summed to create the total enteririg flow for each intersedion. The third 
step consisted in the creation of hourly tram factors based on the available 24-hour counts prowided by 
Metro Transportation. The final step pertained to the estimatiin of hourly traffic counts based on the factors 
performed in the third step. An example is presented in each step to better illustrate the procedure. 

DATA 

The original database obtained from Metro Transportation consists of two types of computer file. The first 
type pertains to traffic counts that are performed at signalized intersections by obsemrs (8-hour), while the 
second type consists of traffic counts that are recorded on city streets by automatic counters (24-hour). The 
traffic flow data is amilable from 1985 to 1996 for the obsenied counts, and from 1992 to 1996 for the 
automatic counts. For each type, a different computer file e#sts for eery year of available data. 

Obsemd traffic counts are perfomied at intersections during the moming, mid-day, and aftemoon peaks, 
and one off-peak period. Two-hour counts star1 at 7130 a.m., 11 :O0 a.m., and 4:00 p.m. for the peak periods. 
For the off-peak period, traffic counts are performed for 1 hour in the moming and aftemoon starting at 10:OO 
a-m. and 2:00 p.m. respectively. Traffic counts are dWed into 15-minute periods and include al1 possible 
movements at an intersection (e.g., 12 movements for a 4-legged intersedion). This type of traffic wunt is 
recorded at the 1,551 intersections. 

For the second type, traffic counts are colleded between intersections for a 24-hour period by automatic 
counters. These counts are dMed  into 15-minute penods for a total of 96 periods per 24-hour. They are 
perfomied for a minimum of 24 hours (defined as 1 count) and can be recorded up to an entire year (defined 
as 365 counts) for permanent countng stations. In addltnn, these counts are amlable for both tfa\ieliig 



diecüons on the street where the automabic counters are placed on.The24-hour counts are used to estniate 
hourl y factors of iitersections de- R the fiRti section. 

The second type of traffic counts were performed 28,042 thes behNeen 1992 and 1996. h other words, 
28,042 24-hour counts are amiable to estniate hourly factors. Howewr, durhg a prelhmary analysir, 1 
was discoered that manytrafk counts had recordmg errors. For hstance, some automatk counters dki not 
record traffïc flows for mrious üne pemds (a series of Os dumg these periods reflected th6 error). h order 
to mnhPe the number of errors, each 24-hour count was screened to remow any suspwus recordngs. 
This procedure was perfomed by compamg tram flows between d-rent t h e  pernds and emmming if 
these flows reflected the actual flow for that tine period (e.g., a traffic count at 4 am. that 6 much hgher 
than the one at 9 a.m. would be nagged as a suspicious count). Ail traffic counts were also wrWâ for 
abnomality by iookmg for a hgh number of sequential Os. Th6 process lead to new a sample of 24,381 
trafïïc counts. These counts were performed on 639 road sections. 

EXPANSION FROM 8-HOUR COUNTS TO AADT (lm STEP) 

Semal ewansion factors were used to transfoml 8-hour obseW traffic courrts to AADT. These factors 
were created by Metro Transportaîbn from thei permanent countng stations. The egansion factors are 
dWed into f k  categories. The flst category conssts of roads which are classified as freeways or 
ewressways. The second category pertams to roads located m the downtown are .  The ewansion fadors 
used m th6 category are the ones created n the '80s by the Market hwstigation SerUces of the Tram 
D'&ion, as data is not yet awlable from permanent counWg stahions. More accurate eqmnsion fadors are 
currently behg corn puted for th6 category. The thid category ncludes roads that are classllied as suburban 
arterial roads. The fourth category conssts of roads m mdustrial and commercial areas. The last category 
refers to roads that are c lassM as reskiential streets. 

For each category, a different ewansion factor e m  for the day of the week and the month of the year. 
Therefore, there 6 a total of 84 ewansion factors (7 days x12 months) for eacb category. One should note 
that each leg of an iitersecthn 6 cla- accordmg to one of the f k  categorks. 

For each leg of an iitersection, the appropriate factor was read from the lÎst of ewansion factors and wrüen 
nto a spreadsheet manually. Table 1 shows the ewansion factors used for the htersection of Da*ùle and 
Mount Pleasant Aenue for 1996; the trafk count was performed on Thursday, July 18. Then, each fador 
was mult@lied by the total 8-hour trafik counts of each approach to ewand the results to AADT. This 
procedure was performed for the 12 pars of amlable data (1 985 to 1996) and for ewymtersectïon. Tables 
2a and 2b (see page 4) llustrate the results of the mult@lication of the ewansion factors wth the traffic 
counl for each mowment of Da&\1te and Mount Pleasant Simlar calculatbns were prepared for each 
htersection when obseners counted tram. 

TABLE 1. Expansion factors for Davisville and Mount Pleasant 
for Thursday, July 18,1996 

Approach 

1 Resilential Street (5) 1 2.006 1 

North 

South 

Road Type Ergansion Factor 

SubUrban Arterial (3) 

Downtown Merial (2) 

West 

1.991 

1.857 

Resaential Street (5) 1 2.006 



ESTlMATlNG ENTERING FLOWS (AADT) FOR THE MlSSlNG YEARS (2" SmP) 

The htersection of Da*\lle and Mount Pleasant is used to llustrate the steps taken to esdniate the mkmg 
AADTs. The AADT of each moement was mitially added to compute the total entering flow of the 
iitersection. Table 3 shows the total entemg flow for the Mersedion of DatWle aiid Mount Pleasant 
between 1985 and 1996. 

TABLE 3. Total entering fiow for Davisville and Mount Pkasant in vehicles per day 

The task 6 to estmate the total entemg AADT =lues of the missng pars. To fil ii the blanks, we assume 
that the traffic from year-to-par 6 made of two components. The fist component represents a Toronto-de 
change, common to al1 roads. The second component is speck  to each road and is approfiatelylinear. 
The procedure used Ml be ilustrated by numerkal emmpfes usng the aforementioned ntersedion. 

To estinate the Toronto-wide change, the awage entemg flow of each ntersedion was calculated. Thus, 
for the abow htersection the awrage entemg flow forthe years m which counts were perfomed was 47091 
W. Then, each enterhg flow was dWed bythis aterage to normalized the entemg flow. Therefore, the 
row of numbers should ha= a mean of f . Table 4 shows the normalized entemg flow for Daedle and 
Mount Pleasant. 

TABLE 4. Normalized entering flow for Davisville and Mount Pleasant 

The process described abow was performed for each ntersedion ii the database. The mean of the 
norrnaléed entemg flows was then computed for each year to estmate the Toronto-wüe change. The 
results are presented h Table 5 and F Q U ~ ~  1. Dumg th6 process, s~ntersections were remowd from the 
analys6 due to traffic count errors. 



TABLE 2a. Original traffic counts (8-hour) per movement for Davisville and Mount Pleasant in vehicles per hour 

North Approach South Approach East Approach 
- - 

West Approach Total 

TABLE 2b. Expanded traffic coiints (MDT) per movernent for Davisville and Mount Pleasant in vehicles per day 
- 
Total North Approach South Approach East Approach West Approach 



TABLE 5. Means of normalized entering flows 

Number of M a n  
htersections M e x  

1 -04 

1 .O2 

1 .O0 Q: u = 0.98 
a, 
0, g 0.96 
> 

0.94 

0.92 

1,1,1987 lOBB 1- 1990 1991 (992 1993 1994 1995 1996 

Years 
FIGURE 1. Toronto-wide average normalized entering flows 
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In preparation for the ne& step n whch we estmate the trend that iE specilic to each intersection, we ha= 
to remou? the Toronto-de trend from the nomalized enterhg flows of each mtersection. We do th6 by 
adjustng the normalized mdexof each intersecnion wth the awage nonnalized mdex For ewrnple, the 
nomalized entemg flow and Toronto-Me nonnaluecl entemg flow h 1985 for Da*Jle and Mount 
Pieasant were 1 .O88 and 0.906 respecthiely. Was the Toronto-de trend absent, one should e q m t  the 
nomalized entemg flow to be 1 .O88 / 0.906 = 1 201. This process was performed for eeryyear. Ail entering 
flows were siniiarly adjusted. 

Once the norrnaléed entemg flows were adjusted, a Inear equation was fkted for each mtersechion. The 
equation of the fil'ted Ihe 6 of the form: 

where, 
Y = fitted adjusted nomalized ente- low 
a, p = parameters to be estbnated 
x= number of Fars shce 1985 

When fewer than two counts were adable. a was set to be the aierage of the entering flows and P = 0. 
M e n  more than Iwo counts were amiable. the Ime was îüed by the least square rnettiod. For the 
iitersection used for iilustration. a = 1 -174 and $ = -0.028. 

The standard deiation of the estmates, o(AADT), was computed according to the methodologyde~loped 
by Hauer (3). Frorn th&, we can obsenie that the standard deUation 6 a fundion of the standard deation 
of each kMersection and the Toronto-de trend sinuilaneously. Two standard debtbns can be cornputeâ 
dependhg if a site has more than two counts awiable. Equation (2) 6 used for sles wBh l e s  than two 
counts whle equation (3) 6 used for saes vdh more than N o  counts: 

where, 
a(AADT) = standard deiation of the esünated entemg flow 
MI = regional-wile mean mdex 
AC = awage count 
a = 0.1638 
VAR(@ = 0.007 
n = nurn ber of counts for each sle 
x= number of pars snce 1985 



The standard deiation esünated by equation (3) 6 perfomed through the least-square method. R 6 only 
used for the purpose of Ilustration. For more mfonnaüon on the computatsn of the standard deiation of 
the esthates, the reader 6 referred to appendw of Hauer's paper (3). 

The estmateci entemg flows calculated from equation (2) were then re-adjusted to restore the Toronto-wüe 
trend. The results for the ntersectbn used m the Ilustration 6 presented m Fgure 2. Note that the standard 
deüation indkated ii th& figure 6 the one for estinated entemg flows. Th6 6 not the standard deabion 
of the traffic counts. 

Years 

FIGURE 2. Estimated entering flows (AADT) and traffic counts 

The entke regression analys6 was performed wih a computer program M e n  in QuickBASK: (4). This 
program was adapted and m o d M  from the orignal program m e n  by Hauer (9. The modkation was 
requred to use the Toronto database as input 

ESTlMATlNG THE TRAFFlC FLOW FOR EACH APPROACH AND MOVEMENT (3RD STEP) 

Once the entemg flow of each mtersection 6 estknated, we then need to re-assign the total entemg flow 
to the respectk leg and moement For each awlable count descrbed n step 1, the tram flow (AADT) 
of each mo\iement was diilaed bythe total entemg flow for eery htersecüon; defned here as a proportion 
of the total entemg flow. Then, the awrage proportion of each rn~ternent was computed M e n  more than 
one p a r  of data was atelable. There 6 a possblRy of 12 dmerent proportions for any g k n  ntersedion, 
(4 legs multplied by 3 moements). Th6 process was also canied out wth a computer program m e n  m 
QuckBASiC. 

To continue wifi the same ewrnple, the twele proportions for Da*ale and Mount Pleasant were 
computed by diriidmg the -lues of the dflerent motements found in Table 2b d h  the total entemg flow 
also found i~ th6 table. The results are shown n Table 6. 

On ce the proportion of e w y  mowrnent was computed, the îlows were then re-assgned to ther respecthe 
leg and motement. Th6 was perfomed by multpl@g the total estknated entemg flow (computed in step 
2) bythe proportions calculated abow. The te-assignment process was condudeci for ewryntersedion and 
for e-uery Far. Table 7 llustrates the product of th6 procedure for DaaJle and Mount Pleasant The 
number inskie the parentheses represents the standard deiatbn of the estmatecl flow. 



f ABLE 6. Proportion of traffic from the total entering flow for Davisville and Mount Pleasant 

North Approach South Approach East Approach West Approach Total - 



TABLE 7. Re-assigned flows for Davisvilk and Mount Pkasant per approach 
and per movement in vahicles par day (MOT) 

Approach 

Mowment 

1 The number iisde the parentheses b the standard deation 1 

Approach 

Mowment 

Total 

The e~ec ted  wlue and standard dedaüon were estinated M h  the use .of the moments of a produd and 
are dethed by the followhg equatnns (5): 

Equations (4) and (5) are used for the product of two independent uiriables. In our case, we ha= our total 
entemg flow, 43736 qd, defiied as X and the estinated proporüon, descrbed m Table 6, defbed as Y. 
Equation (5) s only used for the purpose of Ilustration. 

North 

15291 
(2669) 

ESTlMATlNG HOURLY FLOWS (4'' STEP) 

Rght 

588 
(20s) 

East 

6185 
(1 1 55) 

In order to esthate hourly factors, one has to use the 24-hour traffic counts. These counts show the traffic 
flow pattern for an entie day on wious streets in Toronto. The traffic flow pattern 6 then used to create 
hourly factors. For each 24-hour period, traffic counts are grouped hto 24 penods, each period representhg 
a different hour. The hourly factors are computed by diudng the number of =hicles m each period by the 
total number of whicles for that 24-hour. For the road sedians that had more than one day of counts, the 
awage daly traffic flow pattern was computed. Fgure 3 shows the traftk flow pattern for North (or South 
Bound) leg of DaUsdle and Mount Fieasant. An automatic counter was placed on the North skie of th6 
fitersection. One can note that no standard d e a n  was computed as only one 24-hour traffic count was 
perfomed at th6 ritersection. 

Total 
1 

3251 7 

South 

17226 
(2783) 

RQht 

1232 
(344) 

Rght 

966 
(277) 

Through 

13485 
(2400) 

1 

LeR 

1218 
(21 3) 

11219 

J 

1 43736 1 I I 

West 

5034 
(1 630) 

Through 

3536 
027) 

Through 

15732 
(2535) 

Right 

525 
(155) 

Left 

1418 
(337) 

LeR 

528 
(142) 

I I I 

Through 

3737 
(1505) 

Leit 

772 
(224) 
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FIGURE 3. Traf'Cic flow pattern for the SB approach of 
Davisville and Mount Pieasant 

The strategy adopted to estmate houdy factors for each of the 1,545 htersedions (1,551 - 6) consisted of 
ushg the 24-hour traffic counts located on one or more of the approaches of these mtersections: the 
automatic counters are usually placed besae an mtersedàn. Th6 strategy mcreases the relïablliy of the 
traffic flow pattern as the counts are performed right beskle that mtersection. Smce the 2dhourtraffic counts 
are performed sinultaneously for both traelmg diections, one has mformatbn for at least two approaches 
of an fitersection. For hstance, an automatic counter located on the South approach would proYde the 
traffic flow pattem for both the South and North approach. For the mtersedions that did not halie a traffiz 
flow pattem on anyme of thei legs, the awrage traffic flow pattem of the other awlable approaches were 
used. 

Unfortunately, the strategy descrbed aboe has some liniations. Snce only639 of the 1,546 fitersections 
ha* 24-hour counts perfomed on one of thei  legs, an aiternathe strategy to esthnate the traffk flow 
pattern for these ntersections was used. The altemate strategy consbted of creathg an aerage Toronto- 
wde traffic flow pattern or houriyfadors accordhg to the awrage cornputecl from the 639 road sections. Th6 
strategy was used for Mersections that d a  not ha= a 2dhour count on one of Rs kg. The Toronto-wüe 
traffic flow pattern was applied to each leg of these ntersedions. 

Once these hourly factors are created, estinated daly flow (AADT) for each moement of an htersection 
6 multiplied by these factors. Therefore, for a 4-way mtersedion, the 12 daly flows are rnult@lied by the 
houriy factors. This step enables us to estinate houriy flows for dinerent period of the day. h particular, one 
can attempt to model nighttine accidents (e.g., 9:OO p.m. to 6:00 a.m.) or momhg peak period accidents 
(e.g., 6:00 a.m. to 9:00 a.m.) more accurately. 

Figure 4 shows the hourlyflows for the through moement of the Southbound (SB) approach m 1996. This 
f ~ u r e  also shows the actual t r am counts performed on f hursday, July 18,1996. R 6 inportant to note that 
th6 count is not an adjusted annual awrage. The fgure llustrates mat a small discrepancyeJ&ts between 
the actual counts and esünated flows. This can be e~ lamed by the fad that the hourly flow was computed 
on a different day than the actual count Howeer, the estinated traffic flow pattern appears to follow quae 
well the flow pattern of the unadjusted counts. The standard deùatbn m Fgure 4 was also estinated witi 
the properties of equaüons (4) and (5). 
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FIGURE 4. Estimated 1996 tiaff~c counts for diffsrent time periods for the 
through South Bound approach of Davisville and Mount Pleasant 

OUTPUT 

The final output cons- of two computer fies. The output had to be separated nto two dbtnct fies to 
reduce the sèe of the computer fies. h fact, many spreadsheet software packages are unable to handle a 
hgh number of columns (24 hourly factors x 12 moements = 288 columns). The fmst fie mcludes the 
estknated AADT for e w y  leg and mowment for each ntersection between 1985 and 1996. The second fie, 
for the same htersections, comprbes a l  hourly factors descrbed m step 4. At the acdent predidion 
modelng stage, one just need to mult@ly specitic columns of each fie dependng on specitic tkne penods 
that the modeler s bterested h. 

SUMMARY AND CONCLUSION 

In the estinatbn of mtersection safety, 6 inportant to ha= mformation on tram flow and accklents for 
as many years as possble. Th6 particularly knportant when one mtends of usng APM5 wth trend. 
Unfortunateiy, trafîïc counts are not performed at eery ntersedion for eery par. Thus, the obje- of 
th6 paper was to descrbe a procedure to estmate the missflg AADT wlues and hourly flows at 1,551 
intersections located in Toronto. Ontario. 

Four steps were requred to estinate the misshg traffic flows. The ewansbn of 8-hour traffic counts to 
AADT for each moement of a k g  was e ~ l a h e d  n the frst step. The ewansion factors were prolaed by 
Metro Transportation. Then, the esthnation of the misshg AADTs for each iitersedion in the database was 
presented h the second step. The traffic flow of each k g  were nh l l y  added to create the total enterng flow 
for each intersection for e w y  lyear. The m b s i  entemg flows were then estniateci w ü ~  a computer 
program wrltten in QuickBASC. The re-assignrnent the total esünated entemg flow to the respediire k g  
and mowment was descrbed ii the thid step. To do so, the estmated entemg flow was multplied by 
specific factors (defiied as proportions) computed wth the data descrbed ii the fikt step. The estinalnn 



of hourly flows was ewlahed n the fourth step. To compute the flows, a 2dhour tram flow pattern was 
created for each htersection m the database. Then, the daly flow of each k g  and mowment was muîtiplkd 
by the respectk trafk flow patterns. 

The fhal output was subdirided iito two computer fies. The fist fle contams the dumes m AADT for e w y  
hterçection whle the second fle mciudes al1 the hourly factors for eery mtersection. At the modelmg stage, 
one needs to multiply the two fies together accordmg to the period of t h e  beng modeled or other 
characteristics. WUi accaents and traffc flow amgable for eery year, It 6 belieuxi that one can del~lop 
more accurate and robust M. 

The four-step procedure shows that misshg tram counts and hourly flows can be estinated accurately. It 
6, howeer, suggested that localked tram counts be used to adjust the esünated flows whenew possble, 
as descrbed in step 4. Th5 5 partkularly inportant for APNk mat are deelopeci for diïferent t h e  penods. 
The procedure proposed m th6 paper can be e r y  t h e  consumng ir an agency does not ha= COmp~ter 
prograrns that could handle the procedure. Thus, P s ad- to automate the wrious steps to reduce the 
amount of work whch 6 requied to use the procedure. 

Acknowledgments: The author would Ike to thank Jin Smth and Blai  Lagden of the Traffic Data Centre at 
Metro Transportation and Mirtara Hailer of the Unhrsty of Toronto LUTE Group. 
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APPENDIX C 

THEORY ON THE GENERALKED EST IMATING EQUATIONS 



INTRODUCTION 

Longitudinal studies play an important role in social and health sciences, particularly in the 
domain of medicine and epidemiology. They are primafily used when measurements are 
repeatedly collected for the same individuals in order to examine the time-trend effect of 
drugs and treatments among others. In these studies, multiple observations on the same 
individual often, if not always, produce a data set that has a positive temporal correlation. 
Regression models are very useful when one is interested in examining the relationship 
between an outcome and a series of wvariates. These models always assume that the 
covariates are independentfrom one another. However, since a temporal correlation exists 
for repeated measurements, these models are not suitable when one is interested in 
studying the time-trend effed of the outcorne. The generalized estirnating equations (GEE) 
procedure proposed by Liang and Zeger (1) .  and Zeger and Liang (2) enables a modeler 
to develop proper and unbiased statistical models for repeatedly measured data. mus, the 
objective of this paper is to present the application of the GEE procedure to traffic safety 
studies when several years of data are available. The GEE procedure is particularly useful 
for accident prediction models (APMs) that incorporate trend. To illustrate the application, 
the GEE procedure is used to develop APMs from a sample of 4-way signalized 
intersections. In this paper, we further investigate and compare the application of 
traditional APMs with APMs with trend (defined as time effect models in this context). 

The use of longitudinal studies in traffic safety can be very beneficial. For instance, they 
can be used to examine the trend in the expected number of accidents. Indeed, for "before 
and aftef studies, the accident trend during the before period can be used to predict more 
accurately what the expected number of accidents would have been for the after period. 
Similarly, APMs that include trend are able to capture factors that Vary with time as 
opposed to traditional models such as changes in traffic flow, in weather, in economic 
situation, in the criteria of a reportable accident. Models that include trend often provide 
better estimates than traditional models. 

In the traffic safety literature, few methods have been proposed on how to estimate the 
coefficients (a@) of APMs with trend. For instance, Maher and Summersgill(3) proposed 
an iterative solution based on a method known as "constructed variables" presented in 
McCullagh and Nelder (4) to find the proper estimate of the coefficients. They suggested, 
however, that the year-to-year relationship in modeling should be avoided whenever 
possible because of the difficulty in handling the temporal correlation. A variation of this 
iterative solution is also presented in Mountain et al. (5). These authors used an approach 
proposed by Atkinson (6). Hauer (7) put forward a multinomial maximum likelihood function 
to estimate the coefficients. This function made use of severai assumptions and 
implications. Hauer's function is classified as a transition mode1 (TM). Shankar et ai. (8) 
applied random-effeds models (REM) for median cross-over accidents and the coefficients 
were estimated with the maximum likelihood method. They used a REM proposed by Guo 
(9). TM and REM are discussed in a subsequent section. 



The methods proposed above are quite useful to estimate the coefficients but, with the 
exception of the TM, none take specifically into consideration the temporal correlation, as 
opposed to the GEE procedure; the TM makes use of the temporal correlation but their 
application is quite different than the GEE procedure. Some of the methods are also 
cumbersome to use and need numerous mathematical manipulations which may be out 
of grasp for the average modeler. One should always try to incorporate the temporal 
correlation in the estimation of coefficients. If it is not, the models may be mispecified or 
inadequate leading to biased estimates. The problem can be more important for models 
that include many covariates, especially when some covariates are marginally significant, 
and have highly correlated data. 

The main advantage of the GEE procedure relies in its direct use of the temporal 
correlation in the estimation of the coefficients. The procedure can be used even if the 
extent and the type of correlation is unknown. Several statistical software packages 
already have a built-in GE€ function which facilitate its application. However, it is important 
for the modeler to understand the underlying theory behind the GEE in order to apply the 
procedure properly. Thus, this paper presents the tools to apply the procedure 
appropriately. 

The appendix is separated into three sections. In the first section, the problem associated 
with temporal correlated data is briefly addressed. The techniques used ta estimate the 
coefficients of traditional APMs are explained in the second section. The characteristics 
of longitudinal studies and the GE€ procedure are presented in the third section. 

PROBLEM DEFINITION 

In order to have APMs with more significant coefficients, one has to have data on 
accidents and other characteristics (wvariates) for as many years as possible. With many 
years of data, it is possible to examine the year-to-year variation or trend in accident 
counts and capture the influence of factors that change every year. In order to examine the 
year-to-year trend and the influence of factors, the data has to be separated by year (or 
any other time period) where each year is treated as a separate observation. 
Unfortunately, the disaggregation of the data in this manner ueates a temporal correlation 
within the data set. To illustrate the temporal correlation, wnsider this simple example. Let 
a time effect linear model representing the measurements of two groups of people (i=l or 
i=2) be the following for time t=0 and t=l (IO): 



where, 
Y, = the measurement on the subject i at time t; 
t = the measurernent at time t=O and t=l ; 
et = random errors, E~N(O,$); 
Pol B, = coefficients to be estimated. 

The least squares (LS) estimate of the coefficient P, is the following: 

The variance of the LS estimate 8, then becomes 

In equation (3), p represents the temporal correlation for the subject i If the observation 
is positively correlated ( p O ) ,  which often occurs when repeated measurements are 
performed for the same subject (or site), the variance of P, will become overestimated. In 
this case, the modeler may arrive at a wrong conclusion when she or he examines the 
model's outcome. More generally, ignoring the temporal correlation may also have an 
impact on the proper selection of coefficients as some coefficients may be rejected 
because of the inflated variance. If the variables are tnily independent the value of p=O. 

ACCIDENT PREDlCTlON MODELS WTHOUT TREND 

The coefficients of traditional APMs cannot be estirnated by ordinary linear regression 
such as the LS and weighted least squares (WLS) methods. These methods cannot be 
used since the variation in the number of accidents should be described by a discrete 
distribution; the variance in the number of accidents increases as the flow increases; and, 
the number of accidents cannot be negative. The coefficients of such APMs are usually 
estimated by the generalized least square methods and the models are usually classified 
as generalized Iinear models (GLM). The GLM are briefly reviewed here but an extensive 
description can be found in McCullagh and Nelder (4) .  Dunlop (10). and Myers (1 1). 

The GLM were introduced by Nelder and Wedderburn (12) who examined the relationship 
between a general family of error distributions and linear regression models. The normal 
distribution of errors is in fact a special case of the GLM. The GLM were put forward to 
overcome the limitations of the WLS (and LS) regressions, as described above. In 
addition, traditional models also assume that the relationship between the different 



covariates is Iinear in nature which is not always true. For instance, a phenornena that 
fotlows a binary process cannot be evaluated by an additive model. 

GLM usually consists of three components: 

1 . The random component, Y, that has to be part of the exponential family distribution. 
Consequently, there is no assumption that the variance VAR&) is homogeneous. 
However, it is assumed that y, varies with the x's through alone. 

2. The systematic component the covariates x,, x,, ... , x,, that produce a linear 
predictor given by 

3. The link function, g(9 that connects the random and systematic components given 
by IJ = rl and rli = g(IJi)- 

The third component basically means that and r )  are in fad identical. The important 
property of the GLM is that the random component, hence the density fundion (or 
probability function in the discrets case), has to be part of the exponential family (e.g., 
normal, Poisson, binomial and the like). In the context of traffic safety, it is often assumed 
that accident counts follow the Poisson or negative binomial distributions (13, 14). There 
exist many model forms, but the most wmmon one (for intersections) is usually the 
following: 

or the GLM linear version 

I~(E{K)) = Wa) + P, WF,) + P 2 W 4  , 

where, 
E{K)= the expected number of accidents per unit of time; 
F,, F, = the entering flows (vehlday, vehlhour, etc..) on the major and 

minor roads respectively; 
a, p,, PZ = coefficients to be estimated. 



It is not our goal to explain every characteristic of the GLM as it is explained elsewhere (4) 
but one can find the estimate of 6 by equations (6) or (7). The first equation is the following 
( 7 7, pg. 346): 

where, 
e = (Y - p) = (y - g - '(m)) since XP = g(u); 
A = a diagonal matrix that refiects the Iink function. 

The diagonal of the matrix , Q(i=l, 2. 3 ..., n), is given by 5 ,  = ai 
al(, P, 

The variable 8; of the diagonal matrix of equation (6) is defined as the link function 
between /J, and x$. Equation (6) is solved by the maximum likelihood procedure. 
McCullagh and Nelder (4) proposed a variant of the Newton-Raphson method to find the 
solution of the Iikelihood procedure. 

The estimate of the coefficients can also be found by solving the following equation (4, pg. 
333): 

where, 
IJ = s-'(XPL 
V = diag [a,', a:. ... , un? ; 

The solution of equation (7) can be quite extensive, particularly if the matrix Vis a function 
of p. Green (15) proposed an iterative weighted least squares method which uses the 
estimate of the mean to estimate the weight matrix at each step. The matrix is then used 
to estimate the values of the B. One perfoms theses steps until convergence occurs. The 
covariance matrix of the GLM is given by cov(8) = a2(f  V ' X)-  ' . 
The application of APMs without trend is well developed and the reader is referred to the 
work of Kulmala (13)) Nicholson and Turner (14), Hauer et al. (16). Miaou (17), and 
Persaud and Nguyen (18) for a detailed explanation of these models. 



LONGITUDINAL STUDlES 

Longitudinal studies are basically an expansion of the traditional GLM in which a second 
dimension is added in the analysis. In the models described in the previous section, each 
subject (individual, site, etc..) was measured only once. In longitudinal studies. the 
subjects are measured more than once, usually observed at a different time t. At this point, 
it is necessary to introduce a new set of notations. 

Let the subjects i = 1, ... , / be ascertained at time t = 1, ... , q- 
I 

The total number of observations now becomes N = Ti- ,= 1 

The outwme vector for the observation j can be defined as Yi = [Y,, ... ,&)'and the 
covariates defined as X, = [q,. ... ,&)'. 

The mean and the variance of observation i are €(Yi) = v i  and VAR(Yi) = V, 
respectively. where the tk element of the li x matrix V, is the covariance between Y, and 
Y, denoted by Cov(Y,, 

Generally, longitudinal 

Y,) =v,; k t  tfor k =  1, ..., K.. 

models have the following fom: 

= Po + P,x, + - - -  P#@ + 

Y, = d#+e, 

where f3 = (Po, ... , Pp) is p-vector of coefficients to be estimated. The matrix notation for 
equation (8) is 

where K. is a ni x p matrix with x, in the F row and c ,  = (e,,, ... ,eh). 

Before explaining the characteristics of the GEE, we need to describe the different 
applications of the GLMs to longitudinal data. The applications can usually be grouped into 
three categories: marginal, random effects, and transifion models. These three categories 
are briefly described below. As the reader will find out, the application of the models varies 
depending on the type of outcome sought. The characteristics of the models described 
below are taken from Chapter 6 of Diggle et al. (19). 



MARGINAL MODELS 

In a marginal model, one attempts to model the marginal expectation, E(Y& in relation to 
a series of explanatory variables. In other words, one tries to model the average response 
over a population that share a wmmon value of x. As an example, the GLM described 
above would be considered marginal models. The characteristics of marginal models are 
the following: 

1. The marginal expectation of the response, E(YJ = p,, depends on the explanatory 
variables, x, with the link function h(pJ = x : ~ ;  

2. The marginal variance depends on the marginal mean according to VAR(Y3 = 
v(pn)@ where vis a known variance function and @ is a scale parameter which may 
have to be estimated; 

3. The (temporal) correlation between Y, and Y, is a function of the marginal means 
and perhaps of additional variables A, Le. Corr(Y,. Y,) = p(p,, pik; A) where p(-) is 
a known function. The vector A is used to describe the correlation type (e-g., 
independent, dependent, autoregressive, etc..). 

In the evaluation of traffic safety, most APMs with trend, desccibed in the introduction, are 
classified as marginal models. 

RANDOM EFFECTS MODELS 

Random effects models are used to assess an outwme when the regression coefficients 
Vary from one observation to the next. This is in wntrast to marginal models where the 
regression coefficients are assumed to be the same for every observation. The variability 
behrveen the observations can be explained by the inwmplete information (or unmeasured 
factors) that a modeler has about the sample. It is assumed that the regression coefficients 
Vary from observation to observation according to a distribution, F. This kind of model is 
rnost useful when the goal is to make inferences about the actual observations rather than 
the population average (as perfomed for marginal models). In addition, this kind of model 
further assumes that repeated observations for a subject are independent. The 
characteristics of random effects models are: 

1. Given U,, the responses Y,. ... . Yb,, are mutually independent and follow a GLM with 
a condition probability function f(y,lU,). The conditional moments are 
E(Y,I U,) = u,and VAR(Y',I U,) = v, respectively, where v is a known variance 
function. The link function is = d#' + d,'Ui where d, is a subset of x, 

2. The random effects, (I, i = 1, ... , 1, are mutually independent with a wmmon 
underlying multivariate distribution, F. 



TRANSITION MODELS 

Transition models (often known as autoregressive models) are used specifically when a 
temporal correlation among Y,,, ... ,Y', exists and that the past values, Y,, ... . Y,-, , directly 
influence the present observation. In this case, the past observations are treated as 
additional explanatory variables. The transition models can be defined as follows: 

1. Let H, = w, ... . y - , )  represent the past values for the observation i Furthenore, E let E(Y,IV = u, and VAR(YRIHp) = v: be the conditional mean and variarice of 
Y, respectively. 

L 

2. Given H, the link function and the variance are h($) = x$' ' + fAH&A) and 
v, = v(vg))0 respectively. r= j 

As shown in the link function of point 2 above, the past outcomes are transfonned by the 
known function f, and are redefined as additional explanatory variables. 

THE GENERALIZED ESTlMATlNG EQUATIONS PROCEDURE 

The coefficients for the three models above can be estimated using the traditional 
maximum likelihood methods. One should be careful, however, that every model should 
be correctly specified, especially for the latter two. In the case of marginal models, the 
likelihood function cm, in many instances, be very complicated to define and solve. For 
instance, additional assumptions are routinely needed to specify the Iikelihood function of 
non-Gaussian data. And, even if these assurnptions are made, the likelihood often involves 
numerous nuisance parameters that must be estimated in addition to the explanatory 
variables. To overcome this difficulty, an alternative method known as the GEE was 
proposed by Liang and Zeger ( I ) ,  and Zeger and Liang (2). The GEE approach is 
classified as a multinomial analogue of a quasi-likelihood function. The estimate of the 
coefficients can be found with the following equation: 

where D =av / ap. The only difference with equation (7) is that the matrix Vnow contains 
nonzero elements outside the diagonal. As described in the second section, repeated 
measurements are usually positively correlated. The temporal correlation can be 
described by a ni x ni matrix R(A), where A represent the type of wrrelation with 
A = [A,. . .. .A,- ,]' and A, = Y,) for t, k = 1, ... , n- 1 t#k, and ni is the number of . 
subjects. Therefore, the new covariance matrix now becomes: 



where A, is an ni x ni matrix with diag[V(vi,), ... V(v,)]. The covariance matrix is given by 

One can find the solution by simultaneously solving equations (1 1) and (12) with the 
iterative reweighted least squares method described earlier (75). This method is necessary 
since the estimates of both Pand A need to be found. 

In order to solve the GEE correctly, every element of the correlation matrix Ri have to be 
known. However, in many instances, it is not possible to know the proper correlation type 
for the repeated measurements. To overcame this drawback, Liang and Zeger ( 1 )  
proposed the use of a 'workingn mattix @ of the correlation matrk Yi which is based on 
the wrrelation matrix $. The estimate of the coefficients is found with the following 
equation: 

The covariance matrix of equation (13) is given by 

The proposed methodology above, Le. in equations (13) and (14), possesses one very 
useful property. The coefficient 6 nearly always provide consistent estimates of fleven 
if the matrix V, has been irnproperly estimated. Thus, the confidence interval for flwill 
always be correct even when the covariance matrix is inwrrectly specified. Therefore, it 
is not necessary to examine the type of temporal wrrelation beforehand (independent, 
dependent, etc..). Techniques on how to analyze and interpret autocorrelation can be 
found in books on time series analysis such as the ones by Box and Jenkins (20) and 
Giggle (21). One important drawback, however, wmes with this property. In order to 
assume that @ is the proper estimate of P, it is required that the observation for each 
subject be known and available. If missing values exist, the estimate of the coefficients 
may be biased. The extent of the bias is influenced by the type of missing values, e.g. 
random or informative. Note that in the case of l?, = Vi, equation (14) becomes the 
covariance matrix of equation (1 2). 
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APPENDIX O 

THEORY OF GRAPHS AND DANTZIG ALGORITHM 



NETWORK THEORY 

As discussed in Chapter 2, a transportation network is defined by a series of nodes and 
links connecting these nodes. With this in mind, it is important to understand the 
underlying mathematical representation of transportation networks. The theory behind the 
coding of networks is particularly significant for the people who intend to use various 
shortest path algorithms. Thus, the application of the theory of graphs to transportation 
networks is explained in this section. An example that summarizes the definitions 
described below is presented at the end of this section. 

Every network can be represented mathernatically with the theory of graphs. This theory 
originated from the work of Leonhard Euler in 1736 who wanted to study the so-called 
Konisberg (in East Russia) bridge problem (Minieka, 1978). More specifically, Euler 
wanted to examine if it was possible to leave his home and cross each of the seven 
bridges located in this municipality exactly once and then retum home; this is an 
application of the postman problem extensively studied in operations research. Since then, 
this theory has been applied to various fields (e-g. transportation, communication, etc.). 
In addition, important improvements ocuirred with the linear programming techniques. 

A (directed) graph consists of two parts, a series of nodes and a series of links. A graph 
G is denoted by the symbol IN; L}, where N represents a series of nodes labeled 
i j k O n,. n,. n,. .... and L pertains to a series of links or directed links labeled 
(il J ) ,  ( i ,  k), ...., or (n,, n,). (n,, n,), .... . the links connecting these nodes. A directed link 
rneans that a direction is associated with the link; for instance, the link (n,, n,) implies that 
it starts at node n, and ends at node n,. The nodes are usually labeled in an increasing 
order and it is not necessary for al1 the nodes to be connected together. But, if a link 
( n, , n2) exists, it is symbolized as (n,, n,) e L. Therefore, a graph G might be labeled this 
way: 

Equation (1 ) shows that the graph G has three nodes and two links. It should be pointed 
out that more than one link can be connected the same nodes. If this is the case, one can 
label the links as follows: (n, ,  n,), , (n, ,  n,),, etc. Finally, it is also possible to label the 
links in numerical order, e.g., 1,. 1,. I', .. . , rather than by using the (n,. n,) format. 

A directed graph has many properties. The routes (or chains) and cycles are some 
properties of directed graphs important to transportation networks. First, a route 
connecting a node n, to a node n, is a sequence of ordered links 
( n i ,  n2) , (n2, n,),  .... (nr- ,, nr)with n, t n,foranyjand k, and (n,, n,,) E L. lnotherwords, 
the meaning of this definition simply shows that if one can go from n, to n, and a 
link (n,, n,) exists, then one can go from n, to n,, even if there is no link connecting n, and 



n,. One should note that a route from n, to n, does not necessarily implies that a route n, 
to n, prevails. Second, a cycle is a sequence of ordered links 
(ni ,  n2),  (n2. na) ,  .... (n,-,, n,)with n, + n,f~anyjandk.and(n, n,+,) E L. (n,-,. 9) E L- 
A cycle can also be defined as a closed route where one would travel from n, to n, without 
passing through the same node more than once. Finally, a node n, is accessible from a 
node n, if and only if there exist a route connecting n, to n, 

Other properties of a directed graph include the partial graph, the subgraph. the mmplete 
and bipartife graphs, a cut-set, a spanning tme, and a spanning forest. The description of 
these properties can be found in Potts and Oliver (1 972). Minieka (1 978). Newell(l980). 
and Gould (1 988). 

At this point, one can wonder why these various characteristics and definitions are 
aescribed in this section. Wth  the help of the definitions above, it is possible ta construct 
or transform a graph into a matrix format. This transformation is perfonned with the help 
of an example. Let Figure 1 represents a simple network with four nodes and seven 
directed links. 

3 4 
FIGURE 1 Simple network 

In Figure 1, the graph G is defined as follows: 

To illustrate the various descriptions above, a route j between nodes 1 and 2 and a cycle 
k from node 1 could respectively be: 

RI : '(1.4), (4.2)) and C, : dl. 4). (4.3).(3.1), (3) 



The graph G can also be represented by the following two matrices: 

TABLE l a  Node-link incidence matrix 
I 

where, 
1 if atmw points towards the node, 

- 1 if amw points away the node, 
O otheMse. 

TABLE 1 b Alternative cost matrix 

NIN I l  2 3 4 

where, a, = msfofalinkifïiexists, 
if a link does not exists. 

The matrix presented in Table 1 a is called a node-linkincidence matrix. It is primarily used 
with linear programming techniques. As depided in the linear formulation of equation (4). 
matrix A is the node-link incidence and matrix x is a series of cost functions: 

Minimize cx 
Subject to Ax r b 

x 2 0  

The matrix format presented in Table 1 b is utilized to find the least cost paths on a 
network. It is a transformed version of the matrix format of Table 1 a where the cost value 
is directly assigned inside the matrix. The value di can be either positive or negative. The 
reader is referred to Bazaraa et al. (1 990) and Winston (1 994) for an extensive discussion 



on linear programming techniques and other types of system optirniration related to 
transportation networks. With this brief introduction on the theory of graphs, it is now 
possible to explain how to find the shortest path on a network, which is described in the 
next section. 

SHORTEST PATH ALGORITHM 

There exist many algorithms used to find the shortest path on a network. Some algorithms 
estimate the shortest path between any two given nodes only (e-g., Dijkstra) while others 
estimate the path between every pair of nodes simultaneously (e-g., Floyd, Dantzig). For 
the purpose of this work, it is more useful to find al1 the shortest routes simultaneously 
since, once the algorithm is completed, the shortest route between every pair of nodes is 
autornaticalfy be found. 

There are basically two well known algorithms that estimate the shortest path between any 
pair of nodes: the Floyd and Dantzig algorithms. The Floyd algorithm, developed in 1962, 
is fairly similar to the Dantzig algorithm, created in 1967. The only difference is in the order 
the operations are performed. Both, obviously, arrive at the same results. Since their 
conception, many researchers (e-g., Taboulier, Hoffman) subsequently improved these 
algorithms. The modifications improved mainly the convergence speed of the optimal 
solution. In the 1970s, this aspect was important since computers were relatively slow. For 
the sake of simplicity, it is more appropriate to describe the Dantzig algorithm. 

The Dantzig algorithm is a three-step procedure that employs a series of recursive 
equations. It is briefly described below, but a complete description can be found in Minieka 
(1 978). Before presenting the steps of the algorithm, it is necessary to introduce the proper 
notation. First, it is required to number the links in a sequential manner such as 
L = 1,2, ... , N. Then, let d r  be the shortest distance (or least cost) from node i to node 
j, where m is the intermediate node(s) connecting i to j. Thus, d i  means there are no 
intermediate nodes between node i and node j. If no path exists, then set d% = m. For 
every node i, set d: = O. Finally, d; represents the shortest distance between node i and 
j (after the completion of the algorithrn). 

To find the shortest path ( d  N, between each pair of nodes, it is important to define the cost 
rnatrix described in Table l b .  This rnatrix Dm is a N x N matrix whose ijh element is equal 
to d r. The main goal is to find the final matrix DN. The Dantzig algorithm is therefore used 
to find this final matrix. 

Step 1 : determine the initial rnatrix DO whose ij element is equal to di ,  the shortest 
distance between node i and node j [without intermeaiate nodes). Again, if no link 
exists between any nodes, set dp= m. Let Dm be an m x m matrix with ir element 
denoted by d; . 



Step 2: find each element of the matrix Dm for m = 1, 2, ... . N. The elements of Dm 
are estimated from the elements of the matrix Dm' with the following four recursive 
equations: 

min m- 1 d; = do + dM ( j =  1.21. . .1m-1)  i=1,2 ..... m- l{ 

Repeat steps 2 and 3 until matrix D* is wmplete. 

Step 3: record the actual shortest path. p,, between each pair of node ij. For this, 
the initial matrix DO and the final matrix DN have to be used. The path is found such 
that: 

The Dantzig algorithm requires 2N3 iterations to converge. The reader is referred to 
Minieka (1 978) and Yen (1 977) for a more detailed explanation on possible improvements 
to the Dantzig algorithm. 
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APPENDIX E 

CUMULATIVE RESIDUALS FOR THE MODELS OF CHAPTER FOUR 



O 10000 20000 30000 40000 50000 60000 70000 80000 
Flow F I  (AADT) 

FIGURE El  Cumulative residuals for signalized 4-legged 
intersections (F, and al1 accidents) 

O 10000 20000 30000 40000 50000 
Flow F2 (AADT) 

FIGURE E2 Cumulative residuals for signalized 4-legged 
intersections (F, and all accidents) 



O 10000 20000 30000 40000 50000 60000 70000 80000 
Flow F I  (AADT) 

FIGURE E3 Cumulative Residuals for signalized 
4-legged intersections (F, and injury accidents) 

O 10000 20000 30000 40000 50000 
Flow F2 (AADT) 

FIGURE E4 Cumulative Residuals for signalized 
4-legged intersections (F, and injury accidents) 



O 10000 20000 30000 40000 50000 60000 70000 80000 
Flow F1 (AADT) 

FIGURE ES Cumulative Residuals for signalized 
4-legged intersections (F, and PD0 accidents) 

O 10000 20000 30000 40000 50000 
Flow F2 (AADT) 

FIGURE E6 Cumulative Residuals for signalized 
Clegged intersections (F, and PD0 accidents) 



Flow F1 (AADT) 

FIGURE E7 Cumulative Residuals for signalized 
Wegged intersections (F, and al1 accidents) 

O 5000 10000 15000 20000 
Flow F2 (AADT) 

FIGURE E8 Cumulative Residuals for signalized 
34egged intersections (F, and al1 accidents) 



O 20000 40000 60000 80000 
Flow F1 (AADT) 

FIGURE ES Cumulative Residuals for signalized 
3-legged intersections (F, and injury accidents) 

O 5000 1 O000 1 5000 20000 
Flow F2 (AADT) 

FIGURE E l  0 Cumulative Residuals for signalized 
3-legged intersections (F, and injury accidents) 



Flow F I  (AADT) 

FIGURE E l  1 Cumulative Residuals for signalized 
3-legged intersections (F, and P M i  accidents) 

O 5000 1 O000 15000 20000 
Flow F2 (AADT) 

FIGURE El2 Cumulative Residuals for signalized 
34egged intersections (F, and PD0 accidents) 



O 10000 20000 30000 40000 50000 60000 
Flow F I  (AADT) 

FIGURE El  3 Cumulative Residuals for unsignalized 
4-legged intersections (F, and al1 accidents) 

. . . . . . . . . . . . . 

O 2000 4000 6000 8000 10000 
Flow F2 (AADT) 

FIGURE El4 Cumulative Residuals for unsignalized 
44egged intersections (F, and al1 accidents) 



O 10000 20000 30000 40000 50000 60000 
Flow F1 (AADT) 

FIGURE E l  5 Cumulative Residuals for unsignalized 
4-legged intersections (F, and injury accidents) 

O 2000 4000 6000 8000 10000 
Flow F2 (AADT) 

FIGURE €16 Cumulative Residuals for unsignalized 
4-legged intersections (F, and injury accidents) 



O 10000 20000 30000 40000 50000 60000 
Flow FI (AADT) 

FIGURE El7 Cumulative Residuals for unsignalized 
4-legged intersections (F, and P W accidents) 

O 2000 4000 6000 8000 10000 
Flow F2 (AADT) 

FIGURE E l  8 Cumulative Residuals for unsignalized 
4-legged intersections (F, and PD0 accidents) 



O 10000 20000 30000 40000 50000 60000 
Flow F I  (AADT) 

FIGURE El9 Cumulative Residuals for unsignalized 
3-Iegged intersections (F, and al1 accidents) 

O 2000 4000 6000 8000 
Flow F2 (AADT) 

FIGURE E2O Cumulative Residuals for unsignalized 
3-legged intersections (F, and al1 accidents) 



O 10000 20000 30000 40000 50000 60000 
Flow F I  (AADT) 

FIGURE E21 Cumulative Residuals for unsignalized 
3-legged intersections (F, and injury accidents) 

............................ -.------------------------------i..--.--...i .............................. 

i ................................ .............................. 

............................................................... 

O 2000 4000 6000 8000 
Flow F2 (AADT) 

FIGURE €22 Cumulative Residuals for unsignalized 
34egged intersections (F, and injury accidents) 



O 2000 4000 6000 8000 
Flow FI (AADT) 

FIGURE E23 Cumulative Residuals for unsignalized 
3-legged intersections (F, and PD0 accidents) 

O 10000 20000 30000 40000 50000 60000 
Flow F1 (AADT) 

FIGURE E24 Cumulative Residuals for unsignalized 
3-legged intersections (F, and PD0 accidents) 



5000 1 O000 1 5000 20000 25000 
Link Flow F (AADT) 

FIGURE E25 Cumulative Residuals for 2-lane roads 
(al1 accidents) 

5000 1 O000 1 5000 20000 25000 
Link Flow F (AADT) 

FIGURE E26 Cumulative Residuals for 2-lane roads 
(injury accidents) 



5000 1 O000 1 5000 20000 25000 
Link Flow F (AADT) 

FIGURE E27 Cumulative Residuals for 2-lane roads 
(PD0 accidents) 

O 10000 20000 30000 40000 50000 
Link Flow F (AADT) 

FIGURE €28 Cumulative Residuals for 4-lane roads 
(al1 accidents) 



O 10000 20000 30000 40000 50000 
Link Flow F (AADT) 

FIGURE €29 Cumulative Residuals for 4-lane roads 
(injury accidents) 

O 10000 20000 30000 40000 50000 
Link Flow F (AADT) 

FIGURE E30 Cumulative Residuals for 4-lane roads 
(PD0 accidents) 



20000 25000 30000 35000 40000 45000 50000 55000 
Link Flow F (AADT) 

FIGURE E31 Cumulative Residuals for 6-lane roads 
(al1 accidents) 

20000 25000 30000 35000 40000 45000 50000 55000 
Link Flow F (AADT) 

FIGURE E32 Cumulative Residuals for 6-lane roads 
(injury accidents) 



20000 25000 30000 35000 40000 45000 50000 55000 
Link Flow F (AADT) 

FIGURE €33 Cumulative Residuals for 6-lane roads 
(PD0 accidents) 

5000 10000 15000 20000 25000 30000 
Link Flow F (AADT) 

FIGURE E34 Cumulative Residuals for 4-lane roads 
(CBD and al1 accidents) 



5000 10000 15000 20000 25000 30000 
Link Flow F (AADT) 

FIGURE €35 Cumulative Residuals for 4-lane roads 
(CBD and injury accidents) 

5000 10000 15000 20000 25000 30000 
Link Flow F (AADT) 

FIGURE E36 Cumulative Residuals for 4-lane roads 
(CBD and PD0 accidents) 



O 10000 20000 30000 40000 50000 
Link Flow F (AADT) 

FIGURE E37 Cumulative Residuals for 4-lane roads 
(non-CBD and al1 accidents) 

O 10000 20000 30000 40000 50000 
Link Flow F (AADT) 

FIGURE E38 Cumulative Residuals for 4-lane roads 
(non-CBD and injury accidents) 



O 10000 20000 30000 40000 50000 
Link Flow F (AADT) 

FIGURE E39 Cumulative Residuals for 4-lane roads 
(nonCBD and P DO accidents) 

-300 ! 1 ! 
i 

O 10000 20000 30000 40000 50000 60000 
Link Flow F (AADT) 

FEU RE E40 Cumulative Residuals for signalized 
4-legged intersections (link fiow, F, and al1 accidents) 



O 10000 20000 30000 40000 50000 60000 
Link Flow F (AADT) 

FIGURE E41 Cumulative Residuals for signalized 
44egged intersections (link flow, F, 

and injury accidents) 

O 10000 20000 30000 40000 50000 60000 
Link Flow F (AADT) 

FIGURE €42 Cumulative Residuals for signalized 
4-legged intersections (link flow, F, and PD0 accidents) 



O 10000 20000 30000 40000 50000 60000 
Link Flow F (AADT) 

FIGURE E43 Cumulative Residuals for signalized 
3-legged intersections (link flow, F, and al1 accidents) 

O 10000 20000 30000 40000 50000 60000 
Link Flow F (AADT) 

FIGURE E44 Cumulative Residuals for signalized 
Wegged intersections (link flow, F, 

and injury accidents) 



O 40000 20000 30000 40000 50000 60000 
Link flow F (AADT) 

FlGURE E45 Cumulative Residuals for signalized 
3-legged intersections (link flow, F, and PD0 accidents) 

O 10000 20000 30000 40000 50000 60000 
Link Flow F (AADT) 

FIGURE E46 Cumulative Residuals for unsignalized 4- 
legged intersections (Iink flow, Ç, end al1 accidents) 



O 10000 20000 30000 40000 50000 60000 
Link Flow F (AADT) 

FIGURE €47 Cumulative Residuals for unsignalized 
4Jegged intersections (link flow, F, 

and injury accidents) 

O 10000 20000 30000 40000 50000 60000 
Link f low Ç (AADT) 

FIGURE E48 Cumulative Residuals for unsignalized 
4-legged intersections (link flow, F, and PD0 accidents) 



O 10000 20000 30000 40000 50000 60000 
Link Flow F (AADT) 

FIGURE E49 Cumulative Residuals for unsignalized 
3-legged intersections (link flow, F, and al1 accidents) 

O 10000 20000 30000 40000 50000 60000 
Link Flow F (AADT) 

FIGURE E50 Cumulative Residuals for unsignalized 3- 
legged intersections (link flow, F, 

and injury accidents) 



O 10000 20000 30000 40000 50000 60000 
Link Flow F (AADT) 

FIGURE ES1 Cumulative Residuals for unsignalized 
3-legged intersections (link flow, F, and PD0 accidents) 

O 10000 20000 30000 40000 50000 60000 
Link Flow F (AADT) 

FIGURE E52 Cumulative Residuals for al1 intersections 
combined (link flow, F, and al1 accidents) 



O 10000 20000 30000 40000 50000 60000 
Link Flow F (AADT) 

FIGURE E53 Cumulative Residuals for al1 intersections 
combined (link flow, F, and injury accidents) 

O 10000 20000 30000 40000 50000 60000 
Link Flow F (AADT) 

FIGURE €54 Cumulative Residuals for all intersections 
combined (link flow, Ç, and PD0 accidents) 



APPENDIX F 

COMPUTER CODES 



ESTIMATION OF MlSSlNG COUNTS 

TRAFF-B. BAS 
Last rnodified Sept 18, 1997 
Traffic count data are read in (1 ), averages calculated, wunts 
are normalized (divided by sample mean of wunts) (2). 
The mean index is determined for all road sections in our data 
has been calculated separately. We then calculate an 
"adjusted" normalized index for each road section and year. 
This is done by dividing the normalized index obtained earlier 
by the mean index for al1 road sections. 
The next step is to estimate the parameters of a linear trend 
for each site (4). 
Having established that the sigma of an adjusted count is O. 1638, 
and does not depend of the traffic flow, we estimate the 
variance of b(i) (4). 
The average of the VAR{b(i)) is 0.000609. The variance of the 
estimated b(i) is 0.001296. The varinace of the true slopes is 
therefore about 0.000687=0.0007. We use this to shrink the b(i). 
The next step is to use a(i) and shninkb(i) to calculate estimated adjusted 
values for each j, multiply by the mean index and multiply by 
the average count tp give estimates of AADT for each i and j. 
Finally, the standard deviation of each estimated AADT is calcutated. 

Output is in TRAFFIC-PRN 
I 

1 Notation: 
I i is a counter for road sections 
i 

j is a counter for the 13 years of data for each section 
I average(i) average of available traffic caunts 
1 count(i) number of traffic counts for site i 
1 index(i,j) traffic munt normalized so that average is 1 
1 

no) number of counts in year j 
avgindex(j) the state-wide average of the nomalized indeces 

1 adjindex(i,j) index(i,j)/avgindex(j) 
1 

x(J in the regression, the year j for which 
4 we have a count. j=l for 1975. 
I 

YQ) the adjusted index in year j 
I 

a(i) intercept for site i. (adjusted index for j=O) 



1 b(i) slope for site i. 
I varb(i) variance of the dope estimated by regression. 
1 shninkb(i) shrunk slope for site i. 
1 AADT(i,j) estimate of AADT. 
1 sdaadt(i,j) standard deviation of the estimated AADT. 

l Four input files are used: 
1 aadt-1 .txt (700 linesll-700) last = 700 
t aadt-2.M (700 linesff01-140) last = 700 
I aadt-3.M (700 linesluse the first 149 lines) last = 696 
1 

REM $DYNAMIC 

CLS 

filename$ = "d:\aadt\input\aadt-3-MI' 
OPEN filename$ FOR INPUT AS #1 
OPEN "d:\aadt\o~tput\prob~3~txt" FOR OUTPUT AS #2 'any lines with problems 
OPEN "d:\aadt\output\tra~out3.txt" FOR OUTPUT AS #3 'output file 
OPEN "d:\aadt\output\verify3.txt" FOR OUTPUT AS #4 'a file to verify the input data 
PRINT #2, filename$ 
PRINT #3, filename$ 

DIM S HARED traffÏc(700, 1 2).  average(700), count(700), index(700, 1 2) ,  adjindex(700, 
1 2) 
D IM SHARED avgindex(12), x(12), y(12), a(700), b(700), varb(700). shrunkb(700) 
D IM S HARED aadt(700, 12). sdaadt(700, 1 2), xbar(700), Sxx(700) 

1. Reading in the traffic count data. 
1 

INPUT "iast=", last 
FOR i = 1 TO last 
LlNE INPUT #1, line$ 



trafic( 
t raffi c( 
traffic( 
traffic( 

WRITE #4, i, traffic(i, l ) ,  traffic(i, 2),  traffic(i, 3), traffic(i, 4), traffiii, 5), traffic(i, 6), 
traffic(i, 7), traffic(i, 8). traffic(i, 9). traffic(i, 1 O), trafFïc(i, 1 1 ), traffic(i, 12) 

NEXT i 

CLOSE #1 
1 

2. Calculating the sample mean of counts and nomalizing 
1 

FOR i = 1 TO last 
sum = O 
count(i) = O 
F O R j = l  TO 12 
IF traffic(i, j) > O THEN 
count(i) = count(i) + 1 
surn = surn + traffic(i, j) 
END IF 
NEXT j 
IF count(i) = O THEN 
PRlNT i, "no traffic counts" 
WRITE #2, i, count(i), traffic(i, 1). traffic(i, 2) ,  traffic(i, 3). traffic(i, 4). traffic(i. 5),  

END IF 
IF count(i) = 1 THEN PRlNT i 
average(i) = surn / count(i) 

FORj= 1 TO 12 
index(i, j) = traffic(i, j) / average(i) 

NEXT j 
20 
NEXT i 

3. Setting the 13 state-wide average indeces avgindex(j). 
1 



Calculating the adjusted index, adjindex(i,j) 
1 

FOR i = 1 TO last 
FORj = 1 TO 12 
IF index(i, j) > O THEN 
adjindex(;, j) = index(i, j) 1 avgindex(j) 
END IF 
NEXT j 
NEXT i 

4. Linear regression & shnink estimates of slope. 
1 

FOR i = 1 TO last 

1 4.1 . Preparing the data for one line 
k = O  
F O R j = l T O 1 2  

IF adjindex(( j) > O THEN 
k = k + l  
x(k) = j 
y(k) = adjindex& j) 

END IF 
NEXT j 
n = k 

IF n > O THEN 
l 4.2 Estimating intercept a(i),slope b(i) and shninkb(i) 

sumx = O 
sumy = O 
sumxx = O 



sumxy = O 
F O R k = l T O n  

sumx = sumx + x(k) 
sumy = sumy + y(k) 
sumxx = sumxx + x(k) A 2 
sumxy = surnxy + x(k) " y(k) 

NEXT k  

xbar(i) = sumx 1 n 
ybar = sumy 1 n 
Sxx(i) = sumxx - n * xbar(i) A 2 
Sxy = sumxy - n ' xbar(i) * ybar 
I F n = l  ORn=2THEN 

b(i) = O 
a(i) = ybar 

ELSE 
b(i) = Sxy/ Sxx(i) 
varb(i) = -1638 A 2 / Sxx(i) 
shrunkb(i) = .ûû07 * b(i) 1 (.O007 + varb(i)) 
a(i) = ybar - shninkb(i) " xbar(i) 

END IF 
1 4.3 Printing wamings about funny dopes and intercepts. 

IF a(i) < -5 OR a(i) > 1.5 THEN 
funnyint$ = "funny intercept" 
PRlNT , il a(i), b(i), shninkb(i); "funny intercept" 
WRlTE #2, i, a(i), b(i), shninkb(i), funnyints 

END IF 

IF b(i) < -.5 OR b(i) > .5 THEN 
funnyslo$ = "funny slope" 
WRlTE #2, i, b(i), shninkb(i), funnyslo$ 
PRlNT , i, b(i), shrunkb(i); "funny slope" 

END IF 
END IF 
NEXT i 

' 5. Calculation of estimated AADTs and their standard deviations. 
1 

FOR i = 1 TO iast 
IF count(i) > O THEN 

FORj=  1 TO 12 
aadt(i, j) = (a(i) + shninkb(i) j) avgindex(j) average(i) 



IF count(i) = 1 OR count(i) = 2 THEN 
sdaadt(i, j) = avgindex(j) ' average(i) ' (-1638 A 2 1 wunt(i) + (j - xbar(i)) A 2 * 

-0007) A -5 
ELSE 
sdaadt(i, j) = avgindexu) ' average(i) ' -1638 ' (1 1 count(i) + (j - xbar(i)) A 2 1 

Sxx(i)) A .5 
END IF 
NEXT j 

END IF 
NEXT i 

l printing to file 
FOR i = 1 TO last 
IF count(i) > O THEN 

PRINT i; 

F O R j = l T O l l  
PRINT USING 'w'; aadt(i, j); 

NEXT j 
PRINT USING "'; aadt(i, 12) 

1 F O R j = 1  T O I 1  
1 PRINT USING 'YWC/CIWM)"; sdaadt(i, j); 
1 NEXT j 
1 PRlNT USING 'w'; sdaadt(i, 12) 

1 

WRlTE #3, i l  traffic(i, 1 ), tfaffic(i, 2), traffic(i, 3), traffic(i, 4), traffic(i, 5) ,  traffic(i, 6) ,  
traffic(i, 7), traffic(i, 8), traffic(i, 9), traffic(i, 1 O), traffic(i. 1 1 ), traffic(i, 12) 

END IF 
NEXT i 
END 



RE-ASSEN ENTERING FLOWS TO TURNlNG MOVEMENTS 

MOVE-PRO. BAS 
Last modified Sept 18, 1997 
This program adds turninglthrough movements from an intersection 
with the same street names and 
compute the average for each tuminglthrough movement. There is a total 
of 12 movements, three for each approach. 

For an intersection, many traffic counts are perfomed either 
for different years or during the same year. Each line has a traffic 
count. The intersection with the same street names 
have to follow each other. 

Variables: 
roadl $(i) = name of the first street 
road2$(i) = name of the second street 
prop(i, j) = proportion of trafic for movement j 
add(i, j) = the addition of the movement j for the same street names 
avg(i, j) = the average of movement j for the same street names 
newroadl $(i) = the name of the first street used in the output file 

Only one street name is printed from the input file 
newprop(i, j) = the average proportion for movement j 

There are ten files used for input 
input-1 .txt (last = 498) 
input2.txt (last = 496) 
input-3.M (last = 499) 
input4.txt (last = 494) 
input5.W (last = 501 ) 
input6.txt (last = 499) 
input7.txt (last = 500) 
input-8.W (last = 497) 
input-9.~ (last = 500) 
input-1 O.txt (last = 1 90) 

CLS 

REM $DYNAMIC 



filename$ = "d:\temp\input-1 O M "  'input file 
OPEN filename$ FOR INPUT AS #1 
OPEN "d:\temp\outJ O. txt" FOR OUTPUT AS #2 'output file 

DIM SHARED road 1 $(8OO), road2$(8W), prop(800, 12). add(800, 1 2), avg(800, 1 2) 
DIM SHARED newroad1$(800), newroad2$(800), newprop(800, 12) 

'Reading the data 

INPUT "last=", last 
FOR i = 1 TO last 
LINE INPUT #1, line$ 

roadl $(i) = MlD$(line$, 1, 17) 
road2$(i) = MID$(line$, 18, 21) 
prop(i, 1 ) = VAL(MID$(line$, 39, 9)) 
prop(i, 2) = VAL(MID$(line$, 48, 9)) 
prop(i, 3) = VAL(MID$(line$, 57, 9)) 
prop(i, 4) = VAL(MID$(line$, 66, 9)) 
prop(i, 5) = VAL(MID$(line$, 75, 9)) 
prop(i, 6) = VAL(MID$(line$, 84, 9)) 
prop(i, 7) = VAL(MID$(line$, 93, 9)) 
prop(i, 8) = VAL(MID$(line$, 102, 9)) 
prop(i, 9) = VAL(MID$(line$, 11 1, 9)) 
prop(i, 10) = VAL(MID$(line$, 120, 9)) 
prop(i, 1 1 ) = VAL(MID$(line$, 129, 9)) 
prop(i, 12) = VAL(MID$(line$, 138, 9)) 

NEXT i 

'Add bogus names to enable the arrays to go over the "last" 

road 1 $(last + 1 ) = "a" 
road 1 $(last + 2) = " b  
road 1 $(last + 3) = "cl' 
roadl$(last + 4) = "d" 
roadl $(last + 5) = "e" 
roadl $(last +- 6) = 'Y' 
roadl $(last + 7) = "g" 
roadl $(last + 8) = "hW 
roadl $(last + 9) = "i" 
roadl $(last + 10) = "j" 
roadl $(last + 1 1 ) = "k" 



road 1 $(last + 1 2) = "1" 
roadl $(last + 13) = "m" 
roadl $(last + 14) = "n" 
roadl $ ( k t  + 15) = "O" 

road2$(last + 1 ) = "a" 
road2$(last + 2) = "b" 
road2$(last + 3) = "c" 
road2$(last + 4) = "du 
road2$(last + 5) = "e" 
road2$(last + 6) = 'Y' 
road2$(last + 7) = "g" 
road2$(last + 8) = "hW 
roadZ$(!ast + 9) = "i" 
road2$(last + 10) = "j" 
road2$(last + 1 1 ) = "k" 
road2$(last + 12) = "1" 
road2$(last + 13) = "m" 
road2$(iast + 14) = "n" 
road2$(last + 15) = "O" 

CLOSE #1 

'Main program that reads Iine i and compares it from lines (i + 1) to (i + 15). 
'Then, it takes the average of every Iine with similar street name. 
'The program returns only one line with the average. 

FOR i = 1 TO iast 

I F i = m O R i = n O R i = o O R i = p O R i = q O R i = r O R i = s O R i = t O R i = u O R i =  
v O R i = w O R i = x O R i = y O R i = z O R i = z l  THEN 

'WRITE #2, roadl$(i), road2$(i), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, O 
ELSE 

k = l  
IF roadl$(i) = roadl $(i + 1) AND road2$(i) = road2$(i + 1) THEN 
k = k + l  
m = i + l  
F O R j = l  TO12 
add(i, j) = prop(i, j) + prop(i + 1, j) 
NEXT j 



IF roadl $(i) = roadl $(i + 2) AND road2$(i) = road2$(i + 2) THEN 
k = k + l  
n = i + 2  
FORj = 1 TO 12 
add(i, j) = add(i, j) + prop(i + 2, j) 
NEXT j 

END IF 

IF roadl $(i) = roadl $(i + 3) AND road2$(i) = road2$(i + 3) THEN 
k = k + l  
o = i + 3  
FORj= 1 TO 12 
add(i, j) = add(i, j) + prop(i + 3, j) 
NEXT j 

END IF 

IF roadl $(i) = roadl $(i + 4) AND rcad2$(i) = road2$(i + 4) THEN 
k = k + l  
p = i + 4  
F a R j =  1 TO 12 
add(i, j) = add(i, j) + prop(i + 4, j) 

NEXT j 
END IF 

IF roadl $(i) = roadl $(i + 5) AND road2$(i) = road2$(i + 5) THEN 
k = k + l  
q = i + 5  
FORj= 1 TO 12 
add(i, j) = add(i, j) + prop(i + 5, j) 

NEXT j 
END IF 

IF roadl $(i) = roadl $(i + 6) AND road2$(i) = raad2$(i + 6) THEN 
k = k + l  
r = i + 6  
FORj = 1 TO 12 
add(i, j) = add(i, j) + prop(i + 6, j) 
NEXT j 

END IF 

IF roadl $(i) = roadl $(i + 7) AND road2$(i) = road2$(i + 7) THEN 
k = k + l  
s = i + 7  



FORj = 1 TO 12 
add(i, j) = add(i, j) + prop(i + 7, j) 
NEXT j 

END IF 

IF roadl $(i) = roadl $(i + 8) AND road2$(i) = road2$(i + 8) THEN 
k = k + 1  
t = i + 8  
FORj= 1 TO 12 
add(i, j) = add(i, j) + prop(i + 8, j) 

NEXT j 
END IF 

IF roadl $(i) = roadl$(i + 9) AND road2$(i) = road2$(i + 9) THEN 
k = k + l  
u = i + 9  
FORj= 1 TO 12 
add(i, j) = add(i, j) + prop(i + 9, j) 

NEXT j 
END IF 

IF roadl $(i) = roadl $(i + 10) AND road2$(i) = roadZ$(i + 10) THEN 
k = k + l  
v = i + l O  
F O R j = l  T O I 2  
add(i, j) = add(i, j) + prop(i + 10, j) 
NEXT j 

END IF 

IF roadl$(i) = roadl$(i + 11) AND road2$(i) = road2$(i + 11) THEN 
k = k + l  
w = i + l 1  
FORj = 1 TO 12 
add(i, j) = add(i, j) + prop(i + 1 1 , j) 
NEXT j 

END IF 

IF roadl $(i) = roadl$(i + 12) AND road2$(i) = road2$(i + 12) THEN 
k = k + l  
x = i + 1 2  
F O R j = i T O 1 2  
add(i, j) = add(i, j) + prop(i + 12, j) 

NEXT j 



END IF 

IF roadl $(i) = roadl $(i + 13) AND road2$(i) = road2$(i + 13) THEN 
k = k + l  
y = i + 1 3  
FORj=  1 TO 12 
add(i, j) = add(i, j) + prop(i + 13, j) 

NEXT j 
END IF 

IF roadl $(i) = roadl $(i + 14) AND road2$(i) = roadZ$(i + 14) THEN 
k = k + l  
z = i + 1 4  
FOR j = 1 TO 12 
add(i, j) = add(i, j) + prop(i + 14, j) 

NEXT j 
END IF 

IF roadl $(i) = roadl$(i + 15) AND road2$(i) = road2$(i + 15) THEN 
k = k + 1  
zl = i + 1 5  
FOR j = 1 TO 12 
add(i , j) = add(i , j) + prop(i + 1 5, j) 

NEXT j 
END IF 

count = count + 1 

F O R j = l  TO 12 
avg(i, j) = add(i, j) 1 k 
newprop(count, j) = avg(i, j) 'assign one street narne 

NEXT j 

newroad 1 $(count) = roadl $(i) 
newroad2$(count) = road2$(i) 

count = count + 1 



FORj=  1 TO 12 
newprop(count, j) = prop(i, j) 

NEXT j 

newroadl $(count) = roadl$(i) 
newroad2$(count) = road2$(i) 

END IF 

END IF 

NEXT i 

'Print the results 

FOR i - 1 TO count 

WRlTE #2, newroad l $(i), newroad2$(i), newprop(i, 1 ), newprop(i, 2), newprop(i, 3), 
newprop(i, 4), newprop(i, 5), newprop(i, 6), newprop(i, 7), newprop(i. 8), newprop(i, 9). 
newprop(i, 1 O), newprop(i, 1 1 ), newprop(i, 12) 

NEXT i 
END 



DANTZIG ALGORITHM 

CLS 

filename$ = "c:\phd-th-l\net~ork\TEMP\matrix2.txt~~ 
OPEN filename$ FOR INPUT AS #1 
OPEN llc:\phd-th-l\network\TEMP\matout.txt" FOR OUTPUT AS #2 
OP EN "c:\p hdth-1 \network\temp\maoure.txt" FOR OUTPUT AS #3 

DlM SHARED D(node, node) 

WHlLE NOT EOF(1) 
FOR i = 1 TO node 

FOR j = 1 TO node 
INPUT #1, D(i, j) 
'PRINT D(i, j) 

NEXT j 
NEXT i 

WEND 

CLOSE #1 

FOR i = 1 TO node 
D(i, i) = 99999 

NEXT i 

FOR k = 1 TO node 
FOR1 = 1 TOnode-1 

F O R j = l  TOnode-1 
x = Do1 1) + D(ll k) 
IF x < Du, k) THEN D(j, k) = x 

Y = W, 1) + D(I, j) 
IF y c D(k, j) THEN D(k, j) = y 

NEXT j 

z = D(k, 1) + D(I, k) 
IF z < D(k, k) THEN D(k, k) = z 

NEXT I 
NEXT k 



FOR k = 1 TO node 
F O R i = l  TOnode-1 
FORj=1  TOnode-1 

w = D(il k) + D(k, j) 
IF w < D(i, j) THEN D(i, j) = w 

NEXT j 
NEXT i 

NEXT k 

FOR i = 1 TO node 
WRlTE #2, 2, D(i, 13), D(i, 14), D(i. 15), D(i, 16), D(i, 17), D(i, 18), D(i, 19), D(i, 20), 

DOl 21), D(i, 22), D(i, 23), D(i, 24) 
NEXT i 

FOR i = 1 TO node 
WRlTE #2, 3, D(i. 25), D(i, 26), D(i. 27), D(i. 28), D(i, 29), D(i, 30). D(i. 31 ), D(i, 32). 

D(i. 33), D(i, 34). D(i, 33 ,  D(i, 3ô) 
NEXT i 

'FOR i = 1 TO node 
F O R j = l  TOnode-1 

' PRlNT #2, USING "ü###ü#.W1; D(i, j); 
I NEXTj 
' PRlNT #2, USING 'YWCmCmC.#W; D(i, node) 
'NEXT i 

CLOSE #2 
CLOSE #3 



END 

FLOYD ALGORITHM 

CLS 

fi lename$ = "c:\phd-th-1 \network\TEMP\MatriQ.txtl' 
OPEN filename$ FOR INPUT AS #1 
OP EN "c:\phd-th-l \network\TEMP\mato~t2~txt'~ FOR OUTPUT AS #2 
OP EN "c:\phd-th-1 \network\ternp\rnaouret.txt1' FOR OUTPUT AS #3 

DIM SHARED D(node, node) 

WHlLE NOT EOF(1) 
FOR i = 1 TO node 

FOR j = 1 TO node 
INPUT #1, D(i, j) 
'PRINT D(i, j) 

NEXT j 
NEXT i 

WEND 

CLOSE #l 

FOR i = 1 TO node 
D(i, i) = 99999 

NEXT i 

FOR k = 1 TO node 
FOR i = 1 TO node 

FOR j = i TO node 
x = D(i, k) + D(k, j) 
IF x K D(i, j) THEN D(il j) = x 

NEXT j 
NEXT i 

NEXT k 

FOR i = 103 TO node 



WRlTE #2, D(i, 1 O3), D(il 1 CM), D(i, 105), D(i, 1 CE), D(il 1 O7), D(i, 108) ', D(i, 108). D(i. 
81, D(i, 9), D(i, 1 O),  D(i, 1 1 ), D(il 12), D(i, 131, D(i, 141, D(i, 151, D(i, le), D(i, 1 71, D(i, 
1 a), D(i, 19), D(i, 20) 
NEXT i 

CLOSE #2 
CLOSE #3 

END 




