SAFETY PREDICTION MODELS FOR SIX-LANE AND ONE-WAY URBAN AND SUBURBAN ARTERIALS

FINAL REPORT

Prepared for National Cooperative Highway Research Program Transportation Research Board of The National Academies

TRANSPORTATION RESEARCH BOARD OF THE NATIONAL ACADEMIES <u>PRIVILEGED DOCUMENT</u>

This report, not released for publication, is furnished only for review to members of or participants in the work of the CRP. This report is to be regarded as fully privileged, and dissemination of the information included herein must be approved by the CRP.

Dominique Lord, Srinivas Geedipally, Michael P. Pratt, Eun Sug Park, S. Hadi Khazraee, and Kay Fitzpatrick

> Texas A&M Transportation Institute The Texas A&M University System College Station, Texas

> > June 2016

ACKNOWLEDGMENT OF SPONSORSHIP

This work was sponsored by one or more of the following as noted:

X American Association of State Highway and Transportation Officials, in cooperation with the Federal Highway Administration, and was conducted in the **National Cooperative Highway Research Program**,

□ Federal Transit Administration and was conducted in the **Transit Cooperative Research Program**,

□ Federal Aviation Administration and was conducted in the **Airport Cooperative Research Program**,

□ Research and Innovative Technology Administration and was conducted in the National Cooperative Freight Research Program,

□ Pipeline and Hazardous Materials Safety Administration and was conducted in the **Hazardous Materials Cooperative Research Program**,

which is administered by the Transportation Research Board of the National Academies.

DISCLAIMER

This is an uncorrected draft as submitted by the research agency. The opinions and conclusions expressed or implied in the report are those of the research agency. They are not necessarily those of the Transportation Research Board, the National Academies, or the program sponsors.

SAFETY PREDICTION MODELS FOR SIX-LANE AND ONE-WAY URBAN AND SUBURBAN ARTERIALS

PRELIMINARY DRAFT FINAL REPORT

Prepared for National Cooperative Highway Research Program Transportation Research Board of The National Academies

> Dominique Lord Texas A&M University College Station, Texas

Srinivas Geedipally Michael P. Pratt Eun Sug Park S. Hadi Khazraee Kay Fitzpatrick Texas A&M Transportation Institute College Station, Texas

June 22, 2016

CONTENTS

P	age
LIST OF FIGURES	. vii
LIST OF TABLES	ix
ACKNOWLEDGMENTS	xiii
ABSTRACT	xiv
EXECUTIVE SUMMARY	1
INTRODUCTION WORK PLAN FINDINGS RECOMMENDATIONS	1 2
CHAPTER 1: INTRODUCTION	5
RESEARCH OBJECTIVES AND STRATEGIES RESEARCH SCOPE RESEARCH APPROACH ORGANIZATION OF THE REPORT	6 6
CHAPTER 2: LITERATURE REVIEW	9
OVERVIEW OF HSM CHAPTER 12 Safety Prediction Methodology Incorporating Crash History into Prediction Crash Severity and Collision Type Data for Model Development CMFs	9 . 11 . 11 . 11
SAFETY PREDICTION FOR ARTERIALS WITH SIX OR MORE LANES	
Safety Prediction at Roadway Segments Description of Models in the Literature Comparison of Models Comparison of CMFs	. 15 . 24
Safety Prediction at Intersections	
Signalized Intersections Unsignalized Intersections	. 41
SAFETY PREDICTION FOR ONE-WAY ARTERIALS Safety Prediction at Roadway Segments Safety Prediction at Intersections	. 46
CHAPTER 3. FRAMEWORK FOR SAFETY PREDICTION	. 51
MODEL CALIBRATION METHODS Safety Prediction Method Base Models + CMFs Full Model	. 51 . 52

CRASH SEVERITY DISTRIBUTION	54
CRASH TYPE DISTRIBUTION	54
DISPERSION PARAMETER	
INTERACTION AMONG FACTOR EFFECTS	56
PROPOSED METHODOLOGY	
Segments	56
Intersections	
Standard Error of CMFs	58
CHAPTER 4. DEVELOPMENT OF PROJECT DATABASE	61
DATA SOURCES	61
SELECTION OF ROADWAY SEGMENT TYPES	62
SELECTION OF INTERSECTION TYPES	63
DATA COLLECTION	64
Site Characteristics Data for Roadway Segments	64
Site Characteristics Data for Intersections	
CRASH DATA	81
SUPPLEMENTAL DATA COLLECTION—PEDESTRIAN DATA	88
CHAPTER 5. PREDICTIVE MODELS FOR URBAN AND SUBURBAN ROADWAY	7
SEGMENTS WITH SIX OR MORE LANES	
BACKGROUND	91
CALIBRATION DATA	93
MODEL DEVELOPMENT—SIX-OR-MORE-LANE ARTERIALS	95
VEHICLE-PEDESTRIAN COLLISIONS	102
VEHICLE-BICYCLE COLLISIONS	103
CMFS FOR SIX-OR-MORE-LANE ARTERIALS	104
Lane Width CMF	105
Outside Shoulder Width CMF	106
Median Width CMF	106
Median Barrier CMF	
Railroad Crossing Presence CMF	109
Driveway CMF	
Roadside Fixed-Object CMF	111
CHAPTER 6. PREDICTIVE MODELS FOR INTERSECTIONS OF URBAN AND	
SUBURBAN ARTERIALS WITH SIX OR MORE LANES	113
CALIBRATION DATA	
MODEL DEVELOPMENT—TWO-WAY STREET INTERSECTIONS	114
VEHICLE-PEDESTRIAN COLLISIONS	121
VEHICLE-BICYCLE COLLISIONS	
CMFS FOR 2×2 INTERSECTIONS	
Lighting CMF	124
Intersection Left-Turn Signal Phasing CMF	
RTOR CMF	
U-turn Prohibition CMF	
Right-Turn Channelization CMF	126

Number of Lanes CMF	126
CHAPTER 7. PREDICTIVE MODELS FOR URBAN AND SUBURBAN ONE-WAY	
ARTERIAL ROADWAY SEGMENTS	129
CALIBRATION DATA	129
MODEL DEVELOPMENT—ONE-WAY ARTERIALS	
VEHICLE-PEDESTRIAN COLLISIONS	
VEHICLE-BICYCLE COLLISIONS.	
CMFS FOR ONE-WAY ARTERIALS	
Right Shoulder Width CMF	138
On-Street Parking CMF	
Driveway CMF	
CHAPTER 8. PREDICTIVE MODELS FOR INTERSECTIONS OF URBAN AND	
SUBURBAN ONE-WAY ARTERIALS	143
CALIBRATION DATA	143
MODEL DEVELOPMENT—ONE-WAY STREET INTERSECTIONS	
Vehicle-Pedestrian Collisions	
Vehicle-Bicycle Collisions	
CMFS FOR 1×2 OR 1×1 INTERSECTIONS	
Lighting CMF	
Number of Lanes CMF	
CHAPTER 9. SEVERITY DISTRIBUTION FUNCTIONS	155
METHODOLOGY	155
SIX-OR-MORE-LANE ARTERIAL SEGMENTS	
Predicted Probabilities	
Area Type	
Speed Limit	
Road Type	
ONE-WAY ARTERIAL SEGMENTS	160
Predicted Probabilities	
Lane Width	
Right Shoulder Width	
Area Type	
Bike Lanes	
TWO-WAY STREET SIGNALIZED INTERSECTIONS	
Predicted Probabilities	
Area Type	
Right Turn on Red	
U-turn Left-Turn Lanes	
Lighting ONE-WAY STREET SIGNALIZED INTERSECTIONS	
Predicted Probabilities	
Area Type	
Left-Turn Lane	

Channelization	
STOP-CONTROLLED INTERSECTIONS	
Predicted Probabilities	
Area Type	
Lighting	
Left-Turn Lanes	
CHAPTER 10. SUMMARY, CONCLUSIONS, AND RECOMME	NDATIONS 173
REFERENCES	
APPENDIX A. DRAFT VERSION OF THE REVISED HSM CHA PREDICTIVE METHOD FOR URBAN AND SUBURBN ARTER	
	AIALSA-1

LIST OF FIGURES

Figure 1. Models for six-lane undivided urban or suburban arterials	26
Figure 2. Models for six-lane urban or suburban arterials with nonrestrictive medians	27
Figure 3. Models for six-lane urban or suburban arterials with restrictive medians.	27
Figure 4. Models for six-lane divided urban or suburban arterials	28
Figure 5. Lane width CMFs.	
Figure 6. Outside shoulder width CMFs	31
Figure 7. Inside shoulder width CMFs.	
Figure 8. Median width CMFs	32
Figure 9. Horizontal curvature CMFs.	33
Figure 10. Models for urban four-leg signalized intersections.	38
Figure 11. Models for urban four-leg stop-controlled intersections.	
Figure 12. Models for urban three-leg stop-controlled intersections	
Figure 13. Models for four-leg diamond interchange ramp terminals (Bonneson et al.,	
2012).	50
Figure 14. Definition of roadway segments and intersections (AASHTO, 2010)	92
Figure 15. Graphical form of the SPF for FI multiple-vehicle collisions, six-or-more-lane	
arterials.	100
Figure 16. Graphical form of the SPF for FI single-vehicle collisions, six-or-more-lane	
arterials.	100
Figure 17. Graphical form of the SPF for PDO multiple-vehicle collisions, six-or-more-	
lane arterials	101
Figure 18. Graphical form of the SPF for PDO single-vehicle collisions, six-or-more-lane	
arterials.	101
Figure 19. Lane width CMF, six-or-more-lane arterials	105
Figure 20. Outside shoulder width CMF, six-or-more-lane arterials	
Figure 21. Median width CMF, six-or-more-lane arterials	
Figure 22. Median barrier CMF for multiple-vehicle crashes, six-or-more-lane arterials	
Figure 23. Median barrier CMF for single-vehicle crashes, six-or-more-lane arterials	109
Figure 24. Railroad crossing CMF, six-or-more-lane arterials	109
Figure 25. Major driveway CMF, six-or-more-lane arterials.	
Figure 26. Minor driveway CMF, six-or-more-lane arterials.	
Figure 27. Graphical form of the intersection SPF for crashes on three-leg stop-controlled	
intersections (3ST)	119
Figure 28. Graphical form of the intersection SPF for crashes on three-leg signalized	
intersections (3SG).	119
Figure 29. Graphical form of the intersection SPF for crashes on four-leg stop-controlled	
intersections (4ST).	120
Figure 30. Graphical form of the intersection SPF for crashes on four-leg signalized	
intersections (4SG).	120
Figure 31. Graphical form of the SPF for FI multiple-vehicle collisions, one-way	
arterials.	135
Figure 32. Graphical form of the SPF for FI single-vehicle collisions, one-way arterials	
Figure 33. Graphical form of the SPF for PDO multiple-vehicle collisions, one-way	
arterials.	136

Figure 34. Graphical form of the SPF for PDO single-vehicle collisions, one-way	
arterials.	136
Figure 35. Right shoulder width CMF, one-way arterials.	139
Figure 36. Major commercial driveway CMF, one-way arterials.	140
Figure 37. Minor driveway CMF, one-way arterials.	141
Figure 38. Graphical form of the intersection SPF for crashes on one-way street three-leg	
stop-controlled intersections (3ST)	147
Figure 39. Graphical form of the intersection SPF for crashes on one-way street three-leg	
signalized intersections (3SG).	147
Figure 40. Graphical form of the intersection SPF for crashes on one-way street four-leg	
stop-controlled intersections (4ST)	148
Figure 41. Graphical form of the intersection SPF for crashes on one-way street four-leg	
signalized intersections (4SG).	148
Figure 42. Comparison of the SPF by intersection category for crashes on one-way street	
four-leg signalized intersections (4SG).	149

LIST OF TABLES

Table 1. Input variables of the safety prediction models for six-lane arterial segments and	
the HSM Chapter 12 methodology.	14
Table 2. CMF values for land use and parking presence (based on Bonneson and McCoy,	
1997)	22
Table 3. <i>CMF_c</i> values (based on Hadi et al., 1995).	23
Table 4. PDO proportions (based on Squires and Parsonson, 1989)	24
Table 5. Crash rates and input variables for six-lane roadway segment models in the	
literature	25
Table 6. Land use CMF values.	29
Table 7. On-street parking CMF values	29
Table 8. Access or crossing point presence CMFs	34
Table 9. CMFs in intersection safety prediction models.	35
Table 10. Input variable values for intersection model comparisons	36
Table 11. Signal timing parameters CMFs.	38
Table 12. Left-turn lane CMFs for four-leg signalized intersections	39
Table 13. Right-turn lane CMFs for four-leg signalized intersections.	40
Table 14. Right-turn channelization CMFs for signalized intersections (based on	
Bonneson and Pratt, 2009)	41
Table 15. Left-turn lane CMFs for unsignalized intersections.	44
Table 16. Right-turn lane CMFs for unsignalized intersections.	45
Table 17. Right-turn channelization CMFs for unsignalized intersections (based on	
Bonneson and Pratt, 2009)	45
Table 18. Midblock crash rates and counts on one-way and two-way streets (based on	
Hocherman et al., 1990)	
Table 19. Conflict points at four-leg intersections (based on Smith and Hart, 1949)	48
Table 20. Intersection CMFs for two-way to one-way frontage road conversion (based on	
Eisele et al., 2011)	
Table 21. Size of data from different states.	
Table 22. Distribution of roadway segment data by segment type and state	
Table 23. Distribution of intersection data by intersection type and state	
Table 24. List of data variables collected for roadway segments	
Table 25. Descriptive statistics for two-way roadway segment variables	
Table 26. Descriptive statistics for one-way roadway segment variables.	
Table 27. List of data variables collected for intersections as a whole	
Table 28. List of data variables collected for individual streets (major and minor)	
Table 29. Descriptive statistics for continuous variables for 2×2 intersections.	73
Table 30. Breakdown of the number of 2×2 intersections by categorical variables—data	
variables for intersection as a whole	73
Table 31. Breakdown of the number of 2×2 intersections by categorical variables—	
major-street data variables	74
Table 32. Breakdown of the number of 2×2 intersections by categorical variables—	
minor-street data variables	
Table 33. Descriptive statistics for continuous variables for 1×2 intersections.	76

Table 34. Breakdown of the number of 1×2 intersections by categorical variables—data	
variables for intersection as a whole or for one-way street data variables	77
Table 35. Breakdown of the number of 1×2 intersections by categorical variables—	
two-way street data variables	
Table 36. Descriptive statistics for continuous variables for 1×1 intersections	
Table 37. Breakdown of the number of 1×1 intersections by categorical variables—data	
variables for intersection as a whole or major-street data variables	80
Table 38. Breakdown of the number of 1×1 intersections by categorical variables—	
minor-street data variables	
Table 39. Summary of crash frequency and exposure data for roadway segments	
Table 40. Summary of crash type data for roadway segments.	
Table 41. Summary of crash frequency and exposure data for intersections—Texas and	
Illinois.	85
Table 42. Summary of crash frequency and exposure data for intersections—California	
and Michigan	
Table 43. Summary of crash type data for intersection—Texas and Illinois	
Table 44. Summary of crash type data for intersection—California and Michigan	
Table 45. Sample size based on intersection type and location	
Table 46. Descriptive statistics for collected data at signalized intersections in California	
and San Antonio, Texas	
Table 47. Variables acquired from state databases for six-or-more-lane arterials	
Table 48. Supplemental data collected for six-or-more-lane arterials	
Table 49. Calibrated coefficients for FI crashes on six-or-more-lane arterials.	
Table 50. Calibrated coefficients for PDO crashes on six-or-more-lane arterials	
Table 51. Distribution of multiple-vehicle collisions for roadway segments by manner of	
collision type	
Table 52. Distribution of single-vehicle crashes for roadway segments by collision type	
for arterials with six or more lanes.	102
Table 53. Pedestrian crash adjustment factor for two-way roadway segments	103
Table 54. Bicycle crash adjustment factor for two-way roadway segments	104
Table 55. Increase in crashes with driveways	111
Table 56. Roadside fixed-object CMF, six-or-more-lane arterials.	112
Table 57. Supplemental data collected for intersections as a whole	114
Table 58. Supplemental data collected for individual streets (major and minor)	114
Table 59. Calibrated coefficients for FI crashes at two-way street intersections	117
Table 60. Calibrated coefficients for PDO crashes at two-way street intersections	118
Table 61. Distribution of total vehicle collisions for intersections with six or more lanes	
by collision type	121
Table 62. Pedestrian crash adjustment factors: two-way street intersections	123
Table 63. Bicycle crash adjustment factors: two-way street intersections	124
Table 64. Nighttime crash proportions for unlighted intersections.	
Table 64. Nighttime crash proportions for unlighted intersections.Table 65. CMF for major-street left-turn signal phasing.	125
	125 125
Table 65. CMF for major-street left-turn signal phasing.Table 66. CMF for number of lanes at a signalized intersection.	125 125 127
Table 65. CMF for major-street left-turn signal phasing	125 125 127 129

Table 70. Calibrated coefficients for PDO crashes on one-way arterials.	. 134
Table 71. Distribution of multiple-vehicle collisions for roadway segments by manner of	
collision type	. 137
Table 72. Distribution of single-vehicle crashes for roadway segments by collision type	
for arterials with six or more lanes.	. 137
Table 73. Pedestrian crash adjustment factor for one-way roadway segments	. 137
Table 74. Bicycle crash adjustment factor for one-way roadway segments	
Table 75. Values of b_{pk} used in determining the CMF for on-street parking	. 139
Table 76. Roadside fixed-object CMF, one-way arterials.	
Table 77. Calibrated coefficients for FI crashes at one-way street intersections	
Table 78. Calibrated coefficients for PDO crashes at one-way street intersections	
Table 79. Distribution of total vehicle collisions for 1×2 or 1×1 intersections by collision	
type	. 149
Table 80. Pedestrian crash adjustment factors: one-way street intersections	
Table 81. Bicycle crash adjustment factors: one-way street intersections	
Table 82. Nighttime crash proportions for unlighted intersections.	
Table 83. CMF for number of lanes at a signalized intersection.	
Table 84. Crash SDF: six-or-more-lane arterials.	
Table 85. Crash severity distribution of six-or-more-lane segments based on area type	
Table 86. Crash severity distribution of six of more lane segments based on area type	. 157
limit	150
Table 87. Crash severity distribution of six-or-more-lane segments based on road type	
Table 87. Crash SDF: one-way roadways	
Table 89. Crash severity distribution of one-way segments based on lane width	
Table 90. Crash severity distribution of one-way segments based on right shoulder width	
Table 91. Crash severity distribution of one-way segments based on area type.	
Table 92. Crash severity distribution of one-way segments based on bike lane presence	
Table 93. Crash SDF: two-way street signalized intersections	
Table 94. Two-way street signalized intersection severity distribution based on area type	
Table 95. Two-way street signalized intersection severity distribution based on RTOR	. 165
Table 96. Two-way street signalized intersection severity distribution based on U-turn	
prohibition	. 166
Table 97. Two-way street signalized intersection severity distribution based on major-	
street left-turn lane	. 166
Table 98. Two-way street signalized intersection severity distribution based on lighting	
presence	. 167
Table 99. Crash SDF: one-way street signalized intersections.	. 167
Table 100. One-way street signalized intersection severity distribution based on area	
type	. 169
Table 101. One-way street signalized intersection severity distribution based on major-	
street left-turn lane	. 169
Table 102. One-way street signalized intersection severity distribution based on	
channelization	. 170
Table 103. Crash SDF: stop-controlled intersections.	
Table 104. Stop-controlled intersection severity distribution based on area type.	
Table 105. Stop-controlled intersection severity distribution based on lighting presence	
r	

Table 106. Stop-controlled intersection severity distribution based on minor-street left-	
turn lane	172

ACKNOWLEDGMENTS

The research report herein was performed under NCHRP Project 17-58 by the Texas A&M Transportation Institute (TTI). Dr. Domonique Lord of Texas A&M University served as the principle investigator (PI), and Dr. Kay Fitzpatrick of TTI served as the co-PI of the project and supervised the research conducted by TTI. The research supervisors were assisted by the following individuals:

- Dr. Srinivas Geedipally.
- Mr. Mike Pratt.
- Dr. Eun Sug Park.
- Mr. S. Hadi Khazraee.

The research team would like to thank everybody from the federal, state, and local transportation agencies, fellow researchers, and colleagues who helped us over the entire span of this research. The team would also like to recognize all the student workers and support staff who worked very hard to fulfill the requirements of this project. The feedback received from the workshop participants near the end of the project was appreciated. The participants provided very useful comments and suggestions. Finally, the team thanks TTI Communications for their input and review of the final report.

ABSTRACT

Safety prediction procedures have been developed for estimating the safety performance of rural two-lane highways, rural multilane highways, urban and suburban arterials with five or fewer lanes, and freeway segments and interchanges. However, the Highway Safety Manual does not include a safety prediction methodology for urban and suburban arterials with six or more lanes and one-way segments. This research was undertaken to address this need by developing methodologies suitable for inclusion in the Highway Safety Manual. To accomplish this objective, data collected in California, Illinois, Michigan, Oregon, and Texas were assembled that included a wide range of geometric design features, traffic control features, traffic characteristics, and crash records for two-way urban and suburban arterials with six or more lanes, one-way urban and suburban arterials, and intersections located on these facilities. The data were used to calibrate predictive models, each of which included a safety performance function (SPF) and several crash modification factors (CMFs). The SPFs were estimated using the negative binomial modeling structure. In total, predictive models were estimated for seven types of segments and 12 types of intersections that were separated by traffic movements (i.e., two-way or one-way operation), and 18 CMFs were proposed from this work. Separate severity distribution functions were also calibrated using these data. These functions are used with the predictive models to estimate the expected crash frequency for each of five severity levels (i.e., fatal, incapacitating injury, non-incapacitating injury, possible injury, and property-damage-only crash).

EXECUTIVE SUMMARY

INTRODUCTION

Chapter 12 of the *Highway Safety Manual* (HSM) provides a predictive method for two- and four-lane urban and suburban arterial facilities with both undivided and divided cross-sections. The chapter does not cover arterials with six or more lanes or one-way streets. Research is therefore needed to develop an enhanced prediction methodology and safety analysis tools for six-or-more-lane and one-way urban and suburban arterial segments as well as intersections located on these facilities.

Thus, the objectives of this research were to develop:

- An overall framework for the enhancement of safety prediction methodologies for urban and suburban highways for both roadway segments and intersections of arterials with six or more lanes and one-way streets to support decision making for planning, network analysis, corridor analysis, and individual site evaluation.
- Safety analytical models and procedures within that framework.
- Models and procedures to estimate crash frequency and severity for these types of facilities.
- A proposed methodology that is consistent or compatible with the methods and procedures in the current version of HSM Chapter 12.
- A revised Chapter 12 for the future edition of the HSM.
- Training materials and a spreadsheet for the application of the new models.

WORK PLAN

Crash and roadway data from California and Illinois were obtained from the Highway Safety Information System (HSIS), while data from Texas, Michigan, and Oregon were obtained directly from the state highway agencies. Data for the five states were combined for model calibration and the development of crash modification factors (CMFs). These data were enriched through the inclusion of additional road inventory data extracted from Google Earth and Google Street View. The enhanced database was then combined with the crash data to form the highway safety database needed for model and CMF development and calibration.

Since pedestrian exposure data were not available in the electronic databases that were assembled for this project, on-site data collection activities were done to supplement the data already collected. A sample of 40 intersections in California and 24 intersections in San Antonio, Texas, were therefore selected for data collection for the pedestrian evaluation. The data for pedestrians were used to assess and recalibrate the existing predictive method for estimating pedestrian safety in HSM Chapter 12.

Safety performance functions (SPFs) and CMFs were estimated for the following four types of two-way and three types of one-way roadway segments on urban and suburban arterials:

- Six-lane two-way undivided arterials (6U).
- Six-lane two-way divided arterials (i.e., including a raised or depressed median) (6D).
- Seven-lane two-way arterials including a center two-way left-turn lane (TWLTL) (7T).
- Eight-lane two-way divided arterials (i.e., including a raised or depressed median) (8D).
- Two-lane one-way arterials (2O).
- Three-lane one-way arterials (3O).
- Four-lane one-way arterials (4O).

SPFs and CMFs were estimated for the following intersection types for both two-way street intersections and one-way street intersections on urban and suburban arterials:

- Three-leg intersections with stop control on the minor-road approaches (3ST).
- Three-leg signalized intersections (3SG).
- Four-leg intersections with stop control on the minor-road approaches (4ST).
- Four-leg signalized intersections (4SG).

Furthermore, the intersections were separated by the type of operational characteristics of each leg: two-way (x2) or one-way (x1). Hence, the models and CMFs were estimated for 12 different intersection types: 2×2 , 1×2 , and 1×1 for all four categories of intersections.

FINDINGS

This report documents a safety prediction method for six-or-more-lane and one-way urban and suburban arterials, as well as intersections located on these facilities, that is suitable for incorporation in the HSM. The method includes CMFs that describe the observed relationship between crash frequency and on-street parking, roadside fixed objects, median width, lighting, automated speed enforcement, lane width, outside shoulder width, rail-highway crossing, median barriers, major industrial driveways, major commercial driveways, minor driveways, and right shoulder width for six-or-more-lane and one-way segments. For intersections, the CMFs influencing crash counts include those related to intersection left-turn lanes, intersection left-turn signal phasing, intersection right-turn lanes, right turn on red (RTOR), lighting, red-light cameras, number of lanes, intersection right-turn channelization, and U-turn prohibition. Finally, the CMFs influencing vehicle/pedestrian crashes include those associated with bus stops, schools, and alcohol sales establishments.

This report also documents a safety prediction method for estimating the proportion of crashes by severity levels. The severity distribution functions (SDFs) are available for urban and suburban six-or-more-lane arterials; one-way streets; 2×2 signalized intersections with six or more lanes; 1×2 and 1×1 signalized intersections; and 2×2 (with six or more lanes), 1×2 , and 1×1 stop-controlled intersections. Various factors influence the severity of collisions. They include lane width, right shoulder width, the presence of exclusive left-turn lane on the major road/street, the presence of right-turn channelization on the major road/street, the presence of right-turn channelization on the minor road, and street lighting.

RECOMMENDATIONS

The safety prediction methods developed in this research should be incorporated into the HSM.

Although not very common, a few segments categorized as eight-lane undivided, eight-lane with two-way left-turn lane, 10-lane divided, and one-lane and five-lane one-way arterials do exist. Predictive models could not be estimated for these facilities due to the small sample size. Further research may be needed to include such facilities in safety prediction methodologies.

Frontage roads mostly serve one-way traffic. One-way frontage roads were included in this research for developing models for $1\times 2/1\times 1$ intersections. However, the safety performance of these intersections may differ from a typical one-way intersection. Additional research is needed to quantify the difference.

Since the speed limits are higher in suburban areas, the geometric variables may have a different effect in suburban areas than in urban areas. Although the SDFs capture the overall safety performance difference, more research is needed to describe the performance of each geometric feature by area type. This need is not just applicable to this research but also to the first edition of HSM Chapter 12.

CHAPTER 1: INTRODUCTION

The HSM (American Association of State Highway and Transportation Officials [AASHTO], 2010) serves as a tool to help practitioners make planning, design, and operations decisions based on safety. The HSM provides the best information and tools in a useful and widely accepted form to facilitate explicit consideration of safety in the decision-making process. It provides tools to conduct quantitative safety analyses for various types of highway facilities.

In Part C of the first edition of the HSM, procedures are available for estimating the safety performance of rural two-lane highways, rural multilane highways, and urban and suburban arterials. More recently, AASHTO released additional chapters covering freeway segments and interchanges as a separate document. The procedures use base models to predict the number of crashes by collision type and severity level for highway sections and intersections meeting nominal conditions most commonly used by state and local transportation agencies. The predicted values can be modified by CMFs to reflect changes in design and operational characteristics. This activity can be performed both for existing and proposed highway facilities.

HSM Chapter 12 provides a predictive method for two- and four-lane urban and suburban arterial facilities with both undivided and divided cross-sections. The chapter does not cover six-or-more-lane arterials or one-way streets. These types of arterials account for a significant portion of urban and suburban arterials in the United States. For instance, analyses conducted by the research team with the Highway Performance Monitoring System database from 2008 show that there are 8,200 mi of roadways with six or more lanes and 4,132 mi of one-way streets in the United States. Furthermore, the research conducted for these types of facilities is very limited. Only a few studies have specifically examined six-or-more-lane facilities or one-way streets.

Research is therefore needed to develop an enhanced prediction methodology and safety analysis tool for urban and suburban arterial facilities. These results will lead to the development of a revised HSM Chapter 12 for predicting the safety performance of a more comprehensive list of urban and suburban streets and documentation for the expansion of the Interactive Highway Safety Design Model (IHSDM).

RESEARCH OBJECTIVES AND STRATEGIES

The objectives of this research were to develop:

- An overall framework for the enhancement of safety prediction methodologies for urban and suburban highways for both roadway segments and intersections of arterials with six or more lanes and one-way streets to support decision making for planning, network analysis, corridor analysis, and individual site evaluation.
- Safety analytical models and procedures within that framework.
- Models and procedures to estimate crash frequency and severity for these types of facilities.
- A proposed methodology consistent or compatible with the methods and procedures in the current version of HSM Chapter 12.

- A revised Chapter 12 for the future edition of the HSM.
- Training materials and a spreadsheet for the application of the new models.

RESEARCH SCOPE

To achieve the project objectives, the research team ensured that the research products covered a safety prediction methodology for the following components:

- Urban and suburban segments.
- Signalized intersections.
- Unsignalized intersections/driveways.

The safety prediction methodology addresses a wide range of operational and design conditions, such as:

- Six-or-more-lane arterials.
- One-way streets.
- Intersections on six-or-more-lane arterials or one-way streets.
- Parking and driveway characteristics.
- Pedestrian activities and bicycle traffic.

The proposed methodology developed in this project describes the aforementioned predictive models that can be used to support decision making in the planning, design, and operations of the aforementioned highway classifications. The methodology estimates the safety performance of a corridor, intersection, or driveway for a single year or any specified period. It specifically supports the following types of design decisions:

- Segment configuration (e.g., raised median, TWLTL).
- Intersection design (e.g., turning bays, lane geometry).
- Access management (e.g., driveways, land use).
- Parking design.

RESEARCH APPROACH

The research approach was accomplished in two phases. During the first phase, information was gathered and used to develop an overall framework and plan to develop a methodology for evaluating the safety of urban and suburban six-or-more-lane arterials and one-way streets. The information was gathered through a review of HSM Chapter 12 and other related material as well as the transportation literature. During the second phase of the project, the methodology was developed, tested, and refined. Then, it was incorporated into a software tool. Finally, the methodology and tools were evaluated by practitioners through workshop activities and case-study applications.

Achievement of the research objective was completed in 11 work tasks. Tasks 1 through 6 were associated with the first phase of the project. Tasks 7 through 11 were associated with the second phase of the project. The work tasks for this project included:

- Task 1: Conduct review of HSM Chapter 12 and related material.
- Task 2: Prepare working paper.
- Task 3: Conduct GoToMeeting.
- Task 4: Prepare revised work plan.
- Task 5: Prepare interim report.
- Task 6: Meet National Cooperative Highway Research Program (NCHRP) 17-58 Panel.
- Task 7: Execute approved revised work plan.
- Task 8: Develop new Chapter 12.
- Task 9: Develop Microsoft PowerPoint presentation and spreadsheet.
- Task 10: Conduct pilot workshop.
- Task 11: Submit final report.

The primary product of this research was to develop a predictive methodology for estimating the safety performance of urban and suburban six-or-more-lane arterials and one-way streets, which will be incorporated with the methodology for two- and four-lane urban facilities. The methodology includes a series of predictive models and CMFs that will allow users to quantify changes for the planning, design, and operation of urban facilities. A spreadsheet and training manual that will facilitate the application of the methodology by researchers and practitioners were also produced. It is anticipated that the predictive tools developed in this project will be incorporated into the IHSDM. The CMFs will be made available to the Federal Highway Administration's (FHWA's) CMF Clearinghouse.

ORGANIZATION OF THE REPORT

This report presents the results of the research undertaken to develop a safety prediction methodology for six-or-more-lane and one-way urban and suburban arterials as well as the intersections located on these facilities. Chapter 2 documents the findings from a review of the literature addressing urban and suburban arterials and intersections. Chapter 3 presents the proposed framework for safety prediction. Chapter 4 documents the development of the various databases suitable for calibrating the predictive models that comprise the predictive methodology. Chapters 5, 6, 7, and 8 describe the calibration of the predictive models and CMFs for urban and suburban arterial segments with six or more lanes, intersections on urban and suburban arterial segments, and intersections located on one-way urban and suburban arterial segments, respectively. Chapter 9 summarizes the SDFs that are used to estimate the probability of the severity of crashes as a function of covariates. Chapter 10 presents the conclusions and recommendations of the research.

Appendix A presents the revised draft of HSM Chapter 12. Appendix B provides the training material that was used for the workshop. Appendix C shows the various spreadsheets and worksheets linked to the revised draft of HSM Chapter 12 as well as the User Manual.

CHAPTER 2: LITERATURE REVIEW

This chapter summarizes the review of the literature relevant for this project. The chapter is divided in three sections. The first section describes the main characteristics of the existing predictive methodology in HSM Chapter 12. The second and third sections present the review of papers, manuscripts, and research reports related to six-or-more-lane arterials and one-way urban and suburban arterials, respectively.

OVERVIEW OF HSM CHAPTER 12

Chapter 12 of the HSM presents safety predictive methods for urban and suburban arterial facilities (i.e., urban streets). A safety predictive method represents a process for evaluating the safety of a road facility for a specified period. The types of facility that are addressed in Chapter 12 include two- and four-lane undivided facilities, four-lane divided facilities, and three-and five-lane facilities with center TWLTLs. These facilities are abbreviated as 2U, 4U, 4D, 3T, and 5T, respectively. The safety prediction models in Chapter 12 were based on the work by Harwood et al. (2007, 2008).

Safety Prediction Methodology

In the HSM Chapter 12 methodology, the overall safety of a highway segment or project is predicted by making separate safety predictions for individual constituent roadway segments and intersections (sites). Roadway segments are defined as continuous segments that are homogeneous with respect to the input variables considered in the safety prediction model. Safety prediction at intersections includes all crashes that occur within the curb limits of the intersection and those within 250 ft of the intersection that are intersection related (i.e., caused by the effect of the intersection). Safety prediction at roadway segments includes all crashes not attributable to specific intersections.

The safety prediction methodology in Chapter 12 follows the general 18 procedural steps described in Part C of the HSM (see HSM Figure C-2). For each individual roadway segment or intersection, predictions of safety performance are made separately for multiple-vehicle collisions, single-vehicle collisions, vehicle-pedestrian collisions, and vehicle-bicycle collisions. For roadway segments, multiple-vehicle collisions are further divided into nondriveway and driveway related, which are predicted separately.

In the HSM methodology, the expected crash frequency of a site (excluding vehicle-pedestrian and vehicle-bicycle collisions) is predicted as a combination of SPFs and CMFs. SPFs are regression models developed from data for a number of similar sites that estimate the predicted average crash frequency under specified base conditions for geometric design and traffic control features. CMFs are multiplicative factors that are used to account for differences between actual roadway characteristics and the presumed base conditions. As such, the structure of the crash prediction models for non-pedestrian and non-bicycle crashes are as follows:

$$N_{x} = N_{bx} \times (CMF_{1x} \times CMF_{2x} \times \dots \times CMF_{nx})$$
⁽¹⁾

where,

$$N_x$$
 = predicted number of crashes per year (excluding vehicle-
pedestrian and vehicle-bicycle crashes) for site type x
(roadway segment or intersection).
 N_{bx} = predicted number of crashes per year (excluding vehicle-
pedestrian and vehicle-bicycle crashes) under base conditions
for site type x (determined from the respective SPF).

$$CMF_{1x}, CMF_{2x}, \dots, CMF_{nx} = CMFs$$
 for various features $(1, 2, \dots, n)$ of site type x.

In HSM Chapter 12, the roadway segment and intersection SPFs (for non-pedestrian and nonbicycle crashes) are specified in the following forms, respectively:

$$N_{br} = a \times L \times AADT^{b} \tag{2}$$

$$N_{bi} = a \times AADT_{mai}^{b} \times AADT_{min}^{c}$$
(3)

where,

N_{br}	=	predicted number of roadway segment crashes per year for
		base conditions.
AADT	=	annual average daily traffic volume (veh/day) on roadway
		segment.
N_{bi}	=	predicted number of intersection-related crashes per year for
		base conditions.
$AADT_{maj}$	=	annual average daily traffic volume (veh/day) for major road
U U		(both directions of travel combined).
AADT _{min}	=	annual average daily traffic volume (veh/day) for minor road
		(both directions of travel combined).

The prediction methodology for vehicle-pedestrian collisions at signalized intersections includes base models (SPFs) for three- and four-legged signalized intersections and CMFs applied to both types of intersections. The SPFs accounts for total traffic volume (sum of major- and minor-road AADTs), ratio of minor-road AADT to major-road AADT, pedestrian volume, and maximum number of traffic lanes crossed by a pedestrian in any crossing maneuver at the intersection (considering presence of refuge islands).

Unlike at signalized intersections, the vehicle-pedestrian collisions at stop-controlled intersections are predicted as a proportion of the predicted crash frequency at the intersection excluding vehicle-pedestrian and vehicle-bicycle collisions (i.e., the total predicted frequency of single-vehicle and multiple-vehicle collisions multiplied by an adjustment factor provided by the HSM). The frequency of vehicle-bicycle collisions at signalized or stop-controlled intersections are predicted in a similar fashion. A similar methodology is also used to predict the frequency of vehicle-pedestrian and vehicle-bicycle collisions at roadway segments.

The specific collision-type predictions are combined to estimate the safety performance of individual sites, which are in turn combined to predict the overall safety of the entire facility of

interest. In applying the algorithm to a jurisdiction or time period different from that for which the base model is estimated, a multiplicative calibration factor is applied to the model, calculated as the ratio of the observed number of crashes at a sample of sites to the predicted number of crashes at the sample sites using the safety prediction model prior to calibration.

Incorporating Crash History into Prediction

In the presence of crash history data, the HSM recommends using the Empirical Bayes (EB) method (Hauer, 1997) to combine the estimate using the predictive models and the observed crash frequencies to enhance the safety estimates for the existing sites. The EB method has a relatively simple structure and is expected to reduce the regression-to-the-mean bias.

Crash Severity and Collision Type

Separate models were developed in HSM Chapter 12 for total crashes (all crash severities), fataland-injury (FI) crashes, and property-damage-only (PDO) crashes. Since the models were developed separately, there is no assurance that the predicted crash frequencies for the two severity-level components will add up to the predicted total crash frequency. Therefore, the chapter recommends treating the predicted value of total crash frequency as the primary predicted value and using the relative predicted values for FI and PDO crashes to proportion the total crash frequency prediction into severity-level components. All pedestrian and bicycle collisions are, however, treated as FI crashes. The chapter does not provide proportions needed to further categorize the FI crashes into severity levels K, A, B, and C (as defined in the HSM, i.e., K = killed or fatal injury, A = incapacitating injury, B = non-incapacitating injury, C = possible injury).

The chapter also provides tables to break down multiple-vehicle crashes by collision type (i.e., manner of collision, including rear-end, head-on, angle, etc.) and single-vehicle crashes by the type of object struck. Separate proportions are provided for FI and PDO crashes.

Data for Model Development

HSM Chapter 12 safety prediction models for roadway segments were developed using data collected from the states of Minnesota and Michigan. The database consisted of 2,436 segments (blocks) with a total length of 303.9 mi from Minnesota and 1,819 segments with a total length of 294.4 mi from Michigan. The average block length was 0.12 mi in Minnesota and 0.14 mi in Michigan. The roadway segment safety prediction models were validated using a dataset from the Washington State Department of Transportation (DOT).

The safety prediction models for intersections were developed using data from 363 intersections, 182 in Minnesota and 181 in North Carolina. These models were validated using intersection data from the Florida DOT. The predictive models for vehicle-pedestrian collisions at signalized intersections were developed separately in Phase III of the NCHRP 17-26 project (Harwood et al., 2008) using data from 1,523 intersections in Toronto, Canada, and 351 intersections in Charlotte, North Carolina.

CMFs

Five CMFs in HSM Chapter 12 apply to the predicted average crash frequency for roadway segments. The CMFs are applicable to multiple-vehicle and single-vehicle collisions, but not to vehicle-pedestrian and vehicle-bicycle collisions. The key characteristics of these CMFs are as follows:

- *On-street parking CMF*: two parking types are considered (parallel and angle parking). The CMF value also depends on the land use classification: commercial/industrial/institutional or residential/other.
- *Roadside fixed-object CMF*: depends on the density of fixed objects (fixed objects/mi) and the average offset distance of the fixed objects. Point objects that are within 70 ft of one another longitudinally along the road are counted as a single object. If the computed CMF is less than 1.00, it is set equal to 1.00. This situation arises only for very low fixed-object densities.
- *Median width CMF*: applies only to traversable medians without traffic barriers; it is not applicable to medians serving as TWLTLs. The base condition for this CMF is a median width of 15 ft.
- *Lighting CMF*: assumes the absence of lighting as the base condition. The CMF depends on the proportion of crashes that occur at night and the proportion of total nighttime crashes by severity level (FI and PDO).
- *Automated speed enforcement CMF*: a CMF of 0.83 is suggested for FI crashes only; however, a CMF of 0.95 can be used by assuming that automated speed enforcement has no effect on non-injury crashes. The base condition for this CMF is the absence of automated speed enforcement.

Six CMFs in HSM Chapter 12 apply to the predicted average crash frequency (excluding vehicle-pedestrian and vehicle-bicycle collisions) for intersections. The key characteristics of these CMFs are as follows:

- *Left-turn-lane CMF*: applies to the installation of left-turn lanes on any approach of a signalized intersection, but only on uncontrolled major-road approaches to stop-controlled intersections. The CMFs for the installation of left-turn lanes on multiple approaches to an intersection are equal to the corresponding CMFs for the installation of a left-turn lane on one approach raised to a power equal to the number of approaches with left-turn lanes.
- *Left-turn signal phasing CMF*: assumes permissive left-turn phasing as the base condition. This CMF is limited to signalized intersections and takes different values for protected and protected/permissive left-turn signal phasing. If several approaches to a signalized intersection have left-turn phasing, the values of the CMF for each approach are multiplied together.
- *Right-turn-lane CMF*: similar to the left-turn-lane CMF, this CMF applies to the installation of right-turn lanes on any approach to a signalized intersection, but only on uncontrolled major-road approaches to stop-controlled intersections. This CMF applies only to right-turn lanes that are identified by marking or signing, but is not applicable to long tapers, flares, or paved shoulders that may be used informally by right-turn traffic.

- *Right-turn-on-red CMF*: applies to signalized intersections and depends on the number of approaches with right-turn-on-red prohibition. The base condition is right turn on red permitted at all approaches.
- *Lighting CMF*: assumes the absence of lighting as the base condition and depends on the proportion of total crashes for unlighted intersections that occur at night. Default values are provided for the aforementioned proportion based on the intersection type.
- *Red-light-camera CMF*: is based on the assumption that installation of a red-light camera would only affect right-angle collisions and rear-end collisions. Installation of a red-light camera is expected to reduce the frequency of right-angle collisions and increase the frequency of rear-end collisions. It is stated that there is no evidence that red-light camera installation influences other collision types. The CMF value depends on the proportions of crashes that are right-angle or rear-end collisions.

Finally, three CMFs in HSM Chapter 12 apply to the predicted average frequency of vehiclepedestrian collisions. The CMFs address the safety effect of bus stops, schools, and alcohol sales establishments near the intersection. The base condition for these CMFs is the absence of these facilities near the intersection. The CMF values are determined based on the number of respective facilities located fully or partially within 1000 ft of the center of the intersection.

SAFETY PREDICTION FOR ARTERIALS WITH SIX OR MORE LANES

This section presents the findings from the review of literature related to safety prediction at urban and suburban arterials with six or more lanes. The existing safety prediction models in the literature were identified and compared to the HSM Chapter 12 methodology. The first part of this section covers safety prediction for roadway segments, while the second part focuses on intersections.

Safety Prediction at Roadway Segments

As described earlier, the existing safety prediction models in HSM Chapter 12 are limited to roadway segments with five or fewer lanes. The models provide sensitivity to the exposure variables of traffic volume and segment length in the formulation of the SPFs, and to geometric and environmental variables through the CMFs. Separate SPFs are provided for different cross-section configurations, where a configuration is described by the number of lanes and the median type (undivided, divided, or TWLTL).

The research team identified at least six sources in the literature that provide safety prediction models that apply to six-lane urban or suburban arterials. None of the safety prediction models found in the literature review were applicable to roadway segments with more than six lanes. Table 1 specifies the variables included in the HSM methodology and the safety prediction models for six-lane roadway segments that were found in the literature. These models provide sensitivity to a range of variables, some of which are common with the HSM models. Where separate models are provided for signalized or unsignalized intersections (such as in the HSM methodology), the safety effect of these facilities in the methodology is listed as "separate model." The variables that are included directly in the SPF equations are labeled as "SPF," whereas those that are addressed by CMFs are labeled as "CMF."

the HSM Chapter 12 methodology.							
	Safety Prediction Methodology						
Variable	HSM Ch. 12 (AASHTO, 2010)	Petritsch et al. (2007)	Bonneson & Pratt (2009)	Sawalha & Sayed (2001)	Bonneson & McCoy (1997)	Hadi et al. (1995)	Squires & Parsonson (1989)
Number of lanes	2 or 4	6	6	6	4 or 6	6	6
Land use			SPF	CMF	CMF		
On-street parking	CMF		CMF		CMF		
Roadside fixed objects	CMF		CMF				
Lane width		CMF	CMF				
Curb presence						CMF	
Outside shoulder width		CMF	CMF				
Inside shoulder		CMF					
width							
Median width	CMF	CMF	CMF			CMF	
Median type	SPF		SPF			CMF	
Median opening							SPF
presence							
Lighting	CMF						
Speed limit	SPF ^a					CMF	
Automated speed enforcement	CMF						
Truck presence			CMF				
Horizontal curve		CMF	CMF				
radius or degree of curve							
Driveway presence	SPF	CMF	SPF	CMF	CMF		SPF
Driveway type (land	SPF		SPF	CMF			
use served)							
Signalized	Separate	CMF	Separate				SPF
intersection presence	model		model				
Unsignalized	Separate		Separate	CMF	CMF		SPF
intersection presence	model		model				
Crosswalk presence				CMF			

Table 1. Input variables of the safety prediction models for six-lane arterial segments and the HSM Chapter 12 methodology.

Note: Shaded cells: not available/no data (here and all other tables, except where otherwise noted).

^a Applicable to SPFs for vehicle-pedestrian and vehicle-bicycle collisions only.

The variables listed in Table 1 can be characterized into the following general categories:

- Access control—driveway presence, median type (undivided, nonrestrictive median [including TWLTL, gravel, dirt, or grass], or restrictive median [raised curb]), and median opening presence.
- Land use and driveway type—residential, industrial, or commercial (which may be further subdivided into business or office).
- Cross-sectional attributes—lane width, outside shoulder width, inside shoulder width, median width, surface width, curb presence, and on-street parking presence.
- Alignment—horizontal curve radius or degree of curve.
- Traffic control—speed limit and automated speed enforcement.

- Intersection and crossing presence—signalized intersections, unsignalized intersections, and crosswalks.
- Roadside—lighting and roadside fixed objects (e.g., utility poles).

Some of the sources (Hadi et al., 1995; Squires and Parsonson, 1989) listed in Table 1 provide pairs of models, where one model provides an estimate of total crash frequency or rate for all crashes along a roadway of interest, and the other model provides an estimate of midblock crash frequency or rate for crashes not occurring near intersections. This approach allows for an indirect estimate of intersection-related crashes by subtracting the midblock crash frequency from the total crash frequency. Squires and Parsonson (1989) explained that they chose this modeling approach to account for the possibility that changing from a TWLTL median to a raised median may not improve overall safety because a shifting of conflicts from midblock locations to nearby intersections may occur.

As shown in Table 1, there is little agreement between the models in terms of the inclusion of input variables. The authors of the various sources described the processes that they used to develop their models. In all cases, additional variables were considered but excluded from the final model. Reasons for doing so included:

- The effect of the variable was found to be statistically insignificant. This finding may indicate that the variable truly does not affect safety performance, or it may indicate that the researchers' database did not contain a sufficient range in the variable values to allow its effect to be quantified.
- The researchers' data reduction resources were inadequate to allow the addition of the variable to their dataset.
- The variable was not of interest to the agency sponsoring the research. For example, an agency that is not interested in replacing TWLTL medians with raised-curb medians would not likely be interested in quantifying the difference in safety performance of these median types. The agency's decision not to consider installing raised-curb medians may be based on considerations other than safety (e.g., cost, right-of-way availability, community opposition, etc.).

Description of Models in the Literature

The six safety prediction models applicable to six-lane urban or suburban arterials are described below.

Petritsch et al. (2007). The safety prediction model calibrated for six-lane urban or suburban arterials is described by Equations 4–6:

$$C_{KA} = 3.65 \times 10^{-6} L \text{ AADT } e^{(3.9026 + 0.0308D_c + 0.0286N_{sig} / L - 0.0216W_{is} - 0.0156W_s - 0.001W_m)}$$
(4)

$$C_{BC} = 3.65 \times 10^{-6} L \text{ AADT } e^{(5.0665 - 0.0447D_c + 0.0016N_{dw}/L + 0.0509N_{sig}/L - 0.0245W_{is} - 0.0484W_s)}$$
(5)

$$C_{PDO} = 3.65 \times 10^{-6} L AADT e^{(7.4675 - 0.052 \text{ ID}_c + 0.0017 N_{dw} / L + 0.0492 N_{sig} / L - 0.0196 W_{is} - 0.0234 W_s - 0.0063 W_m - 0.0682 W_l N_l)}$$
(6)

where,

$C_{K\!A}$	=	fatal and incapacitating injury crash frequency, crash/year.			
C_{BC}	=	non-incapacitating and possible injury crash frequency, crash/year.			
C_{PDO}	=	PDO crash frequency, crash/year.			
L	=	segment length, mi.			
AADT	=	annual average daily traffic volume, veh/day.			
D_c	=	horizontal degree of curve, degrees.			
N_l	=	number of lanes $(= 6)$.			
N_{sig}	=	number of signalized intersections on the segment.			
N_{dw}	=	number of driveways on the segment.			
W_{is}	=	inside shoulder width, ft.			
W_s	=	outside shoulder width, ft.			
W_m	=	median width, ft.			
W_l	=	lane width, ft.			

It should be noted that Petritsch et al. (2007) reported the models in a different form, suggesting that crash rate is computed as the dependent variable and that none of the input variables are exponentiated in the crash prediction function (unlike the form shown by Equations 4–6). Analysis of the model development process, as documented by Petritsch et al., indicates that the models were likely calibrated using crash frequency, not crash rate, as the dependent variable, since the zero-inflated negative-binomial (NB) distribution was used. With this type of modeling approach, the input variable terms are typically exponentiated (i.e., the relationship between the number of crashes and the covariates of the model is log-linear). Hence, it is likely that the models were calibrated using crash frequency as the dependent variable and then algebraically manipulated to yield equations having crash rate as the dependent variable, and that the exponentiation of the terms was neglected in the drafting of the report.

The terms in the exponentiated portions of Equations 4–6 can be rewritten as CMFs, and the CMF for number of lanes can be computed for the case of six lanes to compare this model to the others presented in this section. Equations 4–6 can be reformulated as follows:

$$C = C_{KA} + C_{BC} \tag{7}$$

$$C_{KA} = 0.00018 \, \mathbb{L} \text{ AADT CMF}_{hc,KA} \text{ CMF}_{sig,KA} \text{ CMF}_{isw,KA} \text{ CMF}_{mw,KA} \tag{8}$$

$$C_{BC} = 0.000579 L AADT CMF_{hc,BC} CMF_{dw,BC} CMF_{sig,BC} CMF_{isw,BC} CMF_{sw,BC}$$
(9)

$$C_{PDO} = 0.00638\&LAADT \begin{pmatrix} CMF_{hc,PDO}CMF_{dw,PDO}CMF_{sig,PDO} \\ CME & CME & CME \end{pmatrix}$$
(10)

$$\left(\operatorname{CMI}_{isw,PDO}\operatorname{CMI}_{sw,PDO}\operatorname{CMI}_{mw,PDO}\operatorname{CMI}_{lw,PDO}\right)$$

$$CMF_{hc,KA} = e^{0.0308D_c} \tag{11}$$

$$CMF_{hc,BC} = e^{-0.0447D_c} \tag{12}$$

$$CMF_{hc,PDO} = e^{-0.052 \, lD_c} \tag{13}$$

$$CMF_{dw,BC} = e^{0.0016N_{dw}/L}$$

$$\tag{14}$$

$$CMF_{dw,PDO} = e^{0.0017N_{dw}/L}$$
 (15)

$$CMF_{sig,KA} = e^{0.0286N_{sig}/L}$$
(16)

$$CMF_{sig,BC} = e^{0.0509N_{sig}/L}$$
 (17)

$$CMF_{sig,PDO} = e^{0.0492N_{sig}/L}$$
(18)

$$CMF_{isw,KA} = e^{-0.0216V_{is}}$$
(19)

$$CMF_{isw,BC} = e^{-0.0245W_{is}}$$
 (20)

$$CMF_{isw,PDO} = e^{-0.0196W_{is}}$$

$$\tag{21}$$

$$CMF_{sw,KA} = e^{-0.0156W_s}$$
 (22)

$$CMF_{sw BC} = e^{-0.0484W_s}$$
 (23)

$$CMF_{sw,PDO} = e^{-0.0234W_s}$$
 (24)

$$CMF_{mw,KA} = e^{-0.001\mathcal{W}_m} \tag{25}$$

$$CMF_{mw,PDO} = e^{-0.0063W_m}$$
 (26)

$$CMF_{lw,PDO} = e^{-0.2046W_l} \tag{27}$$

where,

С	=	FI crash frequency, crash/year.
$CMF_{hc,i}$	=	horizontal curvature CMF for crashes of severity category i ($i = KA$, BC, or
		PDO).
$CMF_{dw,i}$	=	driveway presence CMF for crashes of severity category <i>i</i> .
$CMF_{sig,i}$	=	signalized intersection presence CMF for crashes of severity category <i>i</i> .
$CMF_{isw,i}$	=	inside shoulder width CMF for crashes of severity category <i>i</i> .
$CMF_{sw,i}$	=	outside shoulder width CMF for crashes of severity category <i>i</i> .
$CMF_{mw,i}$	=	median width CMF for crashes of severity category <i>i</i> .
$CMF_{lw,i}$	=	lane width CMF for crashes of severity category <i>i</i> .

The safety prediction models described by Equations 8–10 follow a multiplicative form, as the predicted crash frequencies can be expressed as the multiplication of SPFs for base conditions (including segment length and traffic variables) and the CMFs in Equations 11–27. Different CMFs are provided to reflect the different effects that the variables have on the frequency of crashes with different severities (K+A, B+C, and PDO). The models are not directly sensitive to median type (i.e., TWLTL versus raised curb), although they can be used to compare the expected crash frequency assuming the presence or absence of a median (by setting Wm = 0 or Wm > 0).

The base condition for the CMFs (i.e., the condition that yields a CMF value equal to 1.0) is a value of zero for the variable included in the CMF. For example, for horizontal curvature, Equations 11–13 yield CMF values of 1.0 if no horizontal curvature is present. In presence of horizontal curvature, the CMFs yield an increase in K+A crashes, but a reduction in B+C or PDO crashes, likely to reflect the change in severity distribution associated with horizontal curvature (i.e., greater frequency of more severe crashes). The base condition for the lane width CMF in Equation 27 is not attainable because it is not possible to have zero lane width.

Bonneson and Pratt (2009). The safety prediction model calibrated for six-lane urban and suburban arterials is described by Equations 28–40:

$$C_{N} = C_{b,N} \times (CMF_{cr} \times CMF_{lw} \times CMF_{sw} \times CMF_{mw,N} \times CMF_{pk} \times CMF_{pd} \times CMF_{lk})$$
(28)

$$C_{R} = C_{b,R} \times (CMF_{cr} \times CMF_{lw} \times CMF_{sw} \times CMF_{mw,R} \times CMF_{pk} \times CMF_{pd} \times CMF_{tk})$$
⁽²⁹⁾

$$C_{b,N} = C_{mv,N} + C_{sv,N} + C_{dw,N}$$
(30)

$$C_{b,R} = C_{mv,R} + C_{sv,R} + C_{dw,R}$$
(31)

$$C_{mv,N} = 0.00527 L (0.001 AADT)^{1.82} F_{lu}$$
(32)

$$C_{sv,N} = 0.0609 L (0.001 AADT)^{0.63} F_{lu}$$
(33)

$$C_{dw,N} = 0.0734 \left(\frac{AADT}{15000}\right)^{1.29} N_{dw,res} S_d^{0.518}$$
(34)

$$C_{mv,R} = 0.0197L (0.001 \,AADT)^{1.38} F_{lu}$$
(35)

$$C_{sv,R} = 0.244L (0.001 AADT)^{0.201} F_{lu}$$
(36)

$$C_{dw,R} = 0.0657 \left(\frac{AADT}{15000}\right)^{1.25} N_{dw,res} S_d^{0.518}$$
(37)

$$N_{dw,res} = N_{res} + 1.32N_{ind} + 4.11N_{bus} + 2.91N_{off}$$
(38)

$$F_{lu} = e^{(0.210L_{ind} + .448L_{bus} + 0.113L_{off})/L}$$
(39)

$$S_d = \frac{2L}{N_{res} + N_{ind} + N_{bus} + N_{off} + 1}$$
(40)

where,

C_N	=	expected FI crash frequency for segments with nonrestrictive medians,
		crash/year.
C_R	=	expected FI crash frequency for segments with restrictive medians,
		crash/year.
$C_{b,N}$	=	base FI crash frequency for segments with nonrestrictive medians,
		crash/year.
$C_{b,R}$	=	base FI crash frequency for segments with restrictive medians, crash/year.
CMF_{cr}	=	horizontal curve radius CMF.
CMF_{lw}	=	lane width CMF.
CMF_{sw}	=	shoulder width CMF.
$CMF_{mw,N}$	=	median width CMF for nonrestrictive medians.
$CMF_{mw,R}$	=	median width CMF for restrictive medians.
CMF_{pk}	=	curb parking CMF.
CMF_{pd}	=	utility pole offset CMF.
CMF_{tk}	=	truck presence CMF.
$C_{mv,N}$	=	multiple-vehicle FI crash frequency for segments with nonrestrictive
		medians, crash/year.
$C_{sv,N}$	=	single-vehicle FI crash frequency for segments with nonrestrictive medians,
		crash/year.
		-

$C_{dw,N}$	=	driveway-related FI crash frequency for segments with nonrestrictive
		medians, crash/year.
$C_{mv,R}$	=	multiple-vehicle FI crash frequency for segments with restrictive medians,
		crash/year.
$C_{sv,R}$	=	single-vehicle FI crash frequency for segments with restrictive medians,
,		crash/year.
$C_{dw,R}$	=	driveway-related FI crash frequency for segments with restrictive medians,
<i>un,</i> it		crash/year.
F_{lu}	=	land use adjustment factor.
N _{dw,res}	=	number of equivalent residential driveways on the segment.
$\mathbf{S}_{\mathbf{d}}$	=	driveway spacing, mi/driveway.
N_{res}	=	number of residential driveways on the segment.
N_{ind}	=	number of industrial driveways on the segment.
N_{bus}	=	number of business driveways on the segment.
N_{off}	=	number of office driveways on the segment.
L_{ind}	=	curb miles with industrial land use (two-way total), mi.
L_{bus}	=	curb miles with business land use (two-way total), mi.
		• •
L_{off}	=	curb miles with office land use (two-way total), mi.

These models represent a multiplicative form. Equations 32–34 (for nonrestrictive medians) and 35–37 (for restrictive medians) are used to obtain the crash frequency for segments with base conditions. The crash frequencies are then adjusted upward or downward by multiplying the base crash frequency by one or more CMFs, as listed above.

For both median types (nonrestrictive or restrictive), different equations are provided for the three crash types (multiple vehicle, single vehicle, and driveway related) to reflect the differing effect of median type on each crash type. Additionally, adjustments are applied in Equations 32–36 to capture the effect of land use on multi-vehicle and single-vehicle crash frequency. These adjustments allow the models to account for the fact that each of the land use categories (residential, industrial, business, and office) is associated with different traffic patterns, vehicle mixes, and driveway activity levels. The model structure also accommodates the possibility of having a mix of land uses on a given segment. This structure can help reduce the number of segments that need to be defined and allows the modeling of a segment that has different land uses on opposite sides of the street.

Sawalha and Sayed (2001). The model calibrated by Sawalha and Sayed is described by Equation 41:

$$C_{KABCO} = 0.1223 L^{0.7631} AADT^{0.6459} e^{\left(0.09097 N_{uasig}/L + 0.08274 N_{cw}/L + 0.08515 N_l + 0.1553 I_u + 0.01683 I_{bus} N_{dw}/L\right)}$$
(41)

where,

C_{KABCO}	=	expected crash frequency with severity levels KABCO (all crashes),		
		crash/year.		
N _{unsig}	=	number of unsignalized intersections on the segment.		
N_{cw}	=	number of crosswalks on the segment.		

 I_u = indicator variable for undivided cross-section (= 1 for undivided, 0 for divided).

$$I_{bus}$$
 = indicator variable for business land use (= 1 for business land use, 0 otherwise).

Equation 41 was calibrated to estimate the frequency of all crashes (fatal, injury, and PDO). To obtain an estimate of FI crash frequency, the equation can be multiplied by 0.278, which was the proportion of FI crashes in the dataset used to calibrate the equation. Additionally, the five terms in the exponentiated parenthetic expression can be rewritten as CMFs, and the CMF for number of lanes can be computed for the case of six lanes to compare this model to the others presented in this section. Hence, Equation 41 can be reformulated as follows:

$$C = 0.05667 L^{0.7631} AADT^{0.6459} CMF_{unsig} CMF_{cw} CMF_{u} CMF_{dw}$$
(42)

$$CMF_{unside} = e^{0.09097N_{unside}/L}$$
(43)

$$CMF_{cw} = e^{0.08274N_{cw}/L}$$
 (44)

$$CMF_{\mu} = e^{0.155\mathfrak{A}_{\mu}} = 1.168$$
 for undivided cross-section, 1.000 otherwise (45)

$$CMF_{dw} = e^{0.0168\Im_{bus}N_{dw}/L}$$
(46)

where,

CMF _{unsig}	=	unsignalized intersection presence CMF.
CMF_{cw}	=	crosswalk presence CMF.
CMF_{u}	=	undivided cross-section CMF.

The model calibrated by Sawalha and Sayed (2001) is multiplicative in form. The CMFs described by Equations 43–46 are included to facilitate comparison with the other models presented in this section. The base conditions for these CMFs are no unsignalized intersections present, no crosswalks present, divided cross-section, and either no driveways present or no business land use present. If an estimate of segment-related crashes is desired (i.e., no intersection-related crashes included in the estimate), then the numbers of unsignalized intersections and crosswalks should both be set to zero.

Bonneson and McCoy (1997). The models calibrated by Bonneson and McCoy are described by Equations 47–49:

$$C_{r,KABCO} = L^{0.852} AADT^{0.91} e^{\left(-15.162 - 0.296I_{b/o} - 0.596I_{r/i} + 0.0047 \left\{N_{dw} + N_{app}\right]I_{b/o} / L + 0.255PDO\right)}$$
(47)

$$C_{n,KABCO} = L^{0.852} AADT^{0.91} e^{\left(-15.162 + 0.018I_{b/o} + 0.093I_{r/i} + 0.0047 \left\{N_{dw} + N_{app}\right]I_{b/o}/L + 0.255PDO\right)}$$
(48)

$$C_{u,KABCO} = L^{0.852} AADT^{(0.91+1.02 II_{r/i})} e^{(-15.162 - 10.504I_{r/i} + 0.57I_{Park} + 0.0047 \{N_{dw} + N_{app}]I_{b/o}/L + 0.255PDO)}$$
(49)

where,

 $C_{r,KABCO}$ = expected crash frequency (all crash severity levels) for segments with raised-curb medians, crash/year.

KABCO	=	expected crash frequency (all crash severity levels) for segments with
		TWLTL medians, crash/year.
KABCO	=	expected crash frequency (all crash severity levels) for segments with
		undivided cross-sections, crash/year.
$I_{b/o}$	=	indicator variable for business or office land uses $(= 1 \text{ if present}, 0)$
		otherwise).
$I_{r/i}$	=	indicator variable for residential or industrial land uses (= 1 if present, 0
		otherwise).
I _{Park}	=	indicator variable for presence of parallel parking along the roadside (= 1 if
		present, 0 otherwise).
Napp	=	number of unsignalized public street approaches on the segment.
PDO	=	PDO crashes as a percentage of total crashes.
	KABCO I _{b/o} I _{r/i} I _{Park} Napp	KABCO = $I_{b/o} =$ $I_{r/i} =$ $I_{Park} =$ $N_{app} =$

Equations 47–49 were calibrated to estimate the frequency of all crashes (fatal, injury, and PDO). To obtain an estimate of FI crash frequency, the equation can be multiplied by 0.321, which was the proportion of FI crashes in the dataset used to calibrate the equation. Additionally, the terms in the exponentiated parenthetic expression can be rewritten as CMFs or adjustment factors. Specifically, the constant term can be written as a model coefficient, and the PDO percentage term can be written as an adjustment factor (not a CMF since its intended purpose is to account for crash reporting thresholds, not site characteristics that influence safety performance). Hence, Equations 47–49 can be reformulated as follows:

$$C_d = 2.6 \times 10^{-7} L^{0.852} AADT^{0.91} CMF_{b/o} CMF_{r/i} CMF_{acc} e^{0.255PDO}$$
(50)

$$C_{\mu} = 2.6 \times 10^{-7} L^{0.852} AADT^{(0.91+1.021I_{r/i})} CMF_{r/i} CMF_{Park} CMF_{acc} e^{0.255PDO}$$
(51)

$$CMF_{Park} = e^{0.57I_{Park}} = 1.768$$
 if roadside parallel parking is present, 1.000 otherwise (52)

$$CMF_{acc} = e^{0.0047 \{ N_{dw} + N_{app} \} I_{b/o}}$$
(53)

where,

C_d	=	expected crash frequency (all crash severity levels) for segments with
		divided cross-sections, crash/year.
C_u	=	expected crash frequency (all crash severity levels) for segments with
		undivided cross-sections, crash/year.
$CMF_{b/o}$	=	business and office land use CMF (see Table 2).
$CMF_{r/i}$	=	residential and industrial land use CMF (see Table 2).
CMF_{Park}	=	parallel parking presence CMF.
CMF_{acc}	=	access point CMF.

The $CMF_{b/o}$ and $CMF_{r/i}$ values used in Equations 50 and 51 are provided in Table 2.

CMF		CMF Value by Median Type	2
CMF	Raised Curb	TWLTL	Undivided
$CMF_{b/o}$	0.744	1.018	Not applicable
$CMF_{r/i}$	0.551	1.097	2.74 x 10 ⁻⁵

Table 2. CMF values for land use and parking presence (based on Bonneson and McCoy,1997).

These models were calibrated as part of an effort to quantify the safety effects of midblock leftturn lane treatments. It should be noted that the database used to calibrate these models contained segments with four lanes as well as segments with six lanes. The models' lack of sensitivity to the number of lanes suggests that the effect of this variable on safety performance was found to be subtle compared to the variables described by the CMFs that were included.

Hadi et al. (1995). The models calibrated by Hadi et al. are described by Equations 54–59:

$$C_{mb\ KABCO} = e^{\left(-12.04 + 0.822\Im\,n\,L + 1.072\ln\,AADT - 0.027V_{sl} + 0.63\,\left[N_{sig} + N_{unsig}\right] - 0.0412\sqrt{W_m} + 0.167\,\mathcal{U}_{curb}\right)}$$
(54)

$$C_{tot,KABCO} = e^{\left(-8.766+0.633 \operatorname{sin} L + 0.815 \operatorname{2in} AADT + 0.130 \left[N_{sig} + N_{unsig}\right] - 0.002 \operatorname{6V}_m + 0.2819 I_{curb}\right)}$$
(55)

$$C_{mb,ABC} = e^{\left(-14+0.8164nL+1.0934nAADT+0.070\left[N_{sig}+N_{unsig}\right]-0.0501\sqrt{W_m}+0.2202t_{curb}\right)}$$
(56)

$$C_{tot,ABC} = e^{\left(-8.536+0.7022\ln L + 0.849\ln AADT - 0.0278V_{sl} + 0.113\left[N_{sig} + N_{unsig}\right] - 0.05\sqrt{W_m} + 0.131U_{curb}\right)}$$
(57)

$$C_{mb,K} = e^{(-14.25 + 0.945 \ln L + 0.676 \ln AADT)}$$
(58)

$$C_{tot,K} = e^{\left(-10.88 + 0.73 \ln L + 0.537 \operatorname{dn} AADT + 0.075 \left\{N_{sig} + N_{unsig}\right\}\right)}$$
(59)

where,

$C_{mb,KABCO}$	=	expected midblock crash frequency for all crash severity levels, crash/year.
$C_{tot,KABCO}$	=	expected midblock plus intersection-related crash frequency for all crash
		severity levels, crash/year.
$C_{mb,ABC}$	=	expected midblock crash frequency for crash severity levels ABC,
		crash/year.
$C_{tot,ABC}$	=	expected midblock plus intersection-related crash frequency for crash
		severity levels ABC, crash/year.
$C_{mb,K}$	=	expected fatal midblock crash frequency, crash/year.
$C_{tot,K}$	=	expected fatal midblock plus intersection-related crash frequency,
		crash/year.
V_{sl}	=	posted speed limit, mph.
<i>I</i> _{curb}	=	indicator variable for presence of outside curb (= 1 if present, 0 otherwise).

Equations 54 and 56 apply to crashes that occur at midblock locations, while Equations 55 and 57 apply to all crashes along the street, including intersection-related crashes. These equations can be reformulated to yield multiplicative forms, as follows:

$$C_{mb} = C_{mb,K} + C_{mb,ABC} \tag{60}$$

$$C_{tot} = C_{tot,K} + C_{tot,ABC} \tag{61}$$

$$C_{mb,KABCO} = 5.9 \times 10^{-6} L^{0.8223} AADT^{1.072} CMF_{vsl,mb,KABCO}$$
(62)

$$CMF_{i/s,mb,KABCO}CMF_{mw,mb,KABCO}CMF_{c,mb,KABCO}$$

$$C_{tot,KABCO} = 0.00015 \text{C}^{0.6335} \text{AADT}^{0.8152} \text{CMF}_{i/s,tot,KABCO} \text{CMF}_{mw,tot,KABCO} \text{CMF}_{c,tot,KABCO}$$
(63)

$$C_{mb,ABC} = 8.32 \times 10^{-7} L^{0.8164} AADT^{1.0934} CMF_{i/s,mb,ABC} CMF_{mw,mb,ABC} CMF_{c,mb,ABC}$$
(64)

$$C_{tot,ABC} = 0.00019 \mathcal{C}^{0.7022} AADT^{0.8491} CMF_{vsl,tot,ABC} CMF_{i/s,tot,ABC} CMF_{mw,tot,ABC} CMF_{c,tot,ABC}$$
(65)

$$C_{mb,K} = 6.47 \times 10^{-7} L^{0.945} AADT^{0.676}$$
(66)

$$C_{tot,K} = 1.88 \times 10^{-5} L^{0.73} AADT^{0.5376} CMF_{i/s,tot,K}$$
(67)

$$CMF_{vsl,mb,KABCO} = e^{-0.027V_{sl}}$$
(68)

$$CMF_{vsl,tot,ABC} = e^{-0.027 \mathscr{V}_{sl}}$$
(69)

$$CMF_{i/s,mb,KABCO} = e^{0.63 \left[\left(N_{sig} + N_{unsig} \right) \right]}$$

$$\tag{70}$$

$$CMF_{i/s,tot,KABCO} = e^{0.130 \left(N_{sig} + N_{unsig}\right)}$$
(71)

$$CMF_{i/s,mb,ABC} = e^{0.070 \left(N_{sig} + N_{unsig} \right)}$$
⁽⁷²⁾

$$CMF_{i/s,tot,ABC} = e^{0.113(N_{sig} + N_{unsig})}$$
(73)

$$CMF_{i/s,tot,K} = e^{0.075\left(N_{sig} + N_{unsig}\right)}$$
(74)

$$CMF_{mw,mb,KABCO} = e^{-0.0412\sqrt{W_m}}$$
⁽⁷⁵⁾

$$CMF_{mw,tot,KABCO} = e^{-0.0026W_m}$$
(76)

$$CMF_{mw,mb,ABC} = e^{-0.050 \sqrt{W_m}} \tag{77}$$

$$CMF_{mw,tot,ABC} = e^{-0.05\sqrt{W_m}}$$
⁽⁷⁸⁾

where,

C_{mb}	=	midblock FI crash frequency, crash/year.
C_{tot}	=	midblock plus intersection-related FI crash frequency, crash/year.
$CMF_{vsl,i,j}$	=	posted speed limit CMF for crash location <i>i</i> and severity <i>j</i> .
$CMF_{i/s,i,j}$	=	intersection presence CMF for crash location <i>i</i> and severity <i>j</i> .
$CMF_{mw,i,j}$	=	median width CMF for crash location <i>i</i> and severity <i>j</i> .
$CMF_{c,i,j}$	=	outside curb presence CMF for crash location i and severity j (see Table 3).

The CMF_c values used in Equations 62–65 are provided in Table 3.

Table 3. CMT _c values (based on fraul et al., 1993).					
Crash Location	CMF Value by Crash Severity				
Crash Location	KABCO KABC				
mb	1.182	1.246			
tot	1.326 1.14				

Table 3. *CMF_c* values (based on Hadi et al., 1995).

The most appropriate method to compare the models developed by Hadi et al. (1995) with those previously presented is to use the equations that apply to midblock crashes. To compare FI crash frequencies, Equation 60 should be used.

Squires and Parsonson (1989). The models calibrated by Squires and Parsonson are described by the following equations:

$$C_{mb,TWLTL} = (-60.87 + 0.00336AADT)L$$
⁽⁷⁹⁾

$$C_{tot,TWLTL} = \left(-73.91 + 0.00508AADT - 0.895N_{dw} / L + 32.372N_{sig} / L + 6.482N_{app} / L\right)L$$
(80)

$$C_{mb,Raised} = (-8.14 + 0.00097AADT)L$$
(81)

$$C_{tot,Raised} = \left(-96.48 + 0.00455AADT + 22.467N_{sig} / L\right)L$$
(82)

where,

$C_{mb,TWLTL}$	=	midblock crash frequency for segments with TWLTL median, crash/year.
$C_{tot,TWLTL}$	=	midblock plus intersection-related crash frequency for segments with
		TWLTL median, crash/year.
$C_{mb,Raised}$	=	midblock crash frequency for segments with raised-curb median,
		crash/year.
$C_{tot,Raised}$	=	midblock plus intersection-related crash frequency for segments with
		raised-curb median, crash/year.

Equations 79–82 were calibrated to estimate the frequency of all crashes (fatal, injury, and PDO). To obtain an estimate of FI crash frequency, the equations can be multiplied by one minus the PDO proportions in Table 4. These proportions are derived from the dataset that was used to calibrate the equations.

Crash Location	PDO Proportion by Median Type		
Crash Location	TWLTL	Raised Curb	
mb	0.734	0.773	
tot	0.663	0.763	

Table 4. PDO proportions (based on Squires and Parsonson, 1989).

Unlike the models previously presented in this section, Equations 79–82 are of the linear form (without taking the log). They can still be compared to the previous models, and the most appropriate equations to use for this comparison are the midblock crash frequency models in Equations 79 and 81. It should be noted that Equations 79–82 do not apply to small AADT ranges because they do not bound to zero crashes for zero volume. The lowest AADT observed in the calibration dataset for these models was 20,360 veh/day.

Comparison of Models

With careful consideration of input variables, the aforementioned models can be compared. Input variable values used to generate model comparisons, along with the models' predicted crash rates, are listed in Table 5.

	Source						
Variable	Petritsch et al. (2007)	Bonneson & Pratt (2009)	Sawalha & Sayed (2001)	Bonneson & McCoy (1997)	Hadi et al. (1995)	Squires & Parsonson (1989)	
Equation number(s)		4, 5, 6	7, 8, 9	28, 29	41	47, 48, 49	54, 55
Number of lanes		6	6	6	4 or 6	6	6
Land use			Bus.	Bus.	Bus.		
Speed limit, mph						45	
Curvature		Tangent				•	
Driveways/mile		30	30 (N),	30	30		30
(by median type)			15 (R)				
Signalized intersections/m	ile	0				0	0
Unsignalized intersections	/mile			0	0		0
Crosswalks/mile				0			
Inside shoulder width, ft		0					
Outside shoulder width, ft		1.5					
Median width, ft		0 (U),				0 (U),	
(by median type)		12 (N, R)				12 (N, R)	
Lane width, ft		12		1			
Curb presence						Yes	
Median openings/mile							0
On-street parallel parking					None		
PDO crash proportion	U						
(by median type) ^a	Ν			0.722	0.679		0.734
	R						0.773
Model functional form		Mult.	Mult.	Mult.	Mult.	Mult.	Linear
Model prediction basis			Seg.	Seg.	Mid.	Mid.	Mid.
Calibration dataset	Min.	Seg. 14,900	3450	4232	3000	10,000	20,360
AADT range, veh/day	Avg.	47,726	N.R.	N.R.	27,172	N.R.	32,242
	Max.	98,500	56,700	62,931	56,700	100,000	47,685
Crash rate at AADT =	U	2.03		1.24	0.82	2.27	
60,000 veh/day, crash/mvm	N	2.02	1.70	1.00	0.84	1.01	1.71
(by median type)	R	2.02	0.87	1.06	0.61	1.91	0.52

Table 5. Crash rates and input variables for six-lane roadway segment models in the literature.

Note: Bus. = business; U = undivided; N = nonrestrictive; R = restrictive; Mult. = multiplicative (e.g., with an SPF and one or more CMFs); Seg. = segment-related crashes; Mid. = midblock crashes; mvm = million vehicle-miles; N.R. = not reported.

^a PDO crash proportion = PDO crash frequency \div total crash frequency. The numbers provided are based on the databases used to calibrate the models.

The crash rates in the bottom three rows of Table 5 show that considerable variation exists between the safety predictions provided by the models, even when the input variable values are carefully chosen to describe a similar facility; this is somewhat expected since the models were estimated in different geographical areas. However, comparisons of the model trends can still be made using the following categorization of median types:

- Undivided (i.e., no median).
- Nonrestrictive median (i.e., TWLTL, flush paved, dirt, gravel, or grass).
- Restrictive median (i.e., raised curb or positive barrier).
- Divided (i.e., all nonrestrictive and restrictive median types).

It can be seen that the model predictions consistently show lower crash rates for restrictive medians compared to nonrestrictive medians, and likewise for nonrestrictive medians compared to undivided segments.

A comparison of models that apply to undivided six-lane urban arterials is provided in Figure 1. The models calibrated by Petritsch et al. (2007) and by Hadi et al. (1995) seem to agree well across the range of traffic volumes. In contrast, the models calibrated by Sawalha and Sayed (2001) and by Bonneson and McCoy (1997) predict fewer crashes, particularly for higher volumes, though they have similar slopes to each other.

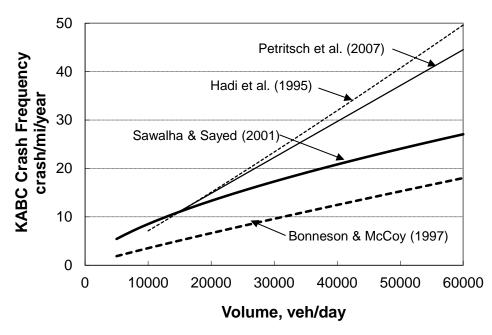


Figure 1. Models for six-lane undivided urban or suburban arterials.

A comparison of models that apply to six-lane urban or suburban arterials with nonrestrictive medians is provided in Figure 2. The model calibrated by Bonneson and Pratt (2009) agrees well with the model calibrated by Bonneson and McCoy (1997) for lower volumes (e.g., 20,000 veh/day or less) and with the model calibrated by Squires and Parsonson (1989) for higher volumes (e.g., 35,000 veh/day or more).

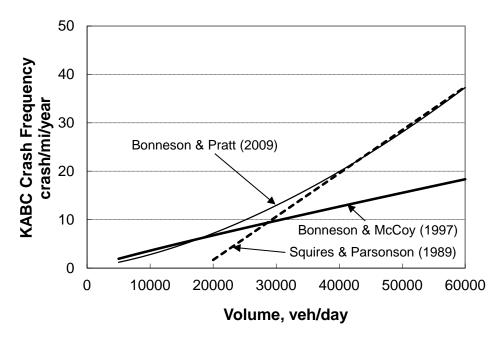


Figure 2. Models for six-lane urban or suburban arterials with nonrestrictive medians.

A comparison of models that apply to six-lane urban or suburban arterials with restrictive medians is provided in Figure 3. The models calibrated by Bonneson and McCoy (1997) and by Squires and Parsonson (1989) show similar slopes. Otherwise, there is not good agreement among these models, except at the lower range of volumes.

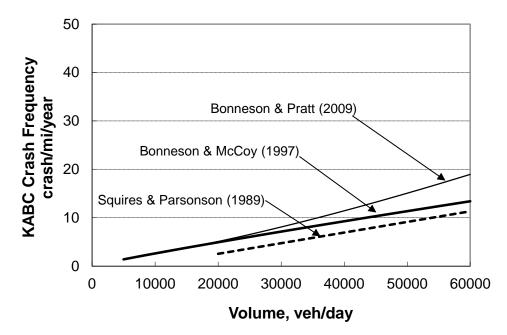


Figure 3. Models for six-lane urban or suburban arterials with restrictive medians.

A comparison of models that apply to divided six-lane urban arterials with no specification of median type (nonrestrictive versus restrictive) is provided in Figure 4. The models calibrated by Petritsch et al. (2007) and by Hadi et al. (1995) are shown to agree well across the range of traffic volumes. In contrast, the model calibrated by Sawalha and Sayed (2001) predicts fewer crashes at the higher range of volumes.

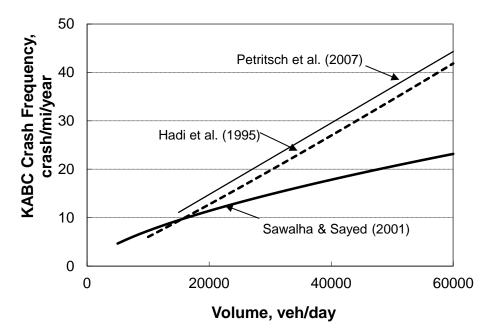


Figure 4. Models for six-lane divided urban or suburban arterials.

The variation in the preceding models' trends, combined with the inconsistent inclusion of input variables (as demonstrated in Table 1), suggests that the models may not be generalizable. Nevertheless, these models provide insight into the variables that should be included in a database needed to develop new models that would be more transferrable and include more input variables. Such models would allow designers and decision-makers to quantify the safety effects for a wide range of geometric and traffic control characteristics.

Comparison of CMFs

As was listed in Table 1, many CMFs are included in the preceding models. The trends of these CMFs are compared in the following paragraphs.

Land Use. CMF values for land use types are provided in Table 6. The CMF for business or office land uses derived by Sawalha and Sayed (2001) compares favorably to that derived by Bonneson and McCoy (1997) for business or office land uses on roadway segments with a TWLTL median.

Land Use Type	•	edian Type (Bonneson Coy, 1997)	CMF Value (Sawalha & Sayed, 2001)	
	Raised	TWLTL	(Sawaina & Sayeu, 2001)	
Business or office	0.744	1.018	1.017	
Residential or industrial	0.551	1.097	1.000	

Table 6. Land use CMF values.

On-Street Parking. CMF values for the presence of on-street parking are provided in Table 7. The on-street parking CMF from HSM Chapter 12 was incorporated directly into the models developed by Bonneson and Pratt (2009). The CMF value for parallel parking from Bonneson and McCoy (1997) roughly agrees with that provided in HSM Chapter 12.

Table 7. On-street parking UNIF values.						
	CMF Value by Parking and Land Use Type					
	Paral	lel Parking	Angle	Parking		
Road Type	Residential	Commercial,	Residential or	Commercial, Industrial, or		
	or Other	Industrial, or	Other			
		Institutional		Institutional		
2U, 3T (HSM Chapter 12)	1.465	2.074	3.428	4.853		
4U, 4D, 5T (HSM Chapter 12)	1.100	1.709	2.574	3.999		
4U, 4D, 5T, 6U, 6D, 7T	1.768		None provided			
(Bonneson & McCoy, 1997)						

Table 7. On-street pa	arking CM	F values.
-----------------------	-----------	-----------

Lane Width. The lane width CMF developed by Petritsch et al. (2007) is described by Equation 26. The lane width CMF developed by Bonneson and Pratt (2009) is described by Equation 83:

$$CMF_{lw} = \left(e^{-0.042[W_l - 12]} - 1.0\right) \frac{P_i}{0.26} + 1.0$$
(83)

where,

 CMF_{lw} = lane width CMF.

 $P_i =$ proportion of relevant crashes for the CMF (= 0.13 for nonrestrictive medians, 0.26 for restrictive medians).

The lane width CMFs are compared in Figure 5. The CMF developed by Petritsch et al. (2007) is shown to be more sensitive to lane width than that developed by Bonneson and Pratt (2009). The difference may be partially attributed to the different crash severities (KABC versus PDO) to which the CMFs apply.

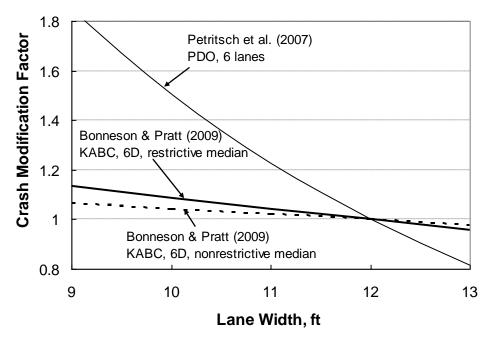
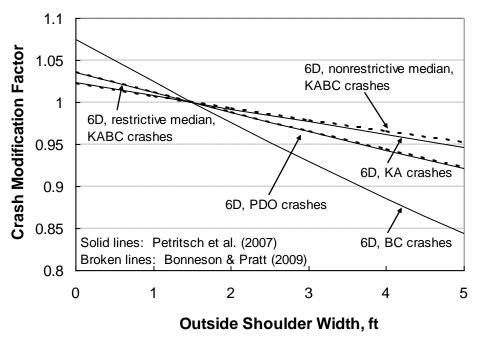


Figure 5. Lane width CMFs.


Outside Shoulder Width. Outside shoulder width CMFs developed by Petritsch et al. (2007) are described by Equations 22–24 for KA, BC, and PDO crashes, respectively. The outside shoulder width CMF developed by Bonneson and Pratt (2009) is described by Equation 84:

$$CMF_{sw} = \left(e^{-0.032[W_s - 1.5]} - 1.0\right) \frac{P_i}{0.11} + 1.0$$
(84)

where,

 CMF_{sw} = outside shoulder width CMF. P_i = proportion of relevant crashes for the CMF (= 0.05 for nonrestrictive medians, 0.08 for restrictive medians).

The outside shoulder width CMFs are compared in Figure 6. The CMF for KA crashes developed by Petritsch et al. (2007) closely tracks the CMF for nonrestrictive median segments developed by Bonneson and Pratt (2009). Additionally, the CMF for PDO crashes developed by Petritsch et al. (2007) closely tracks the CMF for restrictive median segments developed by Bonneson and Pratt (2009).

Inside Shoulder Width. Petritsch et al. (2007) developed inside shoulder width CMFs for KA, BC, and PDO crashes. These CMFs are described by Equations 19–21, respectively, and compared in Figure 7. The trends are similar to those seen for the outside shoulder width CMF and generally apply to the same range of values (i.e., approximately 0.92–1.04)

Figure 7. Inside shoulder width CMFs.

Median Width. CMFs for median width were developed by Petritsch et al. (2007) (see Equations 25–26), Bonneson and Pratt (2009), and Hadi et al. (1995) (see Equations 75–78). The CMFs developed by Bonneson and Pratt (2009) are described by Equations 85 and 86:

$$CMF_{mw,R} = e^{-0.04 \, \mathrm{I}\left(\sqrt{W_m} - 4\right)}$$
(85)

$$CMF_{mw,N} = e^{-0.0255(W_m - 12)}$$
 (86)

where,

 $CMF_{mw,i}$ = median width CMF for median type *i* (restrictive or nonrestrictive).

These CMFs, along with that from HSM Chapter 12, are compared in Figure 8. The HSM Chapter 12 CMF applies only to traversable medians without traffic barriers, not including TWLTLs. As shown, there is considerable variation in the median width CMFs. This variation is likely due to other factors that are correlated with median type. For example, a restrictive median reduces the effective number of driveways by preventing through and left-turn movements into or out of driveways.

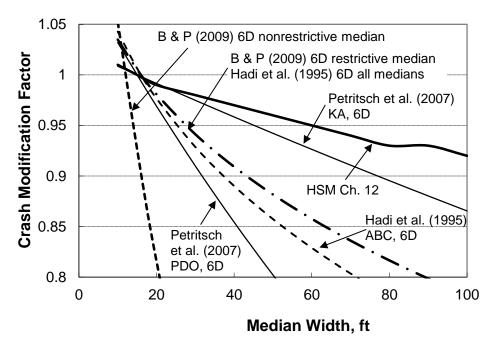


Figure 8. Median width CMFs.

Horizontal Curvature. CMFs for horizontal curvature were developed by Petritsch et al. (2007) (see Equations 11–13) and by Bonneson and Pratt (2009). The latter CMF is described by Equation 87:

$$CMF_{hc} = 1.0 + 0.97 (0.147V_{sl})^4 \frac{(1.47V_{sl})^2}{32.2R^2}$$
(87)

where,

$$CMF_{hc}$$
 = horizontal curvature CMF.
 R = curve radius, ft.

These CMFs are compared in Figure 9. For gradual and intermediate curves (e.g., $R \ge 1000$ ft), the CMF developed by Bonneson and Pratt (2009) compares favorably with the CMF developed by Petritsch et al. (2007) for KA crashes. The CMFs developed by Petritsch et al. for BC crashes and PDO crashes suggest that crashes of these severities decrease as horizontal curvature increases. When interpreted together, the three CMFs developed by Petritsch et al. suggest that the crash severity distribution changes when horizontal curvature is present. Specifically, more K and A crashes and fewer B, C, and PDO crashes occur.

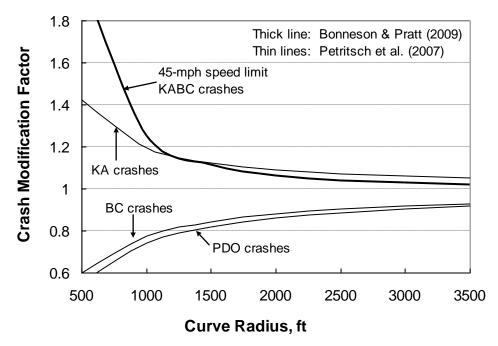


Figure 9. Horizontal curvature CMFs.

Access and Crossing Point Presence. Various CMFs have been developed to account for the safety influence of access and crossing point presence. Access points can take the form of driveways, signalized intersections, or unsignalized intersections. Crossing points can take the form of signalized intersections, unsignalized intersections, or crosswalks. For all of these CMFs, the base condition is no access or crossing points present.

Computed values for the various CMFs are provided in Table 8. The CMFs are compared in terms of the percentage increase in crashes associated with the presence of a single access or crossing point type on an example 1-mi urban street segment. That is, the CMF equation is evaluated with the number of points equal to 1, and 1.0 is subtracted from this value to obtain a percentage increase. These numbers can be used to compute the percentage increase in crashes due to more than one access or crossing point by raising the number to the power of the number of points. For example, the driveway density CMF by Petritsch et al. (2007) for BC crashes

indicates that a 0.2 percent increase in BC crashes would occur due to the presence of one driveway on a 1-mi urban street segment. If three driveways were present, the predicted increase in crashes would be 0.6 percent (= $(1.002)^3 - 1$).

Table 8. Access of crossing point presence CNIFS.						
Access or Crossing Point Type	Source	Crash Severities	Equation Number	Percent Increase in Crashes per Point		
	Petritsch et al. (2007)	BC	14	0.2		
	Petritsch et al. (2007)	PDO	15	0.2		
Driveways	Sawalha & Sayed (2001)	KABCO	46	1.7		
	Bonneson & McCoy (1997)	KABCO	53	0.5		
	Average	Not applicable		0.6		
	Petritsch et al. (2007)	KA	16	2.9		
Signalized Interpostions	Petritsch et al. (2007)	BC	17	5.2		
Signalized Intersections	Petritsch et al. (2007)	PDO	18	5.0		
	Average	Not applicable		4.4		
Unairealized	Sawalha & Sayed (2001)	KABCO	43	9.5		
Unsignalized Intersections	Bonneson & McCoy (1997)	KABCO	53	0.5		
	Average	Not applicable		5.0		
Crosswalks Sawalha & Sayed (2001)		KABCO	44	8.6		

Table 8. Access or crossing point presence CMFs.

The computed average values for percent increase in crashes suggest that intersections (either signalized or unsignalized) are associated with more crashes than driveways, which is intuitive. The percent increase in crashes for crosswalk presence is somewhat higher than expected and is likely correlated with pedestrian volumes at the sites included in the calibration dataset used to develop Equation 44.

Safety Prediction at Intersections

Different modeling methods have been used to account for intersection crashes. Earlier models were formulated in terms of total crashes and midblock crashes, such that intersection crashes could be obtained by subtracting the latter from the former. This approach was represented in Equations 54–59 and 79–82.

Some models for urban streets account for the presence of intersections (signalized and/or unsignalized) and crosswalks through the use of CMFs. This approach accounts for the presence of intersections, but not their geometric or traffic control characteristics. Equations 8, 10, 42, and 50–51 illustrate this approach. These equations can be used to infer the number of intersection-related crashes on an urban street facility by applying the equations twice—once with the CMF values computed based on the number of intersections and/or crosswalks present, and once with no intersections or crosswalks present.

The two aforementioned methods for predicting intersection-related crash frequency are flawed for two reasons. First, these approaches will yield the frequency of all crashes occurring near the intersection, regardless of whether they were truly intersection-related or just segment-related and occurring at or near the intersection. Second, these approaches will only include the crashes that occurred on the urban street being modeled (i.e., the major street) because only these crashes were included in the databases used to calibrate the urban street models. Crashes occurring on the minor-street approaches will not be included.

More recent efforts have yielded separate SPFs and CMFs for intersections, such that intersection geometric and traffic control characteristics could be directly modeled. This approach is represented in HSM Chapter 12 and was applied by Bonneson and Pratt (2009) and Bauer and Harwood (1998) using databases that included intersection-related crashes on all approaches. Table 9 summarizes the CMFs that are used with these SPFs, as well as the CMFs available in HSM Chapter 12 for intersections on two- and four-lane arterials.

		CMFs by	Source, Co	ntrol Type, ar	nd Number	of Legs		
	HSM Chapter 12			on & Pratt	Bauer & Harwood (1998)			
Variable		TO, 2010)	`	(2009)				
	Stop	Signal	Stop	Signal		stop	Signal	
	3 or 4	3 or 4	3 or 4	3 or 4	3	4	4	
Left-turn prohibition					Major	Major		
Left-turn lane	Major,	Major,	Major	Major,	Major			
Lett-turn faile	minor	minor		minor				
Right-turn lane	Major,	Major,	Major	Major,				
Right-turn lane	minor	minor		minor				
Right turn on red		Major,						
Right turn on red		minor						
Number of through lanes			Major,	Major,			Major,	
Number of through failes			minor	minor			minor	
Right-turn channelization			Major,	Major,	Minor	Minor		
Right-turn chamichzation			minor	minor				
Lane width			Major,	Major,	Major	Major		
Lane width			minor	minor				
Shoulder width			Major,			Major		
Shoulder width			minor					
Median presence			Major		Major			
Access control						Major	Major	
Functional class						Major		
Signal timing							Site	
Signal phasing		Site					Site	
Design speed							Major	
Lighting	Site	Site			Site			
Red-light cameras		Site						
Bus stops ^a		Site						
Schools ^a		Site						
Alcohol sales		Site						
establishments ^a								

Table 9. CMF	's in intersectior	n safety prediction	ı models.
	5 m muci section	i salety prediction	i moucis.

Note: Major = applicable to major street; Minor = applicable to minor street; Site = applicable to whole intersection.

^a Applicable to vehicle-pedestrian crashes only.

The following subsections provide comparisons of the models that were developed by Bonneson and Pratt (2009) and Bauer and Harwood (1998), organized by control type (signal or stop controlled). The input variable values used with the CMFs are summarized in Table 10.

Input Value by Source, Control Type, and Number of Legs						
T 477 • 11	Bonneson &	Bauer & Harwood (1998)				
Input Variable	Stop	Signal	Sto		Signal	
	3 or 4	3 or 4	3	4	4	
Left-turn			Turns	Turns		
prohibition			permitted	permitted		
Left-turn lane	Present on all legs	Present on all legs	Marked left- turn lanes			
Right-turn lane	None	None				
Number of through lanes	6 on major street; 2, 4, or 6 on minor street	6 on major street; 2, 4, or 6 on minor street		6 on major street	6 on major street; $\geq 4 \text{ or } \leq 3 \text{ on minor}$ street	
Right-turn channelization	None	None	None	None		
Lane width	12 ft	12 ft	12 ft	12 ft		
Shoulder width	1.5 ft			1.5 ft		
Median presence	None		Present or not present			
Access control				Partial	Partial	
Functional class				Principal arterial		
Signal timing					Semiactuated	
Signal phasing					Multiphase	
Design speed					50 mph	
Lighting			Present			

Table 10. Input variable values for intersection model comparisons.

Signalized Intersections

The models calibrated by Bonneson and Pratt (2009) are described by Equations 88–94:

$$C_{3S} = 7.94 \times 10^{-7} AADT_{major}^{0.629} AADT_{minor}^{0.385} CMF_{lane}$$
(88)

$$C_{4S} = 5.88 \times 10^{-6} AADT_{major}^{0.459} AADT_{minor}^{0.397} CMF_{lane}$$
(89)

$$CMF_{lane} = CMF_{major}CMF_{minor}$$
(90)

$$CMF_{major} = e^{0.197(N_{major}-4)}P_{major} + 1.0(1 - P_{major})$$
(91)

$$P_{major} = \frac{AADT_{major}}{AADT_{major} + AADT_{minor}}$$
(92)

$$CMF_{minor} = e^{0.197(N_{minor}-2)}P_{minor} + 1.0(1 - P_{minor})$$
(93)

$$\underline{AADT_{minor}} \tag{94}$$

$$P_{minor} = \frac{AADT_{minor}}{AADT_{major} + AADT_{minor}}$$
(04)

where,

$$C_{3S}$$
 = KABC crash frequency at a three-leg signalized urban intersection, crash/year.

 C_{4S} = KABC crash frequency at a four-leg signalized urban intersection, crash/year.

$AADT_{major}$	=	major-street traffic volume, veh/day.
AADT _{minor}	=	minor-street traffic volume, veh/day.
CMF _{lane}	=	number of lanes CMF.
N _{major}	=	number of lanes on the major street.
N _{minor}	=	number of lanes on the minor street.
P _{major}	=	proportion of traffic volume on the major street.
P_{minor}	=	proportion of traffic volume on the minor street.

The number of lanes CMF in Equation 90 can accommodate between two and six lanes on each of the two intersecting streets, with the constraint that the major street must have equal or more lanes than the minor street. Hence, with the use of this CMF, the SPFs described in Equations 88 and 89 can be applied to intersections on six-lane urban streets.

The model calibrated by Bauer and Harwood (1998) is described by Equations 95–98:

$$C_{4S} = 0.0032AADT_{major}^{0.574}AADT_{minor}^{0.215}CMF_{lane}CMF_{speed}CMF_{phase}$$
(95)

$$CMF_{lane} = e^{-0.155I_{lane}}$$
⁽⁹⁶⁾

$$CMF_{speed} = e^{0.005v_{des}} \tag{97}$$

$$CMF_{phase} = e^{-0.24I_{2-phase}} = 0.787$$
 for multiphase signal, 1.000 for two-phase signal (98)

where:

Ilane	=	indicator variable for number of lanes on minor street (= 1 if three or fewer
		lanes, 0 if four or more lanes).
V _{des}	=	major-road design speed, mph.
$I_{2-phase}$	=	indicator variable for two-phase signal operation (= 1 if multiphase signal, 0
*		if two-phase signal).

A comparison of Equations 89 (Bonneson and Pratt, 2009) and 95 (Bauer and Harwood, 1998) is provided in Figure 10. Two trends are evident. First, the models developed by Bonneson and Pratt predict notably more crashes than those developed by Bauer and Harwood. Second, the models developed by Bauer and Harwood show less sensitivity to the minor-street number of lanes compared to the models developed by Bonneson and Pratt.

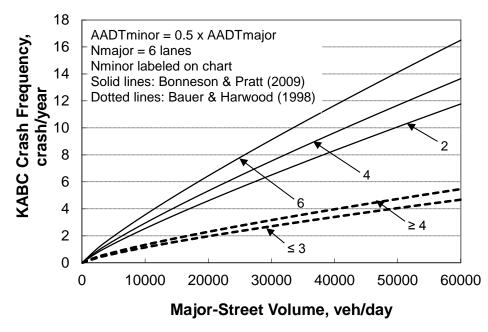


Figure 10. Models for urban four-leg signalized intersections.

As was listed in Table 9, several CMFs are included in the preceding models. The trends of these CMFs are compared in the following paragraphs. The CMFs from Bonneson and Pratt (2009) and from Bauer and Harwood (1998) apply to FI crashes. The CMFs from HSM Chapter 12 apply to all crashes.

Signal Timing Parameters. Bauer and Harwood (1998) provided CMFs to account for the safety effects of several different signal timing parameters. These CMFs are summarized in Table 11, along with the left-turn signal phasing CMF from HSM Chapter 12. The base condition inferred from the CMF values is the semi-actuated, two-phase signal operation. With both the Bauer and Harwood CMF for signal phasing and the HSM Chapter 12 CMF for left-turn signal phasing, the provision of protected left-turn phases is shown to reduce crashes.

Source	CMF	Condition	Value
Bauer & Harwood	Signal timing	Pre-timed	0.95
(1998)		Semiactuated	1.00
		Fully actuated	1.49
	Signal phasing	Two-phase	1.00
		Multiphase	0.79
HSM Chapter 12	Left-turn signal phasing	Protected	0.94
	(per approach)	Protected-permissive	0.99
		Permissive	1.00
	Left-turn signal phasing	Protected	0.78
	(four approaches)	Protected-permissive	0.96
		Permissive	1.00

The left-turn signal phasing CMF as presented in HSM Chapter 12 is applied to each approach, such that the combined CMF value would be $0.78 (= 0.94^4)$ if protected left-turn phasing was

provided on all four approaches. To facilitate comparison between this CMF and the signal phasing CMF developed by Bauer and Harwood (1998), the HSM Chapter 12 CMF was raised to the fourth power to represent cases where the given left-turn signal phasing was implemented on all four approaches. The HSM Chapter 12 CMF value for protected left-turn phasing at all four approaches (0.78) compares closely with the Bauer and Harwood (1998) CMF for multiphase signal phasing (0.79).

Left-Turn Lanes. CMFs for the presence of left-turn lanes were documented by Bonneson and Pratt (2009) and included in HSM Chapter 12. The CMFs in both sources are based on the work conducted by Harwood et al. (2002). A procedure was subsequently employed by Bonneson and Pratt (2008) to generalize the CMFs to multiple-approach applications and to add sensitivity to traffic volumes on each approach.

The left-turn lane CMF in HSM Chapter 12 is formulated based on a base condition of no leftturn lanes present, and it indicates that the addition of a left-turn lane on a single intersection approach results in a 7 percent reduction in crashes for a three-leg signalized intersection and a 10 percent reduction in crashes for a four-leg signalized intersection. The corresponding CMF values for these two cases are 0.93 and 0.90, respectively, and the CMFs are applied in a multiplicative manner if left-turn lanes are added to more than one intersection approach. For example, adding left-turn lanes to all four approaches of a signalized intersection would yield a combined left-turn lane CMF of $0.66 (= 0.90^4)$.

The left-turn lane CMF documented by Bonneson and Pratt (2009) is sensitive to traffic volumes on each approach. This CMF, unlike the HSM Chapter 12 left-turn lane CMF, is formulated for a base condition of left-turn lanes being present on all approaches, such that a crash increase would be observed if one or more left-turn lanes were removed. The reported values for the Bonneson and Pratt (2009) CMF can be inverted and compared with the HSM Chapter 12 CMF. This comparison is shown in Table 12 for all left-turn lane location cases at a four-leg intersection.

	Left-Turn L	CMF Value by Source			
Major	r Street	Minor	Street	HSM	Bonneson &
1 approach	2 approaches	1 approach	2 approaches	Chapter 12	Pratt (2009) ^a
Х				0.90	0.85
		Х		0.90	0.92
Х	X			0.81	0.72
		X	Х	0.81	0.84
Х		Х		0.81	0.78
Х	X	X		0.73	0.66
Х		X	Х	0.73	0.71
Х	X	Х	Х	0.66	0.60

Table 12. Left-turn lane CMFs for four-leg signalized intersections.

^a Minor-street volume = $0.5 \times$ major-street volume.

For three-leg signalized intersections, the Bonneson and Pratt (2009) left-turn lane CMF applies only to the case of removing a left-turn lane from the major street. The CMF value for this case is 1.22 (or 0.82 for adding a left-turn lane).

Right-Turn Lanes. CMFs for the presence of right-turn lanes were documented by Bonneson and Pratt (2009) and included in HSM Chapter 12. The CMFs in both sources are based on work

conducted by Harwood et al. (2002). A procedure was subsequently employed by Bonneson and Pratt (2008) to generalize the CMFs to multiple-approach applications and to add sensitivity to traffic volumes on each approach.

The right-turn lane CMF in HSM Chapter 12 is formulated based on a base condition of no rightturn lanes present, and it indicates that the addition of a right-turn lane on a single intersection approach results in a 4 percent reduction in crashes (or a corresponding CMF value of 0.96). The CMF is applied in a multiplicative manner if right-turn lanes are added to more than one intersection approach. For example, adding right-turn lanes to all four approaches of a signalized intersection would yield a combined right-turn lane CMF of 0.85 (= 0.96^4).

The right-turn lane CMF documented by Bonneson and Pratt (2009) is sensitive to traffic volumes on each approach. This CMF, such as the HSM Chapter 12 right-turn lane CMF, is formulated for a base condition of right-turn lanes not being present. A comparison of the right-turn lane CMFs from the two sources is shown in Table 13 for all right-turn lane location cases at a four-leg intersection.

	Right-Turn I	CMF Value by Source			
Major	Major Street		Minor Street		Bonneson &
1 approach	2 approaches	1 approach	2 approaches	Chapter 12	Pratt (2009) ^a
Х				0.96	0.92
		X		0.96	0.96
X	Х			0.92	0.85
		X	Х	0.92	0.92
Х		X		0.92	0.88
Х	Х	X		0.88	0.82
Х		X	Х	0.88	0.85
Х	Х	Х	Х	0.85	0.78

Table 13. Right-turn lane CMFs for four-leg signalized intersections.

^a Minor-street volume = $0.5 \times$ major-street volume.

For three-leg signalized intersections, the Bonneson and Pratt (2009) right-turn lane CMF applies only to the case of adding a right-turn lane from the major street. The CMF value for this case is 0.90.

Right-Turn Channelization. A CMF for the presence of right-turn channelization (i.e., provision of free right-turn movements) was developed by Bonneson and Pratt (2009). It is formulated based on a base condition of no right-turn channelization present, and it is sensitive to traffic volumes on each approach. A listing of the right-turn channelization CMF values is shown in Table 14 for all right-turn channel location cases.

	Right-Turn I	CMF Value ^a				
Major	Street	Minor	Minor Street		4-leg	
1 approach	2 approaches	1 approach	1 approach 2 approaches		intersection	
Х				1.11	1.09	
		Х		1.06	1.05	
Х	Х			Not	1.20	
		X	X	applicable	1.10	
Х		Х		1.18	1.14	
Х	Х	Х			1.26	
Х		Х	Х	Not	1.20	
Х	X	Х	X	applicable	1.32	

 Table 14. Right-turn channelization CMFs for signalized intersections (based on Bonneson and Pratt, 2009).

^a Minor-street volume = $0.5 \times$ major-street volume.

The bottom row of Table 14 indicates that installation of right-turn channelization on all approaches of a four-leg signalized intersection would be associated with a 32 percent increase in FI crashes. Similarly, Bauer and Harwood (1998) derived a CMF value of 1.35, suggesting a 35 percent increase in crashes, for the provision of right-turn channelization at four-leg stop-controlled intersections. They stated that this finding seems counterintuitive, in that provision of right-turn channelization should be associated with a decrease in crashes. Bonneson and Pratt (2009) suggested that the increase in crashes may be due to the higher speeds associated with a free right-turn movement at a right-turn channel, compared to the slower speeds required to turn from a conventional right-turn lane. Another possible factor is the stopping of turning vehicles at the downstream portion of the right-turn channel while the drivers are waiting for a safe gap to merge into the receiving lane. Drivers waiting in this manner may become involved in rear-end crashes if other right-turning drivers do not have adequate sight distance to see them in the stopped position.

Other CMFs. The models developed by Bonneson and Pratt (2009) for urban signalized intersections included other CMFs. These additional CMFs include number of lanes and lane width. They are not presented here because they were taken from the report by Bauer and Harwood (1998) and adapted to include sensitivity to traffic volumes.

Unsignalized Intersections

The models calibrated by Bonneson and Pratt (2009) are described by Equations 99–105:

$$C_{3U} = 1.1 \times 10^{-7} AADT_{major}^{0.766} AADT_{minor}^{0.248} CMF_{lane}$$
(99)

$$C_{4U} = 7.29 \times 10^{-7} AADT_{major}^{0.596} AADT_{minor}^{0.26} CMF_{lane}$$
(100)

$$CMF_{lane} = CMF_{major}CMF_{minor}$$
(101)

$$CMF_{major} = e^{-0.135(N_{major}-4)}P_{major} + 1.0(1 - P_{major})$$
(102)

$$P_{major} = \frac{AADT_{major}}{AADT_{major} + AADT_{minor}}$$
(103)

$$CMF_{minor} = e^{-0.135(N_{minor}-2)}P_{minor} + 1.0(1 - P_{minor})$$
(104)

$$P_{minor} = \frac{AADT_{minor}}{AADT_{major} + AADT_{minor}}$$
(105)

where,

 C_{3U} = KABC crash frequency at a three-leg unsignalized urban intersection, crash/year.

$$C_{4U}$$
 = KABC crash frequency at a four-leg unsignalized urban intersection, crash/year.

The number of lanes CMF in Equation 101 can accommodate between two and six lanes on each of the two intersecting streets, with the constraint that the major street must have equal or more lanes than the minor street. Hence, with the use of this CMF, the SPFs described in Equations 99 and 100 can be applied to intersections on six-lane urban streets.

The model calibrated by Bauer and Harwood (1998) is described by Equations 106–112:

$$C_{3U} = 0.0013AADT_{major}^{0.696}AADT_{minor}^{0.238}CMF_{3,rtc}CMF_{lw}CMF_{div}$$
(106)

$$C_{4U} = 0.0092AADT_{major}^{0.584}AADT_{minor}^{0.206}CMF_{4,rtc}CMF_{sw}$$
(107)

 $CMF_{3,rtc} = e^{-0.58 II_{rk}} = 0.559$ if no right-turn channel is provided on minor-street approaches, 1.000 (108) otherwise (100)

$$CMF_{4,rtc} = e^{-0.3I_{rc}} = 0.741$$
 if no right-turn channel is provided on minor-street approaches, 1.000 (109)
otherwise

$$CMF_{lw} = e^{-0.048W_l} \tag{110}$$

$$CMF_{div} = e^{-0.182I_{div}} = 0.834$$
 for divided major street, 1.000 for undivided major street (111)

$$CMF_{sw} = e^{-0.02W_s}$$
 (112)

where,

CMF _{3,rtc}	=	right-turn channel presence CMF for three-leg stop-controlled intersections.
CMF _{4,rtc}	=	right-turn channel presence CMF for four-leg stop-controlled intersections.
CMF_{div}	=	major-street divided cross-section CMF.
I_{rtc}	=	indicator variable for right-turn channel presence (= 1 if channel is present
		on crossroad approaches, 0 otherwise).
<i>I</i> _{div}	=	indicator variable for divided cross-section (= 1 if major road is divided, 0 otherwise).
I _{div}	=	on crossroad approaches, 0 otherwise). indicator variable for divided cross-section (= 1 if major road is divided, 0

A comparison of Equations 100 (Bonneson and Pratt, 2009) and 107 (Bauer and Harwood, 1998) is provided in Figure 11. As shown, the model developed by Bonneson and Pratt predicts notably fewer crashes than the model developed by Bauer and Harwood.

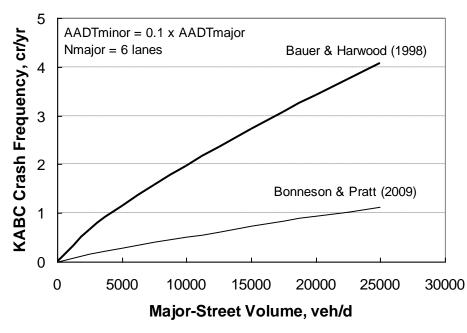


Figure 11. Models for urban four-leg stop-controlled intersections.

A comparison of Equations 99 (Bonneson and Pratt, 2009) and 106 (Bauer and Harwood, 1998) is provided in Figure 12. Two cases are shown for the Bauer and Harwood model—undivided cross-section on the major street, and divided cross-section on the major street. The model developed by Bonneson and Pratt predicts a crash frequency that is roughly the average of the two cases evaluated with the Bauer and Harwood model.

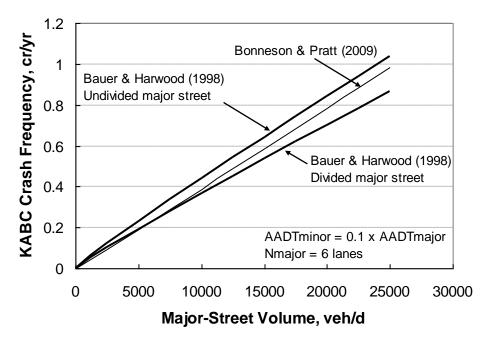


Figure 12. Models for urban three-leg stop-controlled intersections.

As was listed in Table 9, several CMFs are included in the preceding models. The trends of these CMFs are compared in the following paragraphs. The CMFs from Bonneson and Pratt (2009) and from Bauer and Harwood (1998) apply to FI crashes. The CMFs from HSM Chapter 12 apply to all crashes.

Left-Turn Lanes. CMFs for the presence of left-turn lanes on the major street were documented by Bonneson and Pratt (2009) and included in HSM Chapter 12. The CMFs in both sources are based on work conducted by Harwood et al. (2002). A procedure was subsequently employed by Bonneson and Pratt (2008) to generalize the CMFs to multiple-approach applications and to add sensitivity to traffic volumes on each approach.

The left-turn lane CMF in HSM Chapter 12 is formulated based on a base condition of no leftturn lanes present, and it indicates that the addition of a left-turn lane on a single intersection approach results in a 33 percent reduction in crashes for a three-leg unsignalized intersection and a 27 percent reduction in crashes for a four-leg unsignalized intersection. The corresponding CMF values for these two cases are 0.67 and 0.73, respectively, and the CMFs are applied in a multiplicative manner if left-turn lanes are added to more than one intersection approach. For example, adding left-turn lanes to both major-street approaches of an unsignalized intersection would yield a combined left-turn lane CMF of 0.45 (= 0.67^2).

The left-turn lane CMF documented by Bonneson and Pratt (2009) is sensitive to traffic volumes on each approach. This CMF, unlike the HSM Chapter 12 left-turn lane CMF, is formulated for a base condition of left-turn lanes being present on all approaches, such that a crash increase would be observed if one or more left-turn lanes were removed. The reported values for the Bonneson and Pratt CMF can be inverted and compared with the HSM Chapter 12 CMF. This comparison is shown in Table 15 for all left-turn location cases at a four-leg intersection.

Major-Street Legs	CMF Value by Source and Number of Legs			
with Left-Turn	HSM Ch	apter 12	Bonneson & Pratt (2009) ^a	
Lanes	3-leg intersection	4-leg intersection	3-leg intersection	4-leg intersection
One leg	0.67	0.73	0.75	0.76
Both legs		0.53		0.58

 Table 15. Left-turn lane CMFs for unsignalized intersections.

Note: Shaded cell: forth leg of a three-leg intersection is not present.

^a Minor-street volume = $0.1 \times$ major-street volume.

Right-Turn Lanes. CMFs for the presence of right-turn lanes on the major street were documented by Bonneson and Pratt (2009) and included in HSM Chapter 12. The CMFs in both sources are based on work conducted by Harwood et al. (2002). A procedure was subsequently employed by Bonneson and Pratt (2008) to generalize the CMFs to multiple-approach applications and to add sensitivity to traffic volumes on each approach.

The right-turn lane CMF in HSM Chapter 12 is formulated based on a base condition of no rightturn lanes present, and it indicates that the addition of a right-turn lane on a single intersection approach results in a 14 percent reduction in crashes (or a corresponding CMF value of 0.86). The CMF is applied in a multiplicative manner if right-turn lanes are added to more than one intersection approach. For example, adding right-turn lanes to both approaches of an unsignalized intersection would yield a combined right-turn lane CMF of 0.74 (= 0.86^2). The right-turn lane CMF documented by Bonneson and Pratt (2009) is sensitive to traffic volumes on each approach. This CMF, like the HSM Chapter 12 right-turn lane CMF, is formulated for a base condition of right-turn lanes not being present. A comparison of the right-turn lane CMFs from the two sources is shown in Table 16 for all right-turn location cases at a four-leg intersection.

Major-Street Legs	CMF Value by Source and Number of Legs				
with Left-Turn	HSM Ch	Chapter 12 Bonneson & Pratt (2		Pratt (2009) ^a	
Lanes	3-leg intersection	4-leg intersection	3-leg intersection	4-leg intersection	
One leg	0.86	0.86	0.94	0.94	
Both legs		0.74		0.89	

Table 16. Right-turn lane CMFs for unsignalized intersections.

^a Minor-street volume = $0.1 \times$ major-street volume.

Right-Turn Channelization. CMFs for the presence of right-turn channelization were developed by Bonneson and Pratt (2009) and Bauer and Harwood (1998). They are formulated based on a base condition of no right-turn channelization present. The CMF by Bonneson and Pratt is sensitive to traffic volumes on each approach. A listing of the right-turn channelization CMF values is shown in Table 17 for all right-turn channel location cases.

 Table 17. Right-turn channelization CMFs for unsignalized intersections (based on Bonneson and Pratt, 2009).

	CMF Value ^a				
Majoi	Major Street		Minor Street		4-leg
1 approach	2 approaches	1 approach	2 approaches	intersection	intersection
Х				1.74	1.70
		Х		1.07	1.07
Х	X			Not	2.91
		X	X	applicable	1.15
Х		Х		1.86	1.82
Х	X	Х		Net	3.11
Х		X	X	Not	1.96
Х	X	Х	X	applicable	3.35

^a Minor-street volume = $0.1 \times \text{major-street}$ volume.

Table 17 shows that installation of right-turn channelization is associated with an increase in FI crashes. Similarly, Bauer and Harwood (1998) derived a CMF value of 1.35 for the provision of right-turn channelization at four-leg unsignalized intersections and 1.24 for the provision of right-turn channelization at three-leg unsignalized intersections. They stated that this finding seems counterintuitive, in that provision of right-turn channelization should be associated with a decrease in crashes. Bonneson and Pratt (2009) suggested that the increase in crashes may be due to the higher speeds associated with a free right-turn movement at a right-turn channel, compared to the slower speeds required to turn from a conventional right-turn lane. Another possible factor is the stopping of turning vehicles at the downstream portion of the right-turn channel while the drivers are waiting for a safe gap to merge into the receiving lane. Drivers waiting in this manner may become involved in rear-end crashes if other right-turning drivers do not have adequate sight distance to see them in the stopped position.

Other CMFs. The models developed by Bonneson and Pratt (2009) for urban unsignalized intersections included other CMFs. These additional CMFs include number of lanes, lane width, shoulder width, and median type and width. As discussed above, they are not presented here because they were taken from the report by Bauer and Harwood (1998) and adapted to include sensitivity to traffic volumes.

SAFETY PREDICTION FOR ONE-WAY ARTERIALS

This section summarizes the literature on the safety performance of one-way arterials. The first subsection covers the segments, while the second subsection encompasses intersections with one or more legs that operate as one-way streets.

Safety Prediction at Roadway Segments

Safety prediction models have not yet been developed for one-way urban street segments. However, various reports and articles have been published about operational and safety performance changes that have been observed following the conversion of two-way urban street or frontage road segments to one-way operation. These sources provide some insight into the safety performance that would be expected on one-way urban street segments.

Eisele et al. (2011) conducted a before-after evaluation of freeway frontage roads that were converted from two-way operation to one-way operation. They proposed a CMF of 0.43 for KABC segment-related crashes for frontage road conversions, meaning that the average reduction in FI crashes on frontage road segments following a conversion is 57 percent (or 1.00 - 0.43, expressed as percent). Their study included 19.2 mi of frontage road segments that were converted and 22.1 mi of two-way frontage road segments that were used as comparison sites. However, they acknowledged that their results were affected by the crash reduction trends that were observed near freeway entrance or exit ramps that connected to the frontage road segments. They were unable to isolate the ramp-related crashes from other crashes occurring on the frontage road segments. Hence, a 57 percent crash reduction is likely greater than would occur on a converted urban street where ramp connections do not exist.

In an article about converting urban streets from two-way operation to one-way operation in New York City, Wiley (1959) reported that pedestrian crashes decreased by about 25 percent following the conversion. He did not specify whether these reductions applied to crossings at intersections, midblock crossings, or both, but he acknowledged that numerous midblock pedestrian crossings occur in New York City.

A comparison by Hocherman et al. (1990) of crash rates on one-way and two-way urban street segments in Jerusalem yielded mixed results. In their analysis, one-way streets were found to have lower crash rates in central business district areas, particularly for pedestrian crashes, while two-way streets were found to have lower crash rates in non-central business district areas. Their findings are provided in Table 18. Most of the computed relative risk values in the top portion of the table are greater than 1.00, indicating that two-way streets have lower crash rates. However, the relative risk values for pedestrian crashes and total crashes on one-way streets in the central business district are less than 1.00, suggesting that one-way streets are safer for pedestrians and in general (since pedestrian crashes represented over 76 percent of crashes in the central business

district). However, Hocherman et al. acknowledged that their findings regarding trends in the central business district must be interpreted cautiously because of the limited number of crashes observed in that area.

Performance Measure	Area Type	Intersection Type	Pedestrian	Vehicle	Total
	Central	One-Way Streets	0.79	0.29	1.09
	Business	Two-Way Streets	1.00	0.24	1.24
Midblock Crash Rate	District	Relative Risk	0.79	1.20	0.88
(crashes/mvm)	Non-Central	One-Way Streets	1.17	0.72	1.90
	Business	Two-Way Streets	0.60	0.45	1.05
	District	Relative Risk	1.97	1.61	1.81
	Central	One-Way Streets	25	9	34
	Business	Two-Way Streets	24	6	30
Midblock Crash Count	District	Total	49	15	64
WILdblock Crash Count	Non-Central	One-Way Streets	102	63	165
	Business	Two-Way Streets	477	359	836
	District	Total	579	422	1001

 Table 18. Midblock crash rates and counts on one-way and two-way streets (based on Hocherman et al., 1990).

In addition to the preceding trends, Hocherman et al. (1990) also observed a slight difference in crash severity when comparing one-way and two-way streets. In their crash dataset, 18 percent of midblock crashes on one-way streets were severe or fatal, while 22 percent of midblock crashes on two-way streets were severe or fatal. The difference was more noteworthy on streets that were classified as local (rather than arterial or collector). The percentage of severe or fatal midblock crashes on local streets was 16 percent for one-way and 27 percent for two-way streets. As a possible explanation for this trend, they noted that head-on crashes cannot occur on one-way streets unless one driver proceeds in the wrong direction.

Safety Prediction at Intersections

Safety prediction models have not yet been developed for intersections on one-way urban streets. However, reports and articles about operational and safety performance changes that have been observed following the conversion of two-way urban street or frontage road segments to oneway operation can yield insight into the safety performance that would be expected at intersections on one-way urban streets. A summary of the key issues is provided in the following paragraphs.

Underlying Principles. Stemley (1998) and Smith and Hart (1949) observed that there are fewer conflict points at four-leg intersections of one-way streets than intersections of two-way streets. The number of conflict points for three types of intersections is summarized in Table 19. Note that the number of conflict points decreases significantly when comparing an intersection of two two-way streets with an intersection of a two-way street and a one-way street, and the number of conflict points is even fewer for an intersection of two one-way streets.

Intersection Type	Conflict Point Count by Type				
	Crossing	Merge/Diverge	Pedestrian-Vehicle		
Two-way/two-way	16	8	16		
Two-way/one-way	5	6	10		
One-way/one-way	1	4	6		

 Table 19. Conflict points at four-leg intersections (based on Smith and Hart, 1949).

Observations have also been made about human factors issues associated with one-way street traffic operations. Smith and Hart (1949) illustrated that a driver approaching an intersection of two two-way streets has three areas of concern where he or she needs to look for opposing traffic—to the left, to the right, and (if making a left turn) toward the opposing through vehicles. At an intersection of a two-way street and a one-way street, drivers have two areas of concern (to the left and to the right for drivers on the one-way street, and to one side and toward the opposing through vehicles for drivers on the two-way street). At an intersection of two one-way streets, drivers only need to look for opposing traffic from one direction of the intersecting street. It has been similarly observed that pedestrians crossing a one-way street only have to look for traffic in one direction instead of two (Stemley, 1998; Zegeer, 1983).

In an analysis of the operational and safety effects of pedestrian signalization alternatives, Zegeer et al. (1983) reported that intersections of one or more one-way streets experience significantly fewer pedestrian crashes than intersections of two two-way streets. In a branching analysis of mean pedestrian crash frequencies, they found that at intersections with entering volumes of fewer than 27,500 veh/day, the mean pedestrian crash frequency was 0.477 crash/year at intersections of two two-way streets or a two-way street and a one-way street, and 0.241 crash/year at intersections of two one-way streets. In other words, the pedestrian crash frequency at intersections of two one-way streets was roughly half of that at other intersections.

Experience with Two-Way to One-Way Frontage Road Conversion. Eisele et al. (2011) conducted a before-after evaluation of freeway frontage roads that were converted from two-way operation to one-way operation. All the frontage road conversions were located in an urban environment. They proposed the CMFs listed in Table 20 for different subsets of intersection-related KABC crashes. The CMFs show that intersection-related crashes are decreased significantly when two-way frontage roads are converted to one-way operation.

 Table 20. Intersection CMFs for two-way to one-way frontage road conversion (based on Eisele et al., 2011).

Crash Category	CMF Value
Opposite-direction crashes	0.20
Opposite-direction crashes involving a left-turning vehicle	0.15
Angle and opposite-direction crashes involving a left-turning vehicle	0.23
Minor injury (C) crashes	0.14

Safety Prediction Model for Diamond Ramp Terminals. In terms of entering traffic movements, the intersection of a two-way street and a one-way street resembles that of a ramp terminal at a conventional diamond interchange, where diagonal entrance and exit ramps intersect a two-way crossroad. Hence, the safety prediction models developed by Bonneson et al. (2012) for this type of ramp terminal may be applicable to an intersection of a two-way urban street and a one-way urban street. These models are described by Equations 113 and 114:

$$C_{D4,sg} = e^{(-2.015+1.19 \ln[AADT_{xrd}/1000]+0.13 \ln[AADT_{ex}/1000+AADT_{en}/1000])}$$
(113)

$$C_{D4,st} = e^{(-3.064+1.00\$\ln[AADT_{srd}/1000]+0.177\ln[AADT_{ex}/1000+AADT_{en}/1000])}$$
(114)

where,

$C_{D4,sg}$	=	KABC crash frequency at a signalized four-leg diamond ramp terminal,
-		crash/year.
$C_{D4,st}$	=	KABC crash frequency at a one-way stop-controlled four-leg diamond
		ramp terminal, crash/year.
$AADT_{xrd}$	=	two-way traffic volume on the crossroad, veh/day.
$AADT_{ex}$	=	exit ramp traffic volume, veh/day.
$AADT_{en}$	=	entrance ramp traffic volume, veh/day.

For intersections with six lanes on the major street, Equations 113 and 114 can be reformulated as follows:

$$C_{D4,sg} = 1.44 \times 10^{-5} AADT_{xrd}^{-1.191} AADT_{ex}^{-0.131} AADT_{en}^{-0.131}$$
(115)

$$C_{D4,st} = 1.3 \times 10^{-5} AADT_{xrd}^{1.008} AADT_{ex}^{0.177} AADT_{en}^{0.177}$$
(116)

The crash frequency trends predicted by Equations 115 and 116 are shown graphically in Figure 13 for the traffic volume ranges applicable to the models. When compared to the trends shown in Figure 10 (for signalized intersections of two two-way streets) and Figure 12 (for three-leg stop-controlled intersections of two two-way streets), the models for diamond interchange ramp terminals predict notably more crashes. This finding contrasts with the CMFs in Table 20 that suggest fewer crashes occur at an intersection of a two-way street and a one-way street. The comparison of a ramp terminal to an urban intersection must be made with caution because of the different nature of traffic patterns and the two facility types. Nonetheless, the model forms shown in Equations 115 and 116 are applicable to intersections of a two-way street and a one-way street.

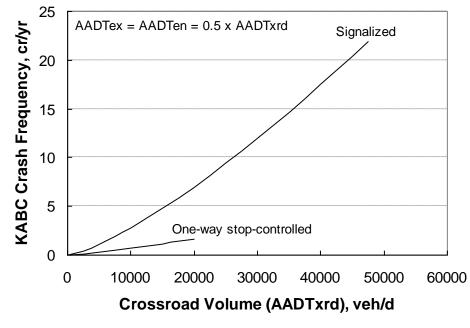


Figure 13. Models for four-leg diamond interchange ramp terminals (Bonneson et al., 2012).

CHAPTER 3. FRAMEWORK FOR SAFETY PREDICTION

This chapter describes the proposed methodology for estimating the safety performance of six or more lanes and one-way urban and suburban arterials. The chapter is divided into two sections. The first section presents the characteristics of models and methods that have been used for estimating the safety performance of different highway types in the HSM. The second section describes the methodology used for estimating the SPFs and CMFs for this project.

MODEL CALIBRATION METHODS

This section discusses important characteristics and issues related to the development of safety prediction methodologies. This section focuses on the methods most relevant to this research project.

Safety Prediction Method

Although there is a large body of predictive methods (see Lord and Mannering, 2010; Mannering and Bhat, 2014; Mannering et al., 2016), currently only two methods have been proposed for safety prediction model development for inclusion in the HSM. The first method consists of developing models for base conditions and adjusts the predicted values using CMFs, while the second method consists of using a full model to quantify the safety performance of various types of highway entities and develop CMFs from the cross-sectional model.

The models estimated for both methods are based on count data regression methodologies (Cameron and Trivedi, 1998; Winkelmann, 2008). The most basic count data models are the Poisson and Poisson-gamma (also known as NB). Both models belong to the family of generalized linear models. For the Poisson model to work, the mean has to equal the variance. However, in practice, it has been found that count data often exhibit overdispersion, meaning that the variance is larger than the mean (Lord, Washington, et al., 2005). On rare occasions, the data or modeling output may show characteristics of under-dispersion (Oh et al., 2006; Lord et al., 2010). To overcome the problem related to the overdispersion, the Poisson-gamma model has been proposed as a viable alternative to the Poisson model (Hilbe, 2011). The Poisson-gamma model has become very popular because it has a closed-form equation, and the mathematics to manipulate the relationship between the mean and the variance is relatively simple (Lord and Mannering, 2010). Furthermore, all statistical software packages have incorporated an NB function that simplifies the analysis of count data.

The Poisson-gamma model in highway safety applications has been shown to have the following probabilistic structure: the number of crashes at the *i*-th entity (road section, intersections, etc.) and *t*-th time period, Y_{it} , when conditional on its mean, θ_{it} , is assumed to be Poisson distributed and independent over all entities and time periods as follows (Miaou and Lord, 2003):

$$Y_{it} \mid \theta_{it} \sim Po(\theta_{it})$$
 $i = 1, 2, ..., I \text{ and } t = 1, 2, ..., T$ (117)

The mean of the Poisson is structured as:

$$\theta_{it} = \mu_{it} \exp(\varepsilon_{it}) \tag{118}$$

where,

$$\mu_{it} = \text{a function of the covariates } (X)$$

$$(e.g., \mu_{it} = \exp(\beta_0 + \beta_1 X_{it1} + \beta_2 X_{it2} + \dots + \beta_p X_{itp}) \text{ where p is the number of covariates}).$$

$$\beta = \text{a vector of unknown coefficients.}$$

$$\varepsilon_{it} = \text{the model error independent of all the covariates.}$$

It is usually assumed that $\exp(\varepsilon_{it})$ is independent and gamma distributed with a mean equal to 1 and a variance $1 / \phi$ for all *i* and *t* (here ϕ is the inverse dispersion parameter, with $\phi > 0$). With this characteristic, it can be shown that Y_{it} , conditional on μ_{it} and ϕ , is distributed as a Poisson-gamma random variable with a mean μ_{it} and a variance $\mu_{it} (1 + \mu_{it} / \phi)$, respectively.

With the recent computational advancements in Bayesian statistics (Gelman et al., 2004), there has been a significant number of new models that have been proposed to analyze count data. In most cases, the error terms of these models are simply re-parameterized. These models include the Poisson-lognormal (Miaou et al., 2003), the Conway-Maxwell-Poisson (Lord et al., 2008), the Poisson-Weibull (Cheng et al., 2012), the NB-Lindley (Geedipally et al., 2012), and the Sichel model (Zou et al., 2013), among others. In some cases, these models offer similar statistical performances to the Poisson-gamma model, while others are more flexible to capture the overdispersion or handle under-dispersion. Although Bayesian models are more flexible to analyze complex modeling structures, they can take a long time for the model to converge.

To simplify the description and be consistent with the parameterization proposed in the HSM, the mean of the model (or predicted value), θ , is defined with the variable *N*.

Base Models + CMFs

The structure of the crash prediction algorithm proposed by Harwood et al. (2000) is as follows:

$$N_{rs} = N_{br} \times \left(CMF_{1r} \times CMF_{2r} \dots CMF_{nr} \right)$$
⁽¹¹⁹⁾

$$N_{in} = N_{bi} \times \left(CMF_{1i} \times CMF_{2i} \dots CMF_{ni} \right)$$
(120)

where,

- N_{rs} = predicted number of total roadway segment crashes per year after application of CMFs.
- N_{in} = predicted number of total intersection-related crashes per year after application of CMFs.
- N_{br} = predicted number of total roadway segment crashes per year for base conditions.
- N_{bi} = predicted number of total intersection-related crashes per year

		for base conditions.
$CMF_{1r} CMF_{2r} \dots CMF_{nr}$	=	CMFs for various road segment features $(1, 2,, n)$.
$CMF_{1i} CMF_{2i} \dots CMF_{ni}$	=	CMFs for various intersection features $(1, 2,, n)$.

The CMFs are multiplicative factors that are used to account for differences between actual roadway characteristics and those for which the base models apply. In applying the algorithm to a jurisdiction or time period different from that for which the base model is estimated, a calibration factor is applied to the model, calculated as the ratio of the observed number of crashes at a sample of sites to the predicted number of crashes prior to the calibration factor being applied. Harwood et al. (2000) recommended that the sample for estimating this calibration factor be such that the distribution of traffic volumes is similar to that in the data used for the original calibration.

The base condition model is calibrated using a database that is assembled to include only segments or intersections that have characteristics equal to base conditions, as specified in the HSM. The form of the model is as follows:

$$N_{br} = \beta_0 \times L \times AADT^{\beta_1} \tag{121}$$

$$N_{bi} = \beta_0 \times AADT_{mai}^{\beta_1} \times AADT_{min}^{\beta_2}$$
(122)

This modeling structure was proposed for Chapters 10, 11, and 12 of the HSM. For this modeling structure, the base models and CMFs are estimated independently. Although base models are simple to use (i.e., for recalibration purposes), these models are most likely affected by omitted variable bias (Lord and Mannering, 2010). This bias can influence the predictability of regression models. It should be pointed out that CMFs can also be negatively influenced by data and methodological issues (Gross et al., 2010).

Full Model

The full model is calibrated using a database within which each safety-related variable (e.g., lane width, median width, etc.) has a representative range of values. Each variable is included in the model, and their coefficients are calibrated using regression analysis. The form of this model is shown as follows:

$$N_{rs} = \beta_0 \times L \times AADT^{\beta_1} \times e^{\beta_2 X_2 + \beta_3 X_3 + \dots + \beta_n X_n}$$
(123)

$$N_{bi} = \beta_0 \times AADT_{maj}^{\beta_1} \times AADT_{min}^{\beta_2} \times e^{\beta_2 X_2 + \beta_3 X_3 + \dots + \beta_n X_n}$$
(124)

where,

$$X_i$$
 = site-related variable (e.g., lane width, median width, turning lane; $i = 0, 1, 2...$).

As performed by Bonneson et al. (2012) for the HSM chapters on freeways and interchanges, full models can be used for estimating base models and CMFs simultaneously. This modeling procedure also has the advantage of overcoming the regression-to-the-mean (RTM) bias since

the models and CMFs are estimated using cross-sectional data; RTM only affects before-after studies or repeated measurements. This is even more important given recent research that showed that the EB method can still provide a biased estimate when it is used for developing CMFs using before-after data (Lord and Kuo, 2012). The full models and CMFs developed by Bonneson et al. (2012) are also based on an NB error distribution. It should be pointed out that the full model may not be able to capture nonlinear relationships between crashes and explanatory variables. Capturing these relationships is dependent on the modeling structure of the selected model. For instance, generalized additive models (Xie and Zhang, 2008) and Diritchlet-based models (Heydari et al., 2016; Shirazi et al., 2016), which are included in the family of semi-parametric models, can be used to this effect.

CRASH SEVERITY DISTRIBUTION

The predictive models in HSM Chapters 10, 11, and 12 differ from each other. In Chapter 10, only one single predictive model is provided. This model estimates the total number of crashes. To obtain the crash frequency by severity, the user needs to apply a severity distribution table provided in the chapter. Three different predictive models are provided in Chapter 11 for estimating the frequency for different severity levels: KABCO (total number of crashes), KABC, and KAB. HSM Chapter 12 includes models for predicting three severity levels (i.e., KABCO, KABC, and O or PDO) for each of three crash types (i.e., multiple-vehicle nondriveway, singlevehicle, and multiple-vehicle driveway-related collisions). Research by Milton et al. (2008) indicates that many traffic characteristics and geometric features influence the crash severity distribution. Wang et al. (2011) recommended the need to combine crash frequency predictions (i.e., SPFs) with crash SDFs. An SDF is represented by a discrete choice model. It is used to predict the proportion of crashes in each of the severity categories. The SDF can be used with the SPFs to estimate the expected crash frequency for each severity category. Such models could be calibrated using a common database. Bonneson et al. (2012) used this procedure and developed SPFs for KABC and PDO crashes separately, as well as SDFs to estimate the proportions of K, A, B, and C crashes. Savolainen et al. (2011) provided a good review of the issues and an intensive list of models that can be used for analyzing crash severity.

CRASH TYPE DISTRIBUTION

Given the differences observed in the characteristics associated with different collision types, some transportation safety analysts have recently proposed that distinct crash prediction models should be developed for different categories of crashes when the objective of the study consists of estimating the safety performance of highway segments (Geedipally and Lord, 2010; Jonsson et al., 2009; Lord, Manar, et al., 2005). For instance, Jonsson et al. (2009) compared models produced from the total number of crashes (aggregated data) and those estimated for different crash types. Using data collected for *NCHRP 17-29: Methodology to Predict the Safety Performance of Rural Multilane Highways* (i.e., HSM Chapter 11), the authors reported that models produced for different crash type provided a better fit than models estimated from aggregated data. Hence, Jonsson et al. recommended that using fixed proportions for estimating the number of crashes by collision type should be avoided.

Expanding on the work of Jonsson et al. (2009), Geedipally et al. (2010) developed models for different collision types by estimating the proportion using a discrete choice modeling

framework (similar to the methodology used for developing SDFs above); this topic was also discussed in Geedipally and Lord (2010). These researchers noted that developing distinct models provided better predicting performance than developing models combining all crash categories together. However, the authors stated that it is not always possible to develop separate models for different collision types due to sample size issues and recommended the method that is based on the proportion estimated using a discrete choice modeling framework. In most cases, the motivation for separating models by the number of vehicles involved in the crash is based on the shape of the functional form linking crash types to the traffic flow variables, which have been found to be very different from one another. This work supported the analysis carried out by Lord, Manar, et al. (2005), who noted that the relationship between traffic flow rate and crash frequency varies by crash type. In sum, the use of tables for estimating crash type distribution proportions may not be adequate for some safety evaluations. A more accurate estimate of crash frequency is obtained when it can be estimated for each specific collision type separately. Again, developing this kind of model requires a very large dataset.

DISPERSION PARAMETER

Past research in highway safety has shown that the dispersion parameter can potentially be dependent upon the covariates of the model and could vary from one observation to another (Heydecker and Wu, 2001; Hauer, 2001; Miaou and Lord, 2003; Geedipally et al., 2009). This characteristic has been shown to be important, especially when the mean function is mis-specified, such as models that only incorporate entering traffic flows (Mitra and Washington, 2007). In previous studies, the varying dispersion parameter has been shown to influence EB estimates since the dispersion parameter plays an important role in the weight factors assigned to the predicted and observed values of this estimate (Geedipally et al., 2009). Others have reported that Poisson-gamma models with a varying dispersion parameter provide a better statistical fit and influence the computation of confidence intervals of the gamma mean and the predictive response compared to the fixed dispersion parameter.

A large number of different parameterizations have been proposed for estimating the dispersion parameter that varies across observations (Geedipally et al., 2009). One of them consists of modeling the dispersion parameter as a function of segment length. Using a hypothetical example, Hauer (2001) noted that shorter segments are subjected to greater variation than longer segments and unduly influence the long-term estimate of the segment (when estimated using the maximum-likelihood method). He suggested the following parameterization to model the variance function, in which the inverse dispersion parameter for observation *i* is equal to the length of the segment multiplied by a fixed constant, $\alpha = \delta \times L$. He also proposed a more generalized parameterization where $\alpha = \delta \times L^{\gamma}$, with $\gamma = [0, 1]$, but reported that this parameterization suffered from important limitations. The safety prediction methodologies developed for HSM Chapters 10 and 11 recognize the need for this sensitivity to segment length. SPFs in HSM Chapter 12 do not include this sensitivity. Rather, HSM Chapter 12 provides guidelines for identifying when the bias may be problematic and how it can be mitigated in the analysis. Bonneson et al. (2012) also utilized the parameterization proposed by Hauer (2001).

INTERACTION AMONG FACTOR EFFECTS

The safety prediction methods in Part C of the HSM are formulated using multiplicative CMFs. This formulation assumes that the CMFs are independent of each other. The HSM cautions that this assumption may not be true in all cases and cites cases where the effect of a change in lane width on safety may be influenced by the width of the adjacent shoulder width (or vice versa). In fact, recent research has confirmed this important characteristic (Gross et al., 2009; Gross et al., 2010).

PROPOSED METHODOLOGY

This section describes the predictive methodology for estimating the safety performance of sixor-more-lane and one-way urban and suburban arterials as well as the intersections located on these facilities. The research team used full predictive models for estimating baseline models (flow only for nominal base conditions) and CMFs. This category of models was selected to increase the number of CMFs that could be produced from this work. Although before-after studies are often preferred to estimate CMFs, there were not enough data to reliably estimate CMFs. CMFs estimated from cross-sectional studies can still be reliable (Bonneson et al., 2012; Wu et al., 2015).

This section is divided into two parts. The first part covers urban and suburban segments. The part describes the characteristics of the models for intersections.

Segments

The predicted average crash frequency for each road segment of a particular facility is computed as the sum of predicted average crash frequency of all crash types that occurred on the segment. The predicted average crash frequency is computed using the predictive model, where a model is the combination of an SPF and several CMFs. The SPF is used to estimate the average crash frequency for the stated base conditions. The CMFs are used to adjust the SPF estimate when the attributes of the subject site are not consistent with the base conditions. The predicted average crash frequency of a site is calculated as follows:

$$N_{rs} = N_{br} + N_{pedr} + N_{biker} \tag{125}$$

with.

$$N_{br} = N_{mvr} + N_{svr} \tag{126}$$

$$N_{mvr} = C_{mv} \times N_{spfmv} \times (CMF_{mv1} \times \dots \times CMF_{mvx}) \times (CMF_1 \times \dots \times CMF_p)$$
(127)
$$N_{svr} = C_{sv} \times N_{spfsv} \times (CMF_{sv1} \times \dots \times CMF_{svv}) \times (CMF_1 \times \dots \times CMF_p)$$
(128)

$$= C_{sv} \times N_{spfsv} \times (CMF_{sv1} \times \dots \times CMF_{svy}) \times (CMF_1 \times \dots \times CMF_p)$$
(128)

$$N_{pedr} = N_{br} \times f_{ped} \tag{129}$$

$$N_{biker} = N_{br} \times f_{bike} \tag{130}$$

where.

 N_{rs} = predicted average crash frequency of an individual roadway segment for the selected year.

N_{br}	=	predicted average crash frequency of an individual roadway segment (excluding vehicle-pedestrian and vehicle-bicycle collisions).
N_{pedr}	=	predicted average crash frequency of vehicle-pedestrian collisions for an
N_{biker}	=	individual roadway segment. predicted average crash frequency of vehicle-bicycle collisions for an individual
N _{mvr}	=	roadway segment. predicted average crash frequency of multiple-vehicle crashes (excluding vehicle-pedestrian and vehicle-bicycle collisions) for an individual roadway segment.
N _{svr}	=	predicted average crash frequency of single-vehicle crashes (excluding vehicle- pedestrian and vehicle-bicycle collisions) for an individual roadway segment.
N _{spfmv}	=	predicted average crash frequency of multiple-vehicle crashes (excluding vehicle-pedestrian and vehicle-bicycle collisions) for base conditions.
N _{spfsv}	=	predicted average crash frequency of single-vehicle crashes (excluding vehicle- pedestrian and vehicle-bicycle collisions) for base conditions.
C_{mn}	=	local calibration factor for multiple-vehicle crashes.
		local calibration factor for single-vehicle crashes.
f_{ped}	=	adjustment factor for pedestrians.
		adjustment factor for bicyclists.
$CMF_{mv1} \times$	>	$< CMF_{mvx} = CMFs$ for multiple-vehicle crashes at a site with specific geometric design features x.
$CMF_{sv1} \times$	>	$< CMF_{svy} = CMFs$ for single-vehicle crashes at a site with specific geometric design features y.
CMF_1	×.	$\dots \times CMF_p$ = CMFs at a site with specific geometric design features p.

SPFs and CMFs were estimated for the following four types of two-way and three types of oneway roadway segments on urban and suburban arterials:

- Six-lane two-way undivided arterials (6U).
- Six-lane two-way divided arterials (i.e., including a raised or depressed median) (6D).
- Seven-lane two-way arterials including a TWLTL (7T).
- Eight-lane two-way divided arterials (i.e., including a raised or depressed median) (8D).
- Two-lane one-way arterials (2O).
- Three-lane one-way arterials (3O).
- Four-lane one-way arterials (4O).

Intersections

The predicted average crash frequency for each intersection with a particular traffic control is computed as the sum of predicted average crash frequency of all crash types that occurred at the intersection. The predicted average crash frequency is computed using the predictive model, where a model is the combination of an SPF and several CMFs. The SPF is used to estimate the average crash frequency for the stated base conditions. The CMFs are used to adjust the SPF estimate when the attributes of the subject site are not consistent with the base conditions. The predicted average crash frequency of an intersection is calculated as follows.

$$N_{predicted int} = C_i \times (N_{bi} + N_{pedi} + N_{bikei})$$
(131)

with,

$$N_{bi} = N_{spf int} \times (CMF_{1i} \times \dots \times CMF_{xi})$$
(132)

where,

- N_{int} = predicted average crash frequency of an individual intersection for the selected year.
- N_{bi} = predicted average crash frequency of an intersection (excluding vehicle-pedestrian and vehicle-bicycle collisions).
- N_{pedi} = predicted average crash frequency of vehicle-pedestrian collisions for an intersection.
- N_{bikei} = predicted average crash frequency of vehicle-bicycle collisions for an intersection.
- $N_{spf int}$ = predicted average crash frequency of intersection-related crashes (excluding vehicle-pedestrian and vehicle-bicycle collisions) for base conditions.
 - C_i = calibration factor for intersections developed for use for a particular geographical area.

 $CMF_{1i} \times ... \times CMF_{xi}$ = CMFs at a site with specific geometric design features x.

SPFs and CMFs were estimated for the following intersection types for both two-way street intersections and one-way street intersections on urban and suburban arterials:

- Three-leg intersections with stop control on the minor-road approach (3ST).
- Three-leg signalized intersections (3SG).
- Four-leg intersections with stop control on the minor-road approaches (4ST).
- Four-leg signalized intersections (4SG).

Furthermore, the intersections were separated by the type of operational characteristics of each leg: two-way (x2), or one-way (x1). Hence, there were 12 different intersection types.

Standard Error of CMFs

The standard errors require the use of the delta method, are dependent on the functional form of the CMFs, and will change according to the range of the CMF. The standard errors can be used for estimating the confidence intervals of the CMFs and those estimated from the product of CMFs and predictive models (Lord, 2008). The equations were developed for the two most common functional forms used in this research. They are presented below. The coefficient β comes from the regression model, and $\hat{\beta}$ denotes an estimate of β .

Functional Form 1:

$$CMF_1 = g\left(\hat{\beta}\right) = AADT \times e^{\hat{\beta}}.$$
(133)

Then the derivative of $g(\hat{\beta})$ is:

$$g'(\hat{\beta}) = AADT \times e^{\hat{\beta}}$$
(134)

Let the standard error of $\hat{\beta}$ be $SE(\hat{\beta})$. Then,

$$Var(CMF_{1}) = Var\left(g\left(\hat{\beta}\right)\right) = g'\left(\hat{\beta}\right) \times \left(SE\left(\hat{\beta}\right)\right)^{2} \times g'\left(\hat{\beta}\right)$$

$$= \left(SE\left(\hat{\beta}\right)\right)^{2} \times \left(AADT \times e^{\hat{\beta}}\right)^{2}$$
(135)

and

$$SE(CMF_{1}) = \sqrt{Var(g(\hat{\beta}))} = SE(\hat{\beta}) \times g'(\hat{\beta}) = SE(\hat{\beta}) \times AADT \times e^{\hat{\beta}}$$
(136)

Functional Form 2:

$$CMF_{2} = g(\hat{\beta}) = \exp\left(\left(X - Y\right)\hat{\beta}\right)$$
(137)

Then the derivative of $g(\hat{\beta})$ is:

$$g'(\hat{\beta}) = (X - Y) \times e^{\hat{\beta}(X - Y)}$$
(138)

Let the standard error of $\hat{\beta}$ be $SE(\hat{\beta})$. Then,

$$Var(CMF_{2}) = Var\left(g\left(\hat{\beta}\right)\right) = g'\left(\hat{\beta}\right) \times \left(SE\left(\hat{\beta}\right)\right)^{2} \times g'\left(\hat{\beta}\right)$$

$$= \left(SE\left(\hat{\beta}\right)\right)^{2} \times (X-Y)^{2} \times e^{2\hat{\beta}(X-Y)}$$
(139)

and

$$SE(CMF_{2}) = \sqrt{Var\left(g\left(\hat{\beta}\right)\right)} = SE\left(\hat{\beta}\right) \times \sqrt{(X-Y)2}\sqrt{\left(e^{\hat{\beta}(X-Y)}\right)}$$
(140)
$$= SE\left(\hat{\beta}\right) \times |X-Y| \times e^{\hat{\beta}(X-Y)}$$

CHAPTER 4. DEVELOPMENT OF PROJECT DATABASE

This chapter describes the development of the databases used for calibration of the safety prediction models in this project. The chapter is divided into six sections. The first section explains the sources of the data that were collected. The second and third sections describe the characteristics of the segments and intersections used for this project. The fourth section provides a description of the data collection procedures. The fifth section describes the characteristics of the crash data. The last section explains how data collection for pedestrians was accomplished.

DATA SOURCES

The project database was developed using data from five states: Texas, Illinois, California, Michigan, and Oregon. These states were selected based on the state-owned mileage of the two street categories of interest and the availability of crash data.

Crash and roadway data from California and Illinois were obtained from the HSIS, while data from Texas, Michigan, and Oregon were obtained directly from the state highway agencies. Table 21 summarizes the total mileage of roadway segments and number of intersections from each state that were used in model calibration. Data from Texas, Illinois, and California comprised the bulk of the project database. Data from Oregon were later added to increase the mileage of one-way streets, and data from Michigan were added to increase the number of intersections in the sample.

	Total Mileage of Road	Total Mileage of Roadway Segments (mi)				
State	Two-Way Streets with Six or More Lanes	One-Way Streets	Number of Intersections			
Texas	376.5	88.1	372			
Illinois	108.3	98.1	213			
California	66.9	16.3	335			
Oregon	0	48.5	0			
Michigan	0	0	222			
Total	551.7	251.0	1142			

Table 21. Size of data from different states.

All segments and intersections used in this study were located in urban or suburban areas. The areas were classified as urban, suburban, or rural, according to HSM Chapter 12 definitions, which are based on FHWA (2008) guidelines: "urban" areas defined as places inside urban boundaries where the population is greater than 5,000 persons, "rural" areas defined as places outside urban areas where the population is less than 5,000 persons, and "suburban" areas defined as outlying portions of an urban area.

The most recent five-year period with available crash data was selected as the study period in each state, as follows:

- Illinois, California, and Oregon: 2006–2010.
- Texas and Michigan: 2008–2012.

Google Earth historical imagery was reviewed for every roadway segment and intersection in the database to ensure no construction activity occurred during the study periods. Roadway segments and intersections with a history of any significant construction or major change in the main site characteristics were discarded and not included in the final database.

SELECTION OF ROADWAY SEGMENT TYPES

Considering the project priorities and after reviewing the available data, the research team confined modeling efforts to the following four types of two-way and three types of one-way roadway segments:

- Divided two-way arterials with six lanes (including a raised or depressed median) (6D).
- Undivided two-way arterials with six lanes (6U).
- Two-way arterials with six lanes and a TWLTL in the middle (7T).
- Divided two-way arterials with eight lanes (including a raised or depressed median) (8D).
- One-way streets with two lanes (2O).
- One-way streets with three lanes (3O).
- One-way streets with four lanes (4O).

The state roadway databases included roadway segments with given traffic volume and other characteristics (such as lane width, shoulder width, etc.). Each state-defined segment was considered homogenous in terms of the main site traits. However, in Texas and Illinois, a large proportion of segments were relatively short. To increase the data collection efficiency, adjacent segments from these states were combined if they met the following criteria:

- Traffic volume did not change by more than 10 percent.
- Lane width did not change by more than 0.5 ft.
- Shoulder width did not change by more than 1 ft.
- Median type and width did not change appreciably.

By combining adjacent segments with nominal differences, the total number of homogeneous segments in Texas and Illinois was reduced by about half (without reducing the total mileage). Segments shorter than 0.01 mi were discarded due to the limited precision of crash location reporting and the potential modeling bias caused by segments that are too short. Table 22 presents the distribution of the available roadway segment data by segment type and state.

Segment	Nu	mber of	Homogeneo	us Segme	nts		To	tal Mileage	(mi)	
Туре	ТХ	IL	CA	OR	Total	ТХ	IL	CA	OR	Total
Two-Way	Segme	nts								
6D	529	1005	233		1767	217.0	95.5	40.1		352.6
6U	16	63	15		94	2.7	6.8	1.3		10.8
7T	201	24	41		266	141.5	2.0	9.1		152.6
8D	24	47	52		123	15.4	3.9	16.4		35.7
Total	770	1139	341		2250	376.5	108.3	66.9		551.7
One-Way	Segmer	nts								
20	258	489	42	760	1549	53.1	59.2	6.9	32.7	151.9
30	96	262	81	324	763	22.1	29.0	9.3	13.3	73.7
40	51	68	1	46	166	13.0	9.8	0.1	2.5	25.4
Total	405	819	124	1130	2478	88.1	98.1	16.3	48.5	251.0

Table 22. Distribution of roadway segment data by segment type and state.

Note: Shaded cell = data were not collected.

SELECTION OF INTERSECTION TYPES

Based on the project scope, safety prediction models had to be developed for intersections of two-way arterials with six or more lanes and intersections of one-way streets. Therefore, the intersections along the identified corridors (as discussed above) were included in the intersection database if the traffic volume was known for both intersecting streets. Consistent with HSM Chapter 12, the following types of intersections were selected for safety prediction modeling:

- Three-leg intersections with stop control on the minor-street approach (3ST).
- Three-leg signalized intersections (3SG).
- Four-leg intersections with stop control on the minor-street approaches (4ST).
- Four-leg signalized intersections (4SG).

Since the intersections in this project involved both two-way and one-way streets, the intersections were further subcategorized based on the number of travel directions in each intersecting street, as follows:

- $2 \times 2 = A$ two-way street intersecting another two-way street.
- $1 \times 2 = A$ one-way street intersecting a two-way street.
- $1 \times 1 = A$ one-way street intersecting another one-way street.

Table 23 presents the breakdown of the number of intersections by state and intersection type.

Intersection	Roadway		Ni	umber of Intersect	ions	
Туре	Category	Texas	Illinois	California	Michigan	Total
3ST	2×2	23	2	26	5	56
	2×1	1	59	0	40	100
	1×1	2	4	0	1	7
	Total	26	65	26	46	163
3SG	2×2	18	2	28	10	58
	2×1	2	2	6	23	33
	1×1	2	2	0	3	7
	Total	22	6	34	36	98
4ST	2×2	12	3	12	9	36
	2×1	18	94	1	39	152
	1×1	2	0	0	1	3
	Total	32	97	13	49	191
4SG	2×2	126	21	228	27	402
	2×1	111	21	11	52	195
	1×1	55	3	23	12	93
	Total	292	45	262	91	690
Total		372	213	335	222	1142

 Table 23. Distribution of intersection data by intersection type and state.

Note: $2 \times 2 =$ two-way street intersecting two-way street; $1 \times 2 =$ one-way street intersecting two-way street; $1 \times 1 =$ one-way street intersecting one-way street.

DATA COLLECTION

The state databases included crash data along with traffic volume and some other site characteristics for roadway segments and intersections. Additional data variables were collected for each segment and intersection mainly by using Google Earth aerial images and Street View. The description of data fields and the summary statistics of the collected data are presented below.

Site Characteristics Data for Roadway Segments

As specified earlier, this research used homogeneous segments as defined by the state databases. The state data provided the AADT volumes for each year during the study period. The average AADT over the five years of the study period was used as an input variable for modeling. In addition to AADT, every state database included data elements for lane, median, and right/left shoulder width. The research team deemed the quality of these data variables as satisfactory for modeling purposes and included them in the calibration database.

Additional data elements with potential influence on the safety of roadway segments were defined and collected for each segment in the database. **Table** 24 provides the complete list of variables collected from the roadway segments. The variables used in the HSM Chapter 12 models were all included in the data collection. As **Table** 24 indicates, the collected data included a wide range of geometric design and traffic control variables, many of which were not included in the final safety prediction models. Table 25 and Table 26 provide the summary statistics of the data collected for two-way and one-way roadway segments, respectively.

Data Variable	Description	Primary Source
AADT	Two-way annual average daily traffic volume	State databases
~	(veh/day) during the study period.	~ 1 1
Segment length	The length of the homogenous segment (mi) in the	State databases
	state database.	
Lane width	Average width (ft) of the through lanes.	State databases
Left shoulder width (one-way	Average width of the right shoulder (ft) along the	State databases
segments)	segment.	
Inside shoulder width	Average width of the left shoulder (ft) in the two	State databases
(divided two-way segments)	directions of travel.	
Right shoulder width (one-	Average width of the right shoulder (ft) along the	State databases
way segments)	segment.	
Outside shoulder width	Average width of the left shoulder (ft) in the two	State databases
(two-way segments)	directions of travel.	
Median width	Average median width (ft) along the segment.	State databases
(two-way segments)		
Bus or high occupancy	Presence of bus-only or HOV lanes.	Aerial and street-
vehicle (HOV) lane presence		level photographs
Bicycle lane presence	Presence of bicycles lanes.	Aerial and street-
ju i r		level photographs
Sidewalks	Presence of sidewalks along each side of the	Aerial and street-
	roadway segment:	level photographs
	0: No sidewalk.	ie ver priotographis
	1: Sidewalk on one side of the roadway.	
	2: Sidewalks on both sides of the roadway.	
Lighting	Presence of lighting along each side of the roadway	Street-level
218111118	segment:	photographs
	0: No lighting.	photographs
	1: Lighting on one side of the roadway.	
	2: Lighting on both sides of the roadway.	
Parallel parking proportion	Proportion of the length of segment with parallel	Aerial and street-
r araner parking proportion	parking (considered in both directions of travel for	level photographs
	two-way streets).	level photographis
Angle parking proportion	Proportion of the length of segment with angle	Aerial and street-
Angle parking proportion	parking (considered in both directions of travel for	level photographs
	two-way streets).	level photographs
Speed limit	Posted speed limit (mph) as observed from speed	Street-level
Speed minit		
Madian hamian	limit signs. Presence of concrete barriers in the median.	photographs Street-level
Median barrier	Presence of concrete partiers in the median.	
(two-way segments)		photographs
Railroad crossings	Number of railroad-highway crossings within the	Aerial
	limits of the roadway segment.	photographs

Table 24. List of data variables collected for roadway segments.

Data Variable	Description	, ,
	Description	Primary Source
Driveway density	Density of driveways along the length of the	Aerial and street-
	segment (driveways/mile), classified consistently	level photographs
	with the HSM Chapter 12 driveway categories:	
	Major commercial driveways.	
	Minor commercial driveways.	
	Major industrial/institutional driveways.	
	• Minor industrial/institutional driveways.	
	Major residential driveways.	
	Minor residential driveways.	
	• Other driveways.	
Roadside fixed-object density	Density of fixed roadside objects (objects/mile)	Aerial and street-
	within 30 ft of the edge of traveled way (in both	level photographs
	directions of travel for two-way streets). In absence	
	of marked edge lines, edge of traveled way was	
	considered to be 2.0 ft from the face of curb. Fixed	
	objects were counted using the same method as	
	required for application of the HSM CMF for	
	roadside fixed objects (described on pages 12–41	
	of the HSM).	
Roadside fixed-object offset	Average distance from the edge of traveled way to	Aerial
	the roadside fixed objects (as defined above).	photographs
Left curb proportion	Proportion of the length of the segment with left-	Aerial
(one-way segments)	side curb present.	photographs
Right curb proportion	Proportion of the length of the segment with right-	Aerial
(one-way segments)	side curb present.	photographs
Inside curb proportion	Ratio of the two-way total length (ft) of curb	Aerial
(two-way segments)	present along the inside (median side) of the	photographs
	segment to twice the length of the segment.	
Outside curb proportion	Ratio of the two-way total length (ft) of curb	Aerial
(two-way segments)	present along the outside (right shoulder side) of	photographs
	the segment to twice the length of the segment.	

Table 24. List of data variables collected for roadway segments. (continued)
--

X7	St - 4 - 4 -	Segment Type				
Variable	Statistic	6U	6D	7 T	8D	
	Minimum	8,700	2,750	4,100	14,700	
Λ Λ DT (web/dev)	Maximum	78,000	118,000	94,000	152,000	
AADT (veh/day)	Mean	41,152	38,329	31,147	77,019	
	Std. deviation	14,764	15,510	14,584	39,274	
	Minimum	0.01	0.01	0.01	0.01	
Segment length (mi)	Maximum	0.534	4.458	7.708	3.044	
Segment length (IIII)	Mean	0.118	0.2	0.576	0.294	
	Std. deviation	0.104	0.38	0.783	0.444	
	Minimum	10.0	9.0	10.0	10.0	
L and width (ft)	Maximum	18.5	27.0	20.5	16.0	
Lane width (ft)	Mean	11.5	12.1	12.8	11.7	
	Std. deviation	1.0	1.3	1.7	0.8	
	Minimum		0		0	
Inside should ar width (ft)	Maximum		13.0		11.0	
Inside shoulder width (ft)	Mean		0.5		0.9	
	Std. deviation		1.7		2.2	
	Minimum	0	0	0	0	
Outside shoulder width (ft)	Maximum	10.0	14.0	14.0	12.0	
Outside shoulder width (It)	Mean	0.5	2.3	2.6	2.6	
	Std. deviation	1.8	3.3	3.9	3.7	
	Minimum		0		0	
Median width (ft)	Maximum		240.0		60.0	
Mediali widtli (it)	Mean		15.5		16.1	
	Std. deviation		14.8		13.3	
	Minimum	0	0	0	0	
Bus or HOV lane presence	Maximum	0	1	0	0	
(1=yes; 0=no)	Mean	0	0.002	0	0	
	Std. deviation	0	0.05	0	0	
	Minimum	0	0	0	0	
Bicycle lane presence	Maximum	1	1	1	0	
(1=yes; 0=no)	Mean	0.01	0.05	0.04	0	
	Std. deviation	0.10	0.23	0.19	0	
	Minimum	0	0	0	0	
Sidewalks	Maximum	2	2	2	2	
Sidewalks	Mean	1.5	0.94	0.91	1.13	
	Std. deviation	0.8	0.92	0.93	0.95	
	Minimum	0	0	0	0	
Lighting	Maximum	2	2	2	2	
Lighting	Mean	1.7	1.4	1.5	1.9	
	Std. deviation	0.7	0.9	0.8	0.3	
	Minimum	0	0	0	0	
Parallel parking proportion	Maximum	0.74	1.0	1.0	0	
a anoi parking proportion	Mean	0.04	0.004	0.02	0	
	Std. deviation	0.15	0.05	0.12	0	
	Minimum	0	0	0	0	
Angle parking properties	Maximum	0	0	0.03	0	
Angle parking proportion	Mean	0	0	0.0001	0	
	Std. deviation	0	0	0.001	0	

Table 25. Descriptive statistics for two-way roadway segment variables.

• •	St - 4 - 4 -	Ĩ	Segm	ent Type	
Variable	Statistic	6 U	6D	7 T	8D
	Minimum	30	25	25	25
Dested are addimit (mark)	Maximum	50	60	60	55
Posted speed limit (mph)	Mean	36.9	42.8	43.8	41.8
	Std. deviation	5.8	6.5	7.3	4.8
	Minimum		0		0
Median barrier presence	Maximum		1		1
(1=yes; 0=no)	Mean		0.04		0.12
	Std. deviation		0.19		0.34
	Minimum	0	0	0	0
D. 1	Maximum	1	3	2	1
Railroad crossings	Mean	0.03	0.02	0.03	0.009
	Std. deviation	0.18	0.14	0.22	0.09
	Minimum	0	0	0	0
Major commercial driveway	Maximum	50.0	138.8	117.6	50.0
density ^a (driveways/mile)	Mean	3.1	2.7	7.0	3.5
• • • /	Std. deviation	7.5	7.6	13.2	7.3
	Minimum	0	0	0	0
Minor commercial driveway	Maximum	63.6	100.0	82.2	57.6
density ^a (driveways/mile)	Mean	12.5	5.6	18.8	5.8
	Std. deviation	15.9	11.1	19.5	9.5
	Minimum	0	0	0	0
Major industrial driveway	Maximum	27.3	100.0	36.4	6.8
density ^a (driveways/mile)	Mean	0.9	1.0	1.6	0.4
	Std. deviation	3.9	4.1	3.9	1.1
	Minimum	0	0	0	0
Minor industrial driveway	Maximum	25.0	75.0	81.6	16.1
density ^a (driveways/mile)	Mean	3.0	1.5	4.6	0.8
•	Std. deviation	6.0	5.3	9.3	2.1
	Minimum	0	0	0	0
Major residential driveway	Maximum	0	27.8	100.0	5.4
density ^a (driveways/mile)	Mean	0	0.1	1.1	0.2
	Std. deviation	0	0.9	6.7	0.8
	Minimum	0	0	0	0
Minor residential driveway	Maximum	42.9	119.2	75.2	5.1
density ^a (driveways/mile)	Mean	0.5	1.1	3.6	0.2
	Std. deviation	4.5	5.7	10.3	0.8
	Minimum	0	0	0	0
Other driveway density ^a	Maximum	35.7	71.4	26.3	10.2
(driveways/mile)	Mean	0.5	0.4	1.4	0.3
	Std. deviation	3.8	2.7	3.9	1.2
	Minimum	0	0	0	0
Roadside fixed-object density	Maximum	200.0	508.0	200.0	200.0
(objects/mile)	Mean	89.3	60.9	57.2	66.1
	Std. deviation	46.3	44.8	35.1	35.1
	Minimum	0	0	0	0
Roadside fixed-object average	Maximum	23.3	30.0	30.0	26.0
offset (ft)	Mean	9.7	11.6	12.6	9.9.6
	Std. deviation	4.3	7.2	6.4	5.4

 Table 25. Descriptive statistics for two-way roadway segment variables. (continued)

Note: Shaded cell means not applicable.

^a Equivalent number of full driveways where a partial driveway is given half the weight of a full driveway.

Table 20. Descriptive s			0	
Variable	Statistic	20	30	40
	Minimum	316	2,220	200
A ADT (wah/day)	Maximum	33,960	29,000	29,000
AADT (veh/day)	Mean	7,241	11,590	11,558
	Std. deviation	3,778	5,181	4,460
	Minimum	0.01	0.01	0.01
	Maximum	1.326	0.873	1.15
Segment length (mi)	Mean	0.15	0.137	0.194
	Std. deviation	0.16	0.130	0.204
	Minimum	9.0	9.0	9.0
	Maximum	27.0	25.0	20.0
Lane width (ft)	Mean	13.7	13.0	12.1
	Std. deviation	2.8	2.7	1.8
	Minimum	0	0	0
	Maximum	20.0	19.0	9.0
Left shoulder width (ft)	Mean	1.5	1.8	1.1
	Std. deviation	3.5	3.5	2.8
	Minimum	0	0	0
Right shoulder width (ft)	Maximum	20.0	20.0	20.0
	Mean	2.2	2.4	1.4
	Std. deviation	3.8	4.1	3.4
	Minimum	0	0	0
Bus or HOV lane presence	Maximum	0	0	1
(1=yes; 0=no)	Mean	0	0	0.03
	Std. deviation	0	0	0.18
	Minimum	0	0	0
	Maximum	1	0	1
Bicycle lane presence (1=yes; 0=no)	Mean	0.014	0	0.05
	Std. deviation	0.12	0	0.24
	Minimum	0	0	0
	Maximum	2	2	2
Sidewalks	Mean	1.45	1.64	1.66
	Std. deviation	0.8	0.73	0.67
	Minimum	0	0	0
	Maximum	2	2	2
Lighting	Mean	1.38	1.62	1.74
	Std. deviation	0.72	0.59	0.56
	Minimum	0	0.55	0.50
	Maximum	1.0	0.8	0.6
Parallel parking proportion	Mean	0.16	0.13	0.07
	Std. deviation	0.25	0.21	0.07
	Minimum	0.25	0.21	0.14
	Maximum	0.6	0.6	X
Angle parking proportion	Mean	0.01	0.01	X
	Std. deviation	0.01	0.04	X

Table 26. Descriptive statistics for one-way roadway segment variables.

Variable	Statistic	20	30	40
	Minimum	20	20	25
	Maximum	45	55	45
Posted speed limit (mph)	Mean	32	32	33
	Std. deviation	5	5	4
	Minimum	0	0	0
.	Maximum	1	1	1
Railroad crossings	Mean	0.04	0.04	0.05
	Std. deviation	0.19	0.20	0.22
	Minimum	0	0	0
Major commercial driveway density ^a	Maximum	58.3	25.0	23.4
(driveways/mile)	Mean	0.52	0.72	0.55
	Std. deviation	3.6	2.96	2.68
	Minimum	0	0	0
Minor commercial driveway density ^a	Maximum	83.3	75.0	52.6
(driveways/mile)	Mean	6.4	10.2	8.0
	Std. deviation	10.5	13.1	12.6
	Minimum	0	0	0
Major industrial driveway density ^a	Maximum	21.7	51.0	10.0
(driveways/mile)	Mean	0.5	0.5	0.9
	Std. deviation	2.4	3.1	2.2
	Minimum	0	0	0
Minor industrial driveway density ^a (driveways/mile)	Maximum	100.0	50.0	50.0
	Mean	4.1	4.5	5.7
	Std. deviation	8.1	7.2	9.6
	Minimum	0	0	0
Major residential driveway density ^a	Maximum	17.9	10.7	0
(driveways/mile)	Mean	0.05	0.03	0
	Std. deviation	0.8	0.54	0
	Minimum	0	0	0
Minor residential driveway density ^a	Maximum	58.8	76.3	88.5
(driveways/mile)	Mean	5.3	3.5	7.2
	Std. deviation	10.6	9.7	15.7
	Minimum	0	0	0
Other driveway density ^a	Maximum	50.0	33.3	14.3
(driveways/mile)	Mean	0.2	0.4	0.3
	Std. deviation	2.2	2.5	1.7
	Minimum	0	0	0
Roadside fixed-object density	Maximum	300.0	240.0	300.0
(objects/mile)	Mean	80.6	79.2	84.1
	Std. deviation	46.5	40.4	37.9
	Minimum	0	0	0
	Maximum	30.0	30.0	25.0
Koadside fixed-object average officer		1.777.77	1.0.0	20.0
Roadside fixed-object average offset (ft)	Mean	10.4	9.0	8.0

 Table 26. Descriptive statistics for one-way roadway segment variables. (continued)

^a Equivalent number of full driveways where a partial driveway is given half the weight of a full driveway.

Site Characteristics Data for Intersections

An intersection database was created with intersections of six-or-more-lane arterials and oneway streets for which traffic volume data were available for both intersecting streets. In Illinois, California, and Michigan, the state database was the sole source for traffic volumes, and as such, only the intersections of two state-owned highways were included in the calibration dataset. In Texas, on the other hand, supplemental traffic volume data were obtained from the San Antonio, Austin, and Houston city databases available online (described further below). The traffic volumes were averaged over the five years of the study period to produce the AADT variable for modeling. In cases where the city-provided data did not include traffic volumes for every year, citywide traffic growth factors were calculated and used to project the traffic volume over the study period.

Additional data elements were collected using Google Earth images and Street View. Table 27 lists the data variables collected for each intersection in the database, and Table 28 shows the variables for the streets. The collected data included a wide range of geometric design and traffic control characteristics. As Table 28 indicates, most variables were specific to the individual intersecting streets. In 2×2 and 1×1 intersections, the major street was defined as the street with the greater traffic volume (AADT), regardless of the number of lanes, etc. In 1×2 intersections, however, the one-way street was always considered the major street and the two-way street was the minor street, regardless of the traffic volume.

Data Variable	Description	Primary Source
Intersection type	As defined by the HSM:	Aerial and street-level
	3ST: Three-leg stop-controlled	photographs
	3SG: Three-leg signalized	
	4ST: Four-leg stop-controlled	
	4SG: Four-leg signalized	
Roadway	As defined below:	Aerial photographs
category	$2 \times 2 =$ two-way street intersecting two-way street	
	1×2 = one-way street intersecting two-way street	
	1×1 = one-way street intersecting one-way street	
Lighting	Presence of lighting at the intersection	Aerial and street-level
		photographs
Skew angle	Absolute value of the difference between 90 degrees and the	Aerial photographs
	intersection angle (i.e., the acute or right angle between	
	intersecting streets)	
Area type	As defined below:	Aerial and street-level
	Urban: If more than 50 percent of the land use within 250 ft of	photographs
	the center of intersection is commercial	
	Suburban: If not urban	

 Table 27. List of data variables collected for intersections as a whole.

Data Variable	Description	Primary Source
AADT	Two-way annual average daily traffic volume	State or city databases
	(veh/day) during the 5-year study period	
Left-turn phasing	Type of left-turn phasing:	Street-level photographs
(signalized intersections)	0: Permitted	
	1: Protected/permitted	
	2: Protected only	
Number of lanes	Two-way total number of traffic lanes (excluding the	Aerial and street-level
	left-turn and right-turn lanes added at the	photographs
	intersection)	
Presence of left-turn lanes	Number of approaches (0, 1, or 2) with exclusive	Aerial and street-level
	left-turn lanes	photographs
Number of left-turn lanes	Two-way total number of exclusive left-turn lanes	Aerial and street-level
		photographs
Number of right-turn lanes	Two-way total number of exclusive right-turn lanes	Aerial and street-level
		photographs
Bicycle lanes	The number of approaches $(0, 1, \text{ or } 2)$ with bicycle	Aerial and street-level
	lanes	photographs
Median type	Type of median:	Aerial and street-level
(two-way streets)	No median or TWLTL	photographs
	Raised curb	
	Depressed median	
Right-turn channelization	Number of approaches with channelized right-turn	Aerial photographs
	lanes	
Offset left-turn lanes	Number of approaches with offset left-turn lanes	Aerial photographs
	(i.e., left-turn lanes separated from through traffic via	
	raised curb, etc.)	
Left-turn prohibition	Number of approaches from which left turns are	Street-level photographs
	prohibited for reasons other than one-way cross	
	street or three-leg intersection	
RTOR prohibition	Number of approaches from which RTOR is	Street-level photographs
(signalized intersections)	prohibited	
U-turn prohibition (two-	Number of approaches from which U-turns are	Street-level photographs
way streets)	prohibited via "No U-turn" signs	

Table 28. List of data variables collected for individual streets (major and minor).

Summary statistics tables are provided separately for three categories of intersections:

- 2×2 intersections where both intersecting streets are two-way and at least one street has six or more through lanes at the intersection (Table 29 for continuous variables, Table 30 for categorical variables [intersection as a whole], Table 31 for categorical variables [major street], and Table 32 for categorical variables [minor street]).
- 1×2 intersections where a one-way (major) street intersects a two-way (minor) street (Table 33 for continuous variables, Table 34 for categorical variables [intersection as a whole or one-way street data], and Table 35 for categorical variables [two-way street data]).
- 1×1 intersections where both intersecting streets are one-way (Table 36 for continuous variables, Table 37 for categorical variables [intersection as a whole or one-way street data], and Table 38 for categorical variables [two-way street data]).

Variable	Statistic	3ST (n=56) ^a	3SG (n=58) ^a	4ST (n=36) ^a	4SG (n=402) ^a
	Minimum	10,760	8755	12,668	7090
Moion read AADT (ush/day)	Maximum	66,800	94,000	54,600	137,550
Major-road AADT (veh/day)	Mean	37,072	38,791	33,249	44,658
	Std. deviation	12,707	17,224	12,098	17,593
	Minimum	100	98	118	86
Minor read A ADT (such (dow)	Maximum	8589	31,000	4600	68,343
Minor-road AADT (veh/day)	Mean	1247	5455	1245	14,188
	Std. deviation	1629	6117	1054	11,575
	Minimum	0	0	0	0
	Maximum	29.7	43.0	42.0	44.4
Skew angle (degrees)	Mean	7.0	7.1	8.1	7.1
	Std. deviation	9.1	11.3	12.5	10.8

Table 29. Descriptive statistics for continuous variables for 2×2 intersections.

^a Number of intersections.

Table 30. Breakdown of the number of 2×2 intersections by categorical variables—data variables for intersection as a whole.

Variable	Value	3ST (n=56)	3SG (n=58)	4ST (n=36)	4SG (n=402)
Lighting	Lighted	54	58	35	393
Lighting	Not lighted	2	0	1	9
	Urban	26	23	23	101
Area type	Suburban	30	35	13	301

Variable	Value	3ST (n=56)	3SG (n=58)	4ST (n=36)	4SG (n=402)
	Permitted		9	1.2 - (21
	Protected/permitted		8	-	50
Left-turn phasing	Protected only		39	-	300
	Not applicable	56 ^a	2 ^b	36 ^a	31 ^b
	2				1
	4				18
	6	53	52	36	313
Number of lanes	7		1		18
	8	3	4	-	50
	10		1	-	2
D (1.6	Neither approach	5	3	2	40
Presence of left-	One approach	41	43	9	26
turn lanes	Both approaches	10	12	25	336
	0	5	3	2	39
	1	41	38	8	24
Number of left-turn	2	10	16	26	261
lanes	3		1		25
	4				53
	0	55	49	34	277
Number of right-	1	1	9	1	63
turn lanes	2			1	60
	3				2
	Neither approach	52	54	35	373
Bicycle lanes	One approach		2	1	3
	Both approaches	4	2		26
	No median or TWLTL	27	22	21	89
Median type	Raised curb	28	35	13	308
	Depressed median	1	1	2	5
Dight turn	Neither approach	55	53	36	333
Right-turn channelization	One approach	1	5		30
channenzation	Both approaches				39
Offset left-turn	Neither approach	55	58	36	395
lanes	One approach				4
lanes	Both approaches	1			3
Left-turn	Neither approach	49	51	35	362
prohibition	One approach	7	7	1	10
promotion	Both approaches				30
	Neither approach		58		396
RTOR prohibition	One approach				5
KI OK PIOIIDIUDI	Both approach				1
	Not applicable	56		36	
	Neither approach	44	38	34	315
U-turn prohibition	One approach	10	14	2	37
	Both approaches	2	6		50

Table 31. Breakdown of the number of 2×2 intersections by categorical variables major-street data variables.

Note: Shaded cell = not applicable. ^a Unsignalized intersection. ^b Left turn prohibited.

Variable	Value	3ST (n=56)	3SG (n=58)	4ST (n=36)	4SG (n=402)
, and the second s	Permitted		24		129
	Protected/permitted		4		79
Left-turn phasing	Protected only		30		176
	Not applicable	56 ^a	0	36 ^a	18 ^b
	0	23	21	50	10
	1	7	17	3	2
	2	25	17	33	148
Number of lanes	3	1	2	55	28
Number of failes	4	1	1		141
	5	-			20
	6, 7, 8	_			57, 2, 4
	Neither approach	54	24	34	83
Presence of left-		2	33	1	70
turn lanes	One approach	2			249
	Both approaches	<i>E</i> 4	1	1	
	0	54	24	34	83
	1	2	23	1	64
Number of left-turn	2		11	1	186
lanes	3				22
	4				46
	5				1
	0	54	27	31	188
Number of right-	1	2	27	5	126
turn lanes	2		4		86
	3				2
	Neither approach	56	56	36	370
Bicycle lanes	One approach				5
	Both approaches		2		27
Median type	No median or TWLTL	53	44	34	266
Wedian type	Raised curb	3	14	2	136
Dialet toom	Neither approach	56	53	35	317
Right-turn channelization	One approach		5	1	44
channenzation	Both approaches				41
	Neither approach	56	58	36	394
Offset left-turn	One approach				7
lanes	Both approaches				1
T 0	Neither approach	54	58	35	374
Left-turn	One approach	2		1	10
prohibition	Both approaches				18
	Neither approach		58		392
	One approach				7
RTOR prohibition	Both approaches				3
	Not applicable	56 ^a		36 ^a	
	Neither approach	56	45	36	301
U-turn prohibition	One approach	50	13	50	27
	Both approaches		13		74
Note: Shadad call - n					/4

Table 32. Breakdown of the number of 2×2 intersections by categorical variables minor-street data variables.

Note: Shaded cell = not applicable. ^a Unsignalized intersection. ^b Left turn prohibited.

Variable	Statistic	3ST (n=100) ^a	3SG (n=33) ^a	4ST (n=152) ^a	4SG (n=195) ^a
	Minimum	98.4	896.8	345.4	103
One way read A ADT (ush/day)	Maximum	42,630.6	43,733.2	23,364.6	77,000
One-way road AADT (veh/day)	Mean	13,234	14,739	8718	10,538
	Std. deviation	7712	12,302	4485	8439
	Minimum	17	290	75	130
True model A ADT (rich (doc))	Maximum	13,340	58,800	19,192	98,826
Two-way road AADT (veh/day)	Mean	1081	18,184	1413	16,993
	Std. deviation	2026	17,444	2498	15,843
	Minimum	0	0	0	0
	Maximum	28.2	44.0	35	41.0
Skew angle (degrees)	Mean	2.5	6.0	4.1	5.8
	Std. deviation	4.4	10.8	8.0	9.6

Table 33. Descriptive statistics for continuous variables for 1×2 intersections.

^a Number of intersections.

Variable	Value	3ST	3SG	4ST	4SG
		(n=100)	(n=33)	(n=152)	(n=195)
Data Variables for Intersection	on as a Whole	·			
Lighting	Lighted	89	23	145	192
Lighting	Not lighted	11	10	7	3
	Urban	62	26	99	65
Area type	Suburban	38	7	53	130
One-Way Street Data Variab	les	·			
	Permitted		2		20
Left-turn phasing	Protected only		19		170
	Not applicable	100 ^a	12 ^b	152 ^a	5 ^b
	0	1	10	1	2
	1	1	4	7	9
N 1 61	2	52	3	80	94
Number of lanes	3	28	7	54	67
	4	14	9	9	23
	5	4		1	
	Neither approach	99	20	146	124
Presence of left-turn lanes	One approach	1	11	6	71
	Both approaches		2		
	0	99	19	146	123
	1	1	9	6	68
Number of left-turn lanes	2		5		2
	3				2
	0	89	19	147	125
Number of right-turn lanes	1	11	14	5	70
	Neither approach	100	33	140	180
Bicycle lanes	One approach			12	14
	Both approaches				1
	Neither approach	100	32	150	161
Right-turn channelization	One approach		1	2	34
T - ft (Neither approach	100	32	152	195
Left-turn prohibition	One approach		1		
	Neither approach		32		194
RTOR prohibition	One approach				1
*	Not applicable	100 ^a	1 ^b	152 ^a	

Table 34. Breakdown of the number of 1×2 intersections by categorical variables—data variables for intersection as a whole or for one-way street data variables.

Note: Shaded cell = not applicable. ^a Unsignalized intersection. ^b Left/right turn prohibited.

Variable	Value	3ST	3SG	4ST	4SG
		(n=100)	(n=33)	(n=152)	(n=195)
	Permitted		3		80
Loft turn phasing	Protected/permitted				69
Left-turn phasing	Protected only		4		38
	Not applicable	100 ^a	26 ^b	152 ^a	8 ^b
	0	26	13	1	
	1	13	4	2	6
	2	61		145	59
	3			1	6
Number of lanes	4		8	2	60
	5		1		4
	6		6	1	54
	7		1		4
	8				2
	Neither approach	100	28	145	78
Presence of left-turn lanes	One approach		5	7	111
	Both approaches				6
	0	99	27	145	78
Number of left-turn lanes	1	1	5	7	102
	2		1		15
	0	75	23	148	164
Number of right-turn lanes	1	25	8	4	29
6	2		2		2
	Neither approach	100	32	151	187
Bicycle lanes	One approach		1	1	5
5	Both approaches				3
	No median or TWLTL	92	25	149	137
Median type	Raised curb	8	8	3	58
	Neither approach	100	29	149	164
Right-turn channelization	One approach		1	3	31
6	Both approaches		3		
	Neither approach	100	32	152	194
Offset left-turn lanes	One approach		1	_	1
	Neither approach	100	33	152	190
Left-turn prohibition	One approach				5
	Neither approach		30		194
RTOR prohibition	One approach		1		1
	Not applicable	100 ^a	2 ^b	152 ^a	-
	Neither approach	100	28	152	191
U-turn prohibition	One approach	100	20	102	3
	Both approaches		5		1

Table 35. Breakdown of the number of 1×2 intersections by categorical variables two-way street data variables.

Note: Shaded cell = not applicable. ^a Unsignalized intersection. ^b Left/right turn prohibited.

Variable	Statistic	3ST (n=7) ^a	3SG (n=7) ^a	$4ST$ $(n=3)^{a}$	4SG (n=93) ^a			
	Minimum	5700	5961	789	2244			
Moior road AADT (ush/day)	Maximum	16,814	20,058	10,993	24,225			
Major-road AADT (veh/day)	Mean	13,137	12,179	6937	11,840			
	Std. deviation	3826	5393	5415	5398			
	Minimum	97	780	764	98			
Mains and AADT (such (day)	Maximum	11,064	7479	6739	16,814			
Major-road AADT (veh/day)	Mean	2141	4314	3116	5776			
	Std. deviation	3972	2724	3184	3613			
	Minimum	0.4	0	0.3	0			
Sharry angle (de succe)	Maximum	43.3	11.4	39.0	39.0			
Skew angle (degrees)	Mean	16.8	2.7	15.9	5.6			
	Std. deviation	18.1	3.9	20.4	9.7			

Table 36. Descriptive statistics for continuous variables for 1×1 intersections.

^aNumber of intersections.

Variable	Value	3ST	3SG	4ST	4SG
		(n=7)	(n=7)	(n=3)	(n=93)
Data Variables for Intersection	on as a Whole				
Lishting	Lighted	5	7	2	93
Lighting	Not lighted	2		1	
A mag type	Urban	4	2	2	34
Area type	Suburban	3	5	1	59
Major-Street Data Variables					
~	Permitted				2
Left-turn phasing	Protected only				49
	Not applicable	$7^{\rm a}$	7 ^b	3 ^a	42 ^b
	1			1	
	2	1	1	1	47
Number of lanes	3	4	1	1	35
	4	2	5		10
	5				1
	Neither approach	7	7	3	75
Presence of left-turn lanes	One approach				17
	Both approaches				1
	0	7	7	3	75
Number of left-turn lanes	1				16
	2				2
Number of sight town low of	0	7	7	3	82
Number of right-turn lanes	1				11
D' 1- 1	Neither approach	7	6	3	93
Bicycle lanes	One approach		1		
	Neither approach	7	7	2	88
Right-turn channelization	One approach			1	5
T C / 1'1'/'	Neither approach	7	7	3	92
Left-turn prohibition	One approach				1
	Neither approach		4		62
RTOR prohibition	One approach		1		1
*	Not applicable	$7^{\rm a}$	2 ^b	3 ^a	30 ^b

Table 37. Breakdown of the number of 1×1 intersections by categorical variables—data variables for intersection as a whole or major-street data variables.

Note: Shaded cell = not applicable. ^a Unsignalized intersection. ^b Left/right turn prohibited.

Variable	Value	3ST	3SG	4ST	4SG
		(n=7)	(n=7)	(n=3)	(n=93)
	Permitted		1		3
Left-turn phasing	Protected only		2		48
	Not applicable	7 ^a	4 ^b	3 ^a	42 ^b
	0	3	5		
	1	3	1		5
Number of lanes	2	1	1	3	51
	3				29
	4				8
Presence of left-turn lanes	Neither approach	7	4	3	77
Presence of left-turn lanes	One approach		3		16
	0	6	4	3	77
Number of left-turn lanes	1	1			15
	2		3		1
	0	7	5	3	77
Number of right turn longs	1				16
Number of right-turn lanes	2		1		
	3		1		
Diovala lanas	Neither approach	7	7	3	92
Bicycle lanes	One approach				1
Dight turn channelization	Neither approach	7	7	2	88
Right-turn channelization	One approach			1	5
Laft turn prohibition	Neither approach	7	7	3	92
Left-turn prohibition	One approach				1
	Neither approach		4		62
RTOR prohibition	One approach		1		1
	Not applicable	7 ^a	2 ^b	3 ^a	30 ^b

 Table 38. Breakdown of the number of 1×1 intersections by categorical variables—

 minor-street data variables.

Note: Shaded cell = not applicable.

^a Unsignalized intersection.

^b Left/right turn prohibited.

CRASH DATA

Crash data were obtained from Illinois, California, and Oregon for 2006–2010 and from Texas and Michigan for 2008–2012. The entire crash records from these states (and years) were obtained, which included data elements for crash type (single-vehicle, multi-vehicle, vehicle-pedestrian, vehicle-bicycle, etc.) and crash severity (K, A, B, C, or PDO) and the manner of collision (rear-end, head-on, angle, etc.).

Crashes were assigned to roadway segments if they occurred within the boundaries of the segment and were coded as non-intersection-related. Consistent with development of the existing safety prediction models in the HSM, the research team used the FHWA IHSDM (Harwood et al., 2000) and the HSM (AASHTO, 2010) criteria for assigning crashes to intersections. Crashes were assigned to intersections if they met at least one of the following conditions:

- The crash occurred within the curb limits of the intersection.
- The crash occurred within 250 ft of the center of the intersection and was coded as intersection-related.

A total of 76,134 crashes were included in the project database: 54,138 were assigned to roadway segments, and 22,176 were assigned to intersections. Table 39 presents the distribution of roadway segment crashes by jurisdiction and segment type. As described in Chapter 5, this project proposes an aggregate model for all multiple-vehicle crashes that accounts for presence of driveways with several input variables. Therefore, the multiple-vehicle crashes in Table 40 include both driveway-related and non-driveway-related collisions. Table 40 provides the distribution of crash types by different segment types and jurisdictions. Table 41, Table 42, Table 43, and Table 44 present similar distributions for intersections.

	Number of	Ĭ	Total	Î	Total	Average Crash
Segment	Roadway	Total Length	Number of		Exposure ^a	Rate ^a
Туре	Segments	(mi)	Crashes ^a	(veh/day)	(10 ⁶ veh-mi)	(per 10 ⁶ veh-mi)
TEXAS						
6D	528	216.29	12,674	30,230	6.54	1.033
6U	15	2.67	77	23,869	0.06	0.622
7T	193	133.70	9261	25,760	3.44	1.400
8D	24	15.38	2367	48,522	0.75	1.426
20	247	52.41	988	6602	0.35	1.448
30	85	19.99	498	8847	0.18	2.008
40	49	12.96	279	11,382	0.15	1.077
Total	1141	453.4	26,144			
ILLINOI	S		•			
6D	1005	95.54	11,692	40,281	3.85	1.692
6U	63	6.81	1712	41,834	0.28	3.022
8D	47	3.91	2361	97,726	0.38	2.231
20	488	59.11	2092	7267	0.43	2.703
30	261	28.94	1662	11,145	0.32	2.730
40	68	9.85	427	11,430	0.11	2.249
Total	1932	204.16	19,946			
CALIFO	RNIA					
6D	226	39.90	3131	47,873	1.91	1.505
6U	14	1.34	150	56,596	0.08	1.406
7T	32	6.96	682	40,265	0.28	1.811
8D	45	14.79	2744	70,591	1.04	1.663
20	42	6.93	153	10,990	0.08	1.289
30	81	9.30	591	15,976	0.15	2.308
40	1	0.09	10	29,000	0.00	2.032
Total	441	79.31	7461			
OREGON	1					
20	260	14.67	283	14,236	0.21	1.267
30	109	6.37	244	20,789	0.13	1.662
40	18	1.02	60	17,037	0.02	3.670
Total	387	22.06	587			
COMBIN	ED	·	·			
6D	1759	351.73	27,497	38,240	13.45	1.470
6U	92	10.81	1939	41,152	0.44	2.385
7T	225	140.67	9943	27,822	3.91	1.459
8D	116	34.08	7472	77,019	2.62	1.844
20	1037	133.11	3516	9007	1.20	1.987
30	536	64.59	2995	13,472	0.87	2.335
40	136	23.92	776	12,284	0.29	2.013
Total	3901	758.91	54,138			
NL (OI	1 1 11 / 1	•				

Table 39. Summary of crash frequency and exposure data for roadway segments.

Note: Shaded cell = not applicable. ^a In the five years of the study period.

	Number (Percentage) of Crashes in Five Years									
Segment Type	Multiple-Vehicle Collisions		Single-Vehicle Collisions		Pede Coll	Vehicle- Pedestrian Collisions		Vehicle-Bicycle Collisions		otal
	Freq.	%	Freq.	%	Freq.	%	Freq.	%	Freq.	%
TEXAS										
6D	10,789	85.1	1632	12.9	188	1.5	65	0.5	12,674	(100)
6U	56	72.7	20	26.0	1	1.3	0	0.0	77	(100)
7T	8421	90.9	686	7.4	119	1.3	35	0.4	9261	(100)
8D	2135	90.2	159	6.7	56	2.4	17	0.7	2367	(100)
20	733	74.2	233	23.6	18	1.8	4	0.4	988	(100)
30	407	81.7	87	17.5	3	0.6	1	0.2	498	(100)
40	207	74.2	63	22.6	8	2.9	1	0.4	279	(100)
ILLINOI										
6D	10,300	88.1	1245	10.6	104	0.9	43	0.4	11,692	(100)
6U	1591	92.9	87	5.1	19	1.1	15	0.9	1712	(100)
8D	1616	68.4	735	31.1	6	0.3	4	0.2	2361	(100)
20	1720	82.2	343	16.4	17	0.8	12	0.6	2092	(100)
30	1420	85.4	212	12.8	21	1.3	9	0.5	1662	(100)
40	352	82.4	62	14.5	9	2.1	4	0.9	427	(100)
CALIFO	RNIA			-						
6D	2537	81.0	333	10.6	152	4.9	109	3.5	3131	(100)
6U	121	80.7	18	12.0	8	5.3	3	2.0	150	(100)
7T	578	84.8	68	10.0	20	2.9	16	2.3	682	(100)
8D	2381	86.8	186	6.8	94	3.4	83	3.0	2744	(100)
20	124	81.0	18	11.8	4	2.6	7	4.6	153	(100)
30	531	89.8	32	5.4	14	2.4	14	2.4	591	(100)
40	9	90.0	1	10.0	0	0.0	0	0.0	10	(100)
OREGON	N									
20	223	78.8	21	7.4	20	7.1	19	6.7	283	(100)
30	197	80.7	13	5.3	25	10.2	9	3.7	244	(100)
40	51	85.0	2	3.3	2	3.3	5	8.3	60	(100)
COMBIN	IED						•	•		
6D	23,626	85.9	3210	11.7	444	1.6	217	0.8	27,497	(100)
6U	1768	91.2	125	6.4	28	1.4	18	0.9	1939	(100)
7T	8999	90.5	754	7.6	139	1.4	51	0.5	9943	(100)
8D	6132	82.1	1080	14.5	156	2.1	104	1.4	7472	(100)
20	2800	79.6	615	17.5	59	1.7	42	1.2	3516	(100)
30	2555	85.3	344	11.5	63	2.1	33	1.1	2995	(100)
40	619	79.8	128	16.5	19	2.4	10	1.3	776	(100)
	•									

Table 40. Summary of crash type data for roadway segments.

Int. Type	Roadway Category	Number of Intersections	Major-Street AADT (veh/day)	Minor-Street AADT (veh/day)	Total Exposure ^a (10 ⁶ veh)	Total Number of Crashes ^a	Average Crash Rate ^a (per 10 ⁶ veh)
TEXA	S		I	I	1	CT WOLLDS	1
	2×2	23	32,215	1203	1403	171	0.122
207	1×2	1	559	2832	6	0	0.000
3ST	1×1	2	16,138	6193	82	8	0.098
	Combined	26	29,761	1650	1490	179	0.120
	2×2	18	38,656	6552	1485	433	0.292
3SG	1×2	2	9637	7217	62	52	0.845
38G	1×1	2	6202	4816	40	6	0.149
	Combined	22	33,067	6454	1587	491	0.309
	2×2	12	35,073	1095	792	100	0.126
407	1×2	18	8575	2730	371	27	0.073
4ST	1×1	2	5891	1304	26	3	0.114
	Combined	32	18,344	2028	1190	130	0.109
4SG	2×2	126	37,373	19,207	13,010	7380	0.567
	1×2	111	8226	17,907	5294	2489	0.470
	1×1	55	9487	4891	1443	709	0.491
	Combined	292	21,041	16,016	19,748	10,578	0.536
ILLIN	OIS						
	2×2	2	37,030	320	136	8	0.059
207	1×2	59	11,572	1144	1369	227	0.166
3ST	1×1	4	11,512	626	89	4	0.045
	Combined	65	12,351	1086	1594	239	0.150
	2×2	2	41,755	857	156	68	0.437
200	1×2	2	13,020	615	50	6	0.121
3SG	1×1	2	12,780	1095	51	35	0.691
	Combined	6	22,518	855	256	109	0.426
4ST	2×2	3	42,976	1320	243	30	0.124
	1×2	94	8460	791	1587	442	0.278
	Combined	97	9528	808	1830	472	0.258
	2×2	21	46,859	8197	2110	846	0.401
4SG	1×2	21	11,854	3755	598	267	0.446
430	1×1	3	6210	634	37	16	0.427
	Combined	45	27,814	5620	2746	1129	0.411

Table 41. Summary of crash frequency and exposure data for intersections—Texas and Illinois.

^a In the five years of the study period.

				wincingan.			
Int. Type	Roadway Category	Number of Intersections	Major-Street AADT (veh/day)	Minor-Street AADT (veh/day)	Total Exposure ^a (10 ⁶ veh)	Total Number of Crashes ^a	Average Crash Rate ^a (per 10 ⁶ veh)
CALIF	FORNIA					•	
3ST	2×2	26	42,468	1118	2068	148	0.072
	2×2	28	43,344	5744	2508	207	0.083
3SG	1×2	6	8707	44,151	579	79	0.136
	Combined	34	37,232	12,521	3087	286	0.093
	2×2	12	37,173	1582	849	66	0.078
4ST	1×2	1	8760	910	18	1	0.057
	Combined	13	34,988	1530	866	67	0.077
	2×2	228	49,119	11,599	25,265	3572	0.141
100	1×2	11	19,924	38,926	1181	123	0.104
4SG	1×1	23	16,423	7926	1022	266	0.260
	Combined	262	45,023	12,424	27,468	3961	0.144
MICH	IGAN		•				
	2×2	5	31,371	2487	309	16	0.052
207	1×2	40	16,001	944	1237	114	0.092
3ST	1×1	1	13,629	97	25	0	0.000
	Combined	46	17,620	1094	1571	130	0.083
	2×2	10	25,693	3590	534	101	0.189
3SG	1×2	23	16,905	13,890	1293	339	0.262
220	1×1	3	15,762	6125	120	13	0.108
	Combined	36	19,251	10382	1947	453	0.233
	2×2	9	22,343	970.2	383	27	0.071
4ST	1×2	39	9405	2316	834	241	0.289
451	1×1	1	9030	6739	29	2	0.069
	Combined	49	11,774	2159	1246	270	0.217
	2×2	27	39,277	17,292	2787	1792	0.643
4SG	1×2	52	12,953	15,747	2724	1415	0.519
450	1×1	12	15,252	6992	487	475	0.975
	Combined	91	21,067	15,051	5998	3682	0.614

Table 42. Summary of crash frequency and exposure data for intersections—California and Michigan.

^a In the five years of the study period.

			· ·	N	umber (Pe	ercenta	ge) of Cras	shes in F	n Five Years		
Int. Type	Roadway Category	Ve	ltiple- hicle isions		e-Vehicle lisions	Ped	ehicle- lestrian llisions		le-Bicycle llisions	Т	otal
TEXA	S										
	2×2	157	(92)	7	(4)	4	(2)	3	(2)	171	(100)
3ST	2×1	0	-	0	-	0	-	0	-	0	-
331	1×1	5	(63)	3	(38)	0	(0)	0	(0)	8	(100)
	Combined	162	(91)	10	(6)	4	(2)	3	(2)	179	(100)
	2×2	398	(92)	30	(7)	4	(1)	1	(0.2)	433	(100)
3SG	2×1	47	(90)	3	(6)	2	(4)	0	(0)	52	(100)
330	1×1	2	(33)	3	(50)	1	(17)	0	(0)	6	(100)
	Combined	447	(91)	36	(7)	7	(1)	1	(0.2)	491	(100)
	2×2	90	(90)	6	(6)	2	(2)	2	(2)	100	(100)
4ST	2×1	24	(89)	2	(7)	1	(4)	0	(0)	27	(100)
451	1×1	1	(33)	1	(33)	1	(33)	0	(0)	3	(100)
	Combined	115	(88)	9	(7)	4	(3)	2	(2)	130	(100)
	2×2	7041	(95)	211	(3)	88	(1)	40	(1)	7380	(100)
4SG	2×1	2350	(94)	86	(3)	33	(1)	20	(1)	2489	(100)
450	1×1	644	(91)	30	(4)	31	(4)	4	(1)	709	(100)
	Combined	9658	(95)	314	(3)	146	(1)	64	(1)	10182	(100)
ILLIN	OIS										
	2×2	5	(63)	2	(25)	1	(13)	0	(0)	8	(100)
207	2×1	208	(92)	13	(6)	3	(1)	3	(1)	227	(100)
3ST	1×1	3	(75)	0	(0)	0	(0)	1	(25)	4	(100)
	Combined	216	(90)	15	(6)	4	(2)	4	(2)	239	(100)
	2×2	65	(96)	3	(4)	0	(0)	0	(0)	68	(100)
3SG	2×1	5	(83)	0	(0)	0	(0)	1	(17)	6	(100)
220	1×1	34	(97)	1	(3)	0	(0)	0	(0)	35	(100)
	Combined	104	(95)	4	(4)	0	(0)	1	(1)	109	(100)
	2×2	28	(93)	2	(7)	0	(0)	0	(0)	30	(100)
4ST	2×1	406	(92)	20	(5)	8	(2)	8	(2)	442	(100)
	Combined	434	(92)	22	(5)	8	(2)	8	(2)	472	(100)
	2×2	811	(96)	29	(4)	2	(0.3)	4	(0.6)	846	(100)
4SG	2×1	253	(95)	4	(1)	7	(3)	3	(1)	267	(100)
450	1×1	16	(100)	0	(0)	0	(0)	0	(0)	16	(100)
	Combined	1110	(96)	34	(3)	9	(1)	7	(1)	1160	(100)

Table 43. Summary of crash type data for intersection—Texas and Illinois.

			Number (Percentage) of Crashes in Five Years									
Int. Type	Roadway Category	Multiple- Vehicle Collisions		Single-Vehicle Collisions		Ped	ehicle- lestrian llisions	Vehicle-Bicycle Collisions		Total		
CALIF	FORNIA											
3ST	2×2	118	(80)	7	(5)	11	(7)	12	(8)	148	(100)	
	2×2	160	(77)	13	(6)	14	(7)	20	(10)	207	(100)	
3SG	2×1	75	(95)	3	(4)	0	(0)	1	(1)	79	(100)	
	Combined	235	(82)	16	(6)	14	(5)	21	(7)	286	(100)	
	2×2	51	(77)	4	(6)	6	(9)	5	(8)	66	(100)	
4ST	2×1	1	(100)	0	(0)	0	(0)	0	(0)	1	(100)	
	Combined	52	(78)	4	(6)	6	(9)	5	(7)	67	(100)	
	2×2	2993	(84)	200	(6)	195	(5)	183	(5)	3571	(100)	
4SG	2×1	93	(76)	5	(4)	15	(12)	10	(8)	123	(100)	
	1×1	253	(95)	3	(1)	5	(2)	5	(2)	266	(100)	
	Combined	3339	(84)	208	(5)	215	(5)	198	(5)	3960	(100)	
MICH	MICHIGAN											
	2×2	15	(94)	1	(6)	0	(0)	0	(0)	16	(100)	
3ST	2×1	104	(91)	6	(5)	2	(2)	2	(2)	114	(100)	
551	1×1	0	-	0	-	0	-	0	-	0	-	
	Combined	119	(92)	7	(5)	2	(2)	2	(2)	130	(100)	
	2×2	91	(90)	5	(5)	4	(4)	1	(1)	101	(100)	
3SG	2×1	312	(92)	18	(5)	3	(1)	6	(2)	339	(100)	
220	1×1	11	(85)	0	(0)	2	(15)	0	(0)	13	(100)	
	Combined	414	(91)	23	(5)	9	(2)	7	(2)	453	(100)	
	2×2	20	(74)	4	(15)	2	(7)	1	(4)	27	(100)	
4ST	2×1	221	(92)	9	(4)	4	(2)	7	(3)	241	(100)	
451	1×1	2	(100)	0	(0)	0	(0)	0	(0)	2	(100)	
	Combined	243	(90)	13	(5)	6	(2)	8	(3)	270	(100)	
	2×2	1728	(96)	31	(2)	17	(1)	16	(1)	1792	(100)	
4SG	2×1	1334	(94)	39	(3)	27	(2)	15	(1)	1415	(100)	
UCH	1×1	454	(96)	7	(1)	6	(1)	8	(2)	475	(100)	
	Combined	3516	(95)	77	(2)	50	(1)	39	(1)	3682	(100)	

 Table 44. Summary of crash type data for intersection—California and Michigan.

SUPPLEMENTAL DATA COLLECTION—PEDESTRIAN DATA

Since pedestrian exposure data were not available in the electronic databases that were assembled for this project, on-site data collection activities were done to supplement the data already collected. A sample of 40 intersections in California and 24 intersections in San Antonio, Texas, were therefore selected for data collection for the pedestrian evaluation. The sites in California were selected along three corridors with six through lanes—CA-82 and US-101 in the San Francisco Bay Area and CA-187 in Los Angeles—and a one-way street pair—CA-32 in Chico. The 24 intersections in San Antonio were all located downtown or the area near downtown. All the intersections in San Antonio involved one-way streets. Table 45 shows the distribution of the intersections in the sample based on the number of traffic directions on the intersection approaches $(2\times2, 2\times1, \text{ and } 1\times1)$ and intersection type (3SG or 4SG).

Intersection Type	Cali	fornia	San Antonio, Texas			
	3SG	4SG	3SG	4SG		
2×2	5	25	0	0		
2×1	0	4	0	18		
1×1	0	6	0	6		

Table 45. Sample size based on intersection type and location.
--

Note: $2 \times 2 =$ two-way street intersecting two-way street; $2 \times 1 =$ two-way street intersecting one-way street; $1 \times 1 =$ one-way street intersecting one-way street; 3SG = three-leg signalized intersection; 4SG = four-leg signalized intersection.

Table 46 presents a summary of the collected data used for validation of the HSM model for vehicle-pedestrian collisions at signalized intersections. Eighteen-hour (6:00 AM to 12:00 AM) pedestrian counts were collected at five sites, one along each of the corridors in California and one in downtown San Antonio. Two-hour pedestrian counts were collected at the remaining intersections. The 18-hour counts were used to compute adjustment factors needed to convert two-hour counts to daily pedestrian volumes. It was assumed that pedestrian activity during the remaining six hours (between 12:00 AM and 6:00 AM) was negligible.

The major- and minor-street AADTs were determined using California HSIS data and City of San Antonio traffic volume data. The variable n_{lanesx} was determined using Google Earth aerial imagery. The presence of schools and number of bus stops and alcohol sales establishments within 1,000 ft of the intersection were recorded for each site using Google Earth aerial imagery and Street View. The team followed the HSM instructions to determine these variables. The CMFs were determined using the respective tables in the HSM.

The observed number of vehicle-pedestrian collisions at the selected intersections was determined using HSIS data for California and the Crash Records Information System (CRIS) database for Texas. A vehicle-pedestrian collision was assigned to an intersection if it occurred within 250 ft of the intersection center or was coded as intersection-related. Where a collision occurred between two adjacent intersections that were less than 500 ft apart, the collision was assigned to the nearest intersection. Only fatal or injury collisions were considered in the analysis (consistent with the HSM).

and San Antonio, Texas.										
		3SG 1	Intersection	ns		4SG	Intersection	IS		
Variable	Min. value	Max. value	Average (SD)	Frequency	Min. value	Max. value	Average (SD)	Frequency		
CALIFORNIA										
Major-road AADT (veh/day)	35,582	44,588	40,186 (3769.5)	5	12,060	61,815	39,979 (12,646.6)	35		
Minor-road AADT (veh/day)	800	2480	1374 (668.8)	5	2600	28,100	11,451 (6956.8)	35		
Total pedestrian volume crossing all intersection legs (ped/day)	390	1172	669 (316.4)	5	66	16,445	3364 (4120.97)	35		
Maximum number of lanes crossed by pedestrian at intersection considering presence of refuge islands	6	7	6.8 (0.44)	5	2	10	6.7 (2.30)	35		
Number of bus stops0within 1000 ft of the1 or 2intersection ≥ 3				0 4 1				0 9 26		
School presence 0 (no) 1 (yes)				$\begin{array}{c} 1\\ 3\\ 2 \end{array}$				30 5		
Number of alcohol sales0establishments within $1-8$ 1000 ft of the ≥ 9 intersection ≥ 9				3 2 0				7 28 0		
SAN ANTONIO, TX			•				•			
Major-road AADT (veh/day)				0	4046	18,592	10,780 (4298.2)	24		
Minor-road AADT (veh/day)				0	462	12,727	5134 (3497.6)	24		
Total pedestrian volume crossing all intersection legs (ped/day)				0	33	12,985	4096 (4239.2)	24		
Maximum number of lanes crossed by pedestrian at intersection considering presence of refuge islands				0	3	4	3.2 (0.44)	24		
Number of bus stops0within 1000 ft of the1 or 2intersection ≥ 3								0 1 23		
School presence 0 (no) 1 (yes)								23 1		
Number of alcohol sales0establishments within1–81000 ft of the0								5 17		
$\frac{1000 \text{ ft Of the}}{\text{intersection}} \ge 9$			- ahla					2		

Table 46. Descriptive statistics for collected data at signalized intersections in California and San Antonio, Texas.

Note: Shaded cell = data not collected or not applicable.

CHAPTER 5. PREDICTIVE MODELS FOR URBAN AND SUBURBAN ROADWAY SEGMENTS WITH SIX OR MORE LANES

This chapter describes the activities undertaken to calibrate safety predictive models for urban and suburban roadway segments with six or more lanes. Each model consists of an SPF and a family of CMFs. The SPF is derived to estimate the crash frequency with specified design elements and operating conditions. The CMFs are used to adjust the SPF estimate whenever one or more elements or conditions deviate from those that are specified.

The calibrated safety predictive models were used to develop the two-way arterial roadway segment safety predictive method. This method describes how to use the models to evaluate the safety of two-way six-or-more-lane arterials, as may be influenced by road geometry, roadside features, and traffic volume. Collectively, the predictive models for roadway segments in this chapter address the following facilities.

- Divided two-way arterials with six lanes (including a raised or depressed median) (6D).
- Undivided two-way arterials with six lanes (6U).
- Two-way arterials with six lanes and a TWLTL in the middle (7T).
- Divided two-way arterials with eight lanes (including a raised or depressed median) (8D).

This chapter is divided into four sections. The first section provides a brief background related to segmentation, database development, and modeling approach. The second section summarizes the details of calibration data. The third section describes the calibration of the models to predict FI, PDO, vehicle-pedestrian, and vehicle-bicycle crash frequency. The fourth section provides a list of CMFs.

BACKGROUND

The road segment boundaries are typically defined by intersections or by a change in the crosssection. Each segment is homogenous with respect to characteristics such as traffic volumes and key roadway design characteristics and traffic control features. Figure 14 shows the segment length, L, for a single homogenous roadway segment occurring between two intersections. However, several homogenous roadway segments can occur between two intersections.

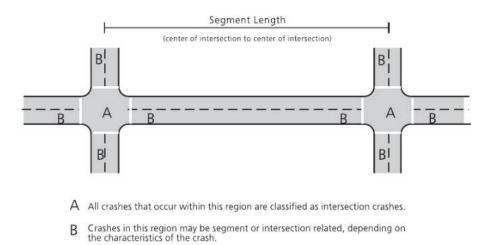


Figure 14. Definition of roadway segments and intersections (AASHTO, 2010).

A new (unique) homogenous segment begins at the center of each intersection and where there is a change in at least one of the following characteristics of the roadway:

- AADT (vehicles per day).
- Number of through lanes.
- Presence/type of median (undivided, divided by raised or depressed median, center TWLTL).
- Lane width.
- Outside shoulder width.
- Median width.
- Speed category.

A cross-sectional (as opposed to panel) database was created for developing the regression models. The database includes a five-year study period for all observations. Study duration in years is represented as an offset variable in the regression model. One reason for using cross-sectional data for model calibration relates to the accuracy of the AADT values in most highway safety databases. Segment AADT is frequently extrapolated by a state DOT from partial-year counts taken at temporary count stations located several miles from the subject segment. Thus, there are accuracy implications associated with this temporal and spatial extrapolation (Bonneson et al., 2012). Moreover, state DOT practice when a current count is not available for a segment is sometimes used to adjust the AADT from the last year it was counted (which could be several years previous); other times, the practice is to leave the variable as missing. Thus, averaging each segment's AADT over years minimizes the variability in AADT, which, based on the aforementioned observations, is considered largely random. More generally, cross-sectional data provide a more robust predictive model than panel data when the year-to-year variability in the independent variables is largely random.

A second reason for using cross-sectional data for model calibration is to minimize the problems associated with overrepresentation of segments or intersections with zero crashes. Statistical methods have been developed to improve the fit of a model to these zero-inflated or excess zero data. However, Lord et al. (2005) and Geedipally et al. (2012) indicate that when these methods

have been applied to highway crash data, they have (a) an inherent tendency to over-fit the data, (b) a theoretic explanation of dual state highway safety that is problematic with one of the two states that has a long-term mean equal to zero (i.e., the mean of the Poisson distribution is always equal to zero), and (c) the potential to obfuscate the interpretation of predictive model trend and coefficient meaning. Thus, summing each segment's crashes over years minimizes the proportion of segments or intersections with zero crashes in the database and precludes the need for a dual state distribution.

Separate models were developed for FI and PDO crashes. Experience with regression-based calibration of SPFs and CMFs using total crashes and using only FI crashes indicates that the calibration coefficients often vary among model types for common variables. Some of this variation is likely due to the fact that geometric elements often have a different effect on FI crashes than on PDO crashes. As a result, the search for correlation and possible causation is challenged when using total crash data to build total crash prediction models because total crashes combine FI and PDO crashes. It is widely recognized that PDO crash counts vary widely on a regional basis due to significant variation in the reporting threshold. When crash frequency varies systematically from county to county, district to district, and state to state because of formal and informal differences in the reporting threshold, the use of PDO crash data to build PDO crash prediction models is problematic. This observation suggests that PDO-based and total crash models are likely to include regional biases and added uncertainty due to variation in reporting thresholds.

Based on these issues, the following model-building process was developed. Researchers rationalized that (a) FI crash data are likely to provide the most accurate insight into regression model structure and factors influencing safety, and (b) PDO-based models are preferred to total crash models. However, because of under-reporting, the development of PDO regression models is problematic and the variable effect provided by these models may not be accurate. Therefore, the FI regression model structure was developed first and then used as a starting point for the development of the PDO regression model. By doing this, the research team could estimate the PDO crashes at the same base conditions. Some geometric variables that were significant in the FI model were less significant in the PDO model. Specifically, the standard error was increased for those geometric variables that varied more among counties than within counties. Unfortunately, it is not known whether the among-county variation is due to differences in reporting threshold (as may be informally applied at different levels within a state) or because of differences in geometry. This approach often resulted in the PDO model having fewer geometric variables than the FI model. Since FI models were more accurate than PDO models, the CMFs were developed from FI crash data only but were used for both FI and PDO crashes.

CALIBRATION DATA

The database assembly for these types of facilities focused on Texas and two HSIS states: California and Illinois. Although a general description of all the data collected was provided in the previous chapter, the descriptions provided here and the subsequent chapters are tailored specifically for the models documented in the corresponding chapter and include only the variables that were considered in the final models. The data are summarized in Table 47 and Table 48 for electronic and supplemental variables, respectively.

Data Variable	Description
AADT	Two-way annual average daily traffic volume (veh/day) during the
	study period
Segment length	Length of the homogenous segment (mi) in the state database
Lane width	Average width (ft) of the through lanes
Inside shoulder width (divided segments)	Average width of the inside shoulder (ft) in the two directions of travel
Outside shoulder width	Average width of the outside shoulder (ft) in the two directions of
	travel
Median width	Average median width (ft) along the segment

Table 47. Variables acquired from state databases for six-or-more-lane arterials.

Data Variable	Description
Bus or HOV lane presence	Presence of bus-only or HOV lanes.
Bicycle lane presence	Presence of bicycles lanes.
Sidewalks	Presence of sidewalks along each side of the roadway segment:
	0: No sidewalk.
	1: Sidewalk on one side of the roadway.
	2: Sidewalks on both sides of the roadway.
Lighting	Presence of lighting along each side of the roadway segment:
	0: No lighting.
	1: Lighting on one side of the roadway.
	2: Lighting on both sides of the roadway.
Parallel parking proportion	Proportion of the length of segment with parallel parking (considered
	in both directions of travel for two-way streets).
Angle parking proportion	Proportion of the length of segment with angle parking (considered in
	both directions of travel for two-way streets).
Speed limit	Posted speed limit (mph) as observed from speed limit signs.
Median barrier	Presence of concrete barriers in the median.
Railroad crossings	Number of railroad-highway crossings within the limits of the roadway
	segment.
Driveway density	Density of driveways along the length of the segment
	(driveways/mile), classified consistently with the HSM Chapter 12
	driveway categories:
	Major commercial driveways.
	Minor commercial driveways.
	Major industrial/institutional driveways.
	Minor industrial/institutional driveways.
	Major residential driveways.
	Minor residential driveways.
	Other driveways.
Roadside fixed-object density	Density of fixed roadside objects (objects/mile) within 30 ft of the edge
	of traveled way (in both directions of travel for two-way streets). In
	absence of marked edge lines, edge of traveled way was considered to
	be 2.0 ft from the face of the curb. Fixed objects were counted using
	the same method as required for application of the HSM CMF for
	roadside fixed objects (described on pages 12–41 of the HSM).
Roadside fixed-object offset	Average distance from the edge of traveled way to the roadside fixed
	objects (as defined above).
Inside curb proportion	Ratio of the two-way total length (ft) of curb present along the inside
	(median side) of the segment to twice the length of the segment.
Outside curb proportion	Ratio of the two-way total length (ft) of curb present along the outside
	(right shoulder side) of the segment to twice the length of the segment.

Table 48. Supplemental data collected for six-or-more-lane arterials.

MODEL DEVELOPMENT—SIX-OR-MORE-LANE ARTERIALS

The regression model form that was used to predict the average crash frequency on an individual roadway segment is as follows:

$$N_{j} = (N_{mv}I_{mv} + N_{sv}I_{sv}) \times CMF_{lw} \times CMF_{osw} \times CMF_{mw} \times CMF_{rhx}$$
(141)

with,

$$N_{mv} = N_{spfmv} \times CMF_{dwc_mj} \times CMF_{dwi_mj} \times CMF_{dw_mn} \times CMF_{bar,mv}$$
(142)

$$N_{sv} = N_{spfsv} \times CMF_{fo} \times CMF_{bar,sv}$$
(143)

$$N_{spfmv} = L \times n \times e^{b_{mv} + b_{mv1} \ln(AADT) + b_{ca}I_{ca} + b_{il}I_{il}}$$
(144)

$$N_{spfsv} = L \times n \times e^{b_{sv} + b_{sv1} \ln(AADT) + b_{ca}I_{ca} + b_{il}I_{il}}$$
(145)

$$CMF_{lw} = e^{b_{lw}(W_l - 12)}$$
(146)

$$CMF_{osw} = e^{b_{osw}(W_{os}-1.5)}$$
(147)

$$CMF_{mw} = e^{b_{mw}(W_m-15)}$$
(148)

$$CMF_{mw} = e^{b_{mw}(W_m - 15)}$$
(148)
$$CMF_{rhx} = e^{b_{rhx}n_{rhx/L}}$$
(149)

$$MF_{rhx} = e^{b_{rhx}n_{rhx/L}} \tag{149}$$

$$CMF_{dwc_mj} = e^{b_{dwc_mj}(n_{dwc_mj}-2)}$$
(150)

$$CMF_{dwi_mj} = e^{b_{dwi_mj}(n_{dwi_mj}-1)}$$
(151)

$$CMF_{dw_mn} = e^{b_{dw_mn}(n_{dw_mn}-10)}$$
(152)

$$CMF_{bar,j} = e^{b_{bar,j}I_{bar}}; j = mv, sv$$
(153)

$$CMF_{fo} = 1.0 + \frac{0.01D_{fo}}{e^{b_{fo}(o_{fo})}}$$
(154)

where,

j		predicted annual average crash frequency for model j ($j=mv$, sv).
N_{mv}	=	predicted annual average multiple-vehicle crash frequency.
N_{sv}	=	
I_{mv}	=	crash indicator variable (= 1.0 if multiple-vehicle crash data, 0.0 otherwise).
I _{sv}	=	crash indicator variable (= 1.0 if single-vehicle crash data, 0.0 otherwise).
L		segment length, mi.
n	=	number of years of crash data.
AADT		
I _{ca}	=	California state indicator variable (= 1.0 if site is in California, 0.0 if not).
I _{il}	=	Illinois state indicator variable (= 1.0 if site is in Illinois, 0.0 if not).
CMF_{lw}	=	lane width CMF.
CMF _{osw}	=	shoulder width CMF.
CMF_{mw}	=	median width CMF.
CMF_{rhx}		railroad crossing CMF.
CMF _{dwc_mj}		major commercial driveways CMF.
CMF _{dwi_mj}	=	major industrial driveways CMF.
CMF _{dw_mn}	=	minor driveways CMF.
$CMF_{bar,j}$	=	median barrier CMF.
CMF_{fo}	=	roadside fixed objects CMF.
W_l	=	average lane width, ft.
W_{os}	=	average outside shoulder width, ft.
W_m	=	median width, ft.
n_{rhx}	=	number of railroad crossings on the segment.
n _{dwc_mj}	=	major commercial driveway density, driveways/mile.
n _{dwi mi}	=	major industrial driveway density, driveways/mile.
$n_{dw \ mn}$		minor driveway density, driveways/mile.
Ibar	=	median barrier presence indicator variable (= 1.0 if present, 0.0 if absent).
-Dur		

- O_{fo} = roadside fixed-object offset, ft.
- D_{fo} = roadside fixed-object density, fixed objects/mile.
- p_{fo} = roadside fixed-object collisions as a proportion of total crashes.
 - b_i = calibration coefficient for variable *i*.

The inverse dispersion parameter, K (which is the inverse of the overdispersion parameter k), is allowed to vary with the segment length. The inverse dispersion parameter is calculated using Equation 155:

$$K = L \times e^{\delta,j}; \ j = mv, sv \tag{155}$$

where,

K = inverse dispersion parameter.

 δ = calibration coefficient for inverse dispersion parameter.

The predictive model calibration process consisted of the simultaneous calibration of multiplevehicle and single-vehicle crash models and CMFs using the aggregate model represented by the equations above. The simultaneous calibration approach was needed because several CMFs were common to multiple-vehicle and single-vehicle crash models. The database assembled for calibration included two replications of the original database. The dependent variable in the first replication was set equal to the multiple-vehicle crashes. The dependent variable in the second replication was set equal to the single-vehicle crashes.

Table 49 and Table 50 summarize the modeling results for two-way arterial segments for FI and PDO crashes, respectively. The variables with the corresponding p-values less than 0.05 can be considered statistically significant (at the significance level $\alpha = 0.05$). For those few variables where the p-value was greater than 0.05, it was decided that the variable was important to the model, and its trend was found to be consistent with previous research findings (even if the specific value was not known with a great deal of certainty when applied to this database).

Coefficient	Variable	Facility	Estimate	Std. Error	t-statistic	p-value
		6U	-15.4189	2.7868	-5.53	< 0.0001
b_{mv}		6D	-11.5649	0.5438	-21.27	< 0.0001
	Intercept for MV crashes	7T	-11.4439	0.5362	-21.34	< 0.0001
		8D	-11.3817	0.5805	-19.61	< 0.0001
		6U	1.6329	0.2625	6.22	< 0.0001
la la	AADT on MV anashas	6D	1.2399	0.0526	23.59	< 0.0001
b_{mv1}	AADT on MV crashes	7T	1.2399	0.0526	23.59	< 0.0001
		8D	1.2399	0.0526	23.59	< 0.0001
		6U	-4.5419	1.3489	-3.37	0.0008
h	Intercept for SV graphes	6D	-5.2579	0.8626	-6.10	< 0.0001
b_{sv}	Intercept for SV crashes	7T	-4.5419	1.3489	-3.37	0.0008
		8D	-5.3556	0.9281	-5.77	< 0.0001
		6U	0.3694	0.1309	2.82	0.0048
1.	AADT on SV on the	6D	0.4631	0.0835	5.55	< 0.0001
b_{sv1}	AADT on SV crashes	7T	0.3694	0.1309	2.82	0.0048
		8D	0.4631	0.0835	5.55	< 0.0001
b_{lw}	Lane width	All	-0.0219	0.0138	-1.58	0.1144
b _{osw}	Outside shoulder width	All	-0.0285	0.0045	-6.30	< 0.0001
b_{mw}	Median width	6D/8D	-0.0057	0.0012	-4.65	< 0.0001
$b_{mb,mv}$	Median barrier on MV crashes	6D/8D	-0.5106	0.1550	-3.29	0.0010
b _{mb,sv}	Median barrier on SV crashes	6D/8D	0.6766	0.2099	3.22	0.0013
b_{rhx}	Railroad crossing presence	All	0.0388	0.0218	1.78	0.0747
	Major commercial driveway		0.0350	0.0038	9.20	< 0.0001
b _{dwc_mj}	density on MV crashes	All				
1	Major industrial driveway	4.11	0.0107	0.0085	1.25	0.2105
b _{dwi_mj}	density on MV crashes	All				
7	Minor driveway density on	A 11	0.0054	0.0015	3.72	0.0002
b_{dw_mn}	MV crashes	All				
h	Roadside fixed-object density	All	0.1310	0.0366	3.58	0.0004
b_{fo}	on SV crashes	All				
b _{il}	Added effect of Illinois	All	-0.3808	0.0475	-8.02	< 0.0001
		6U	2.8668	0.2825	10.15	< 0.0001
8	Inverse dispersion parameter	6D	2.0469	0.0586	34.96	< 0.0001
δ_{mv}	for MV crashes	7T	1.2993	0.1198	10.84	< 0.0001
		8D	2.4932	0.1738	14.35	< 0.0001
		6U	3.0797	0.9312	3.31	0.0010
2	Inverse dispersion parameter	6D	1.4992	0.1316	11.39	< 0.0001
δ_{sv}	for SV crashes	7T	3.0797	0.9312	3.31	0.0010
		8D	2.0078	0.3753	5.35	< 0.0001
	Observations	2229 segr	nents (6U=92	; 6D=1759; 7T	=222; 8D=113	3)

Table 49. Calibrated coefficients for FI crashes on six-or-more-lane arterials.

Note: MV = multiple vehicle; SV = single vehicle.

Coefficient	Variable	Facility	Estimate	Std. Error	t-statistic	p-value
		6U	-15.6792	2.2895	-6.85	< 0.0001
b_{mv}	Intercept for MV crashes	6D	-9.2080	0.5054	-18.22	< 0.0001
D_{mv}	intercept for Wiv crashes	7T	-9.1980	0.4998	-18.40	< 0.0001
		8D	-8.8445	0.5459	-16.20	< 0.0001
		6U	1.6966	0.2160	7.85	< 0.0001
h	AADT on MV crashes	6D	1.0611	0.0490	21.68	< 0.0001
b_{mv1}	AAD1 on WV clashes	7T	1.0611	0.0490	21.68	< 0.0001
		8D	1.0611	0.0490	21.68	< 0.0001
		6U	-3.9795	1.3071	-3.04	0.0023
h	Intercept for SV proches	6D	-4.7118	0.6937	-6.79	< 0.0001
b_{sv}	Intercept for SV crashes	7T	-3.9795	1.3071	-3.04	0.0023
		8D	-4.3443	0.7476	-5.81	< 0.0001
		6U	0.3429	0.1269	2.70	0.0068
,		6D	0.4341	0.0671	6.47	< 0.0001
b_{sv1}	AADT on SV crashes	7T	0.3429	0.1269	2.70	0.0068
		8D	0.4341	0.0671	6.47	< 0.0001
b _{lw}	Lane width	All	-0.0516	0.0138	-3.75	0.0002
b _{osw}	Outside shoulder width	All	-0.0278	0.0044	-6.26	< 0.0001
b_{mw}	Median width	6D/8D	-0.0035	0.0011	-3.11	0.0019
b _{mw,mv}	Median barrier on MV crashes	6D/8D	-0.7651	0.1517	-5.04	< 0.0001
b _{mw,sv}	Median barrier on SV crashes	6D/8D	0.5723	0.1545	3.70	0.0002
b_{rhx}	Railroad crossing presence	All	0.0420	0.0187	2.25	0.0255
b _{dwc_mj}	Major commercial driveway density on MV crashes	All	0.0479	0.0040	11.89	< 0.0001
b _{dwi_mj}	Major industrial driveway density on MV crashes	All	0.0091	0.0083	1.09	0.2709
b _{dw_mn}	Minor driveway density on MV crashes	All	0.0069	0.0015	4.48	<0.0001
b_{fo}	Roadside fixed-object density on SV crashes	All	0.1461	0.0305	4.79	<0.0001
b _{il}	Added effect of Illinois	All	0.7871	0.0420	18.73	< 0.0001
		6U	2.9953	0.1894	15.82	< 0.0001
2	Inverse dispersion parameter	6D	1.9099	0.0412	46.41	< 0.0001
δ_{mv}	for MV crashes	7T	1.0820	0.1077	10.04	< 0.0001
		8D	1.6689	0.1367	12.20	< 0.0001
		6U	1.9732	0.2607	7.57	< 0.0001
0	Inverse dispersion parameter	6D	1.9997	0.0888	22.52	< 0.0001
δ_{sv}	for SV crashes	7T	1.9732	0.2607	7.57	< 0.0001
		8D	1.8385	0.2282	8.06	< 0.0001
	Observations				=222; 8D=113	

Table 50. Calibrated coefficients for PDO crashes on six-or-more-lane arterials.

Indicator variables were included for the states of California and Illinois. However, only the coefficient for Illinois was statistically significant. This means that the magnitude of the crashes between Texas and California are about the same, but Illinois experiences fewer FI crashes and more PDO crashes for the same conditions and exposure. The trend could not be explained by difference in road design among the states. It is likely that the differences between states are due to unobserved variables such as vertical grade, signing, pavement condition, weather, reporting accuracy, and speed limit.

The mixed nonlinear regression procedure (NLMIXED) in the Statistical Analysis System (SAS) software was used to estimate the proposed model coefficients. This procedure was used because the proposed predictive model is both nonlinear and discontinuous. The log-likelihood function for the NB distribution was used to determine the best-fit model coefficients.

Figure 15 and Figure 16 show the relationship between the number of FI crashes and traffic flow for six-or-more-lane segments for multi-vehicle and single-vehicle crashes, respectively. Figure 15 shows that divided facilities experience fewer multi-vehicle crashes than undivided facilities. Figure 16 shows that six-lane divided facilities experience slightly more single-vehicle FI crashes than do eight-lane divided and six-lane undivided arterials.

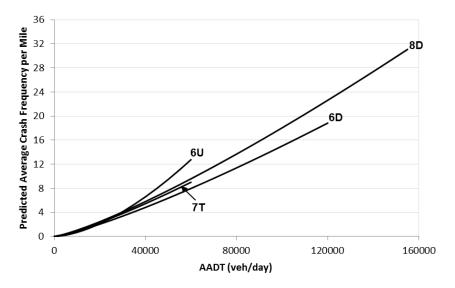


Figure 15. Graphical form of the SPF for FI multiple-vehicle collisions, six-or-more-lane arterials.

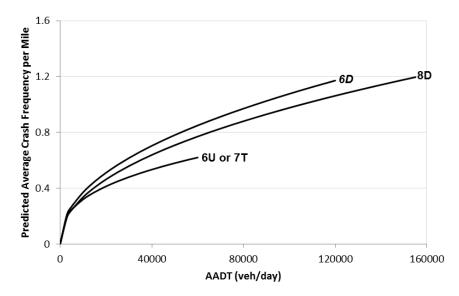


Figure 16. Graphical form of the SPF for FI single-vehicle collisions, six-or-more-lane arterials.

Figure 17 and Figure 18 show the relationship between the number of PDO crashes and traffic flow for six or more lanes for multi-vehicle and single-vehicle crashes, respectively. Figure 17 shows that eight-lane divided facilities experience more multi-vehicle PDO crashes than do six-lane undivided and divided facilities. Figure 18 shows that eight-lane divided facilities experience more single-vehicle PDO crashes than do six-lane divided facilities.

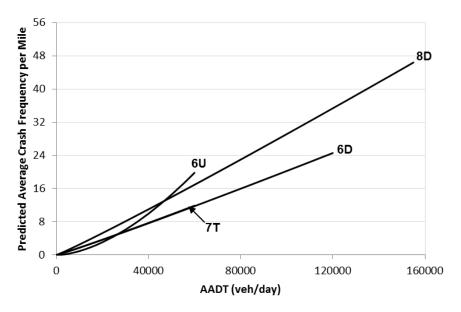


Figure 17. Graphical form of the SPF for PDO multiple-vehicle collisions, six-or-more-lane arterials.

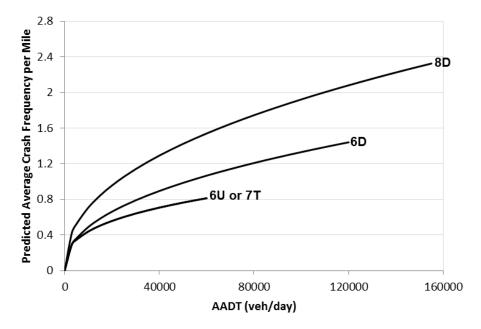


Figure 18. Graphical form of the SPF for PDO single-vehicle collisions, six-or-more-lane arterials.

The proportions in Table 51 are used to separate multiple-vehicle crashes into components by collision type for arterials with six or more lanes.

consion type.								
Proportion of Crashes by Severity Level for Specific Road							Road Type	s
Collision Type	(6U	(6D	7	Τ	8	D
	FI	PDO	FI	PDO	FI	PDO	FI	PDO
Rear-end collision	0.752	0.586	0.769	0.591	0.694	0.588	0.746	0.647
Head-on collision	0.037	0.008	0.012	0.012	0.034	0.012	0.006	0.000
Angle collision	0.064	0.052	0.091	0.081	0.148	0.092	0.147	0.093
Sideswipe, same direction	0.083	0.302	0.087	0.262	0.072	0.255	0.073	0.236
Sideswipe, opposite direction	0.028	0.005	0.011	0.020	0.020	0.024	0.011	0.012
Other multiple-vehicle collisions	0.037	0.046	0.030	0.033	0.031	0.029	0.017	0.012

 Table 51. Distribution of multiple-vehicle collisions for roadway segments by manner of collision type.

Source: HSIS data for California (2006–2010).

The proportions in Table 52 are used to separate single-vehicle crashes into components by crash type for arterials with six or more lanes.

 Table 52. Distribution of single-vehicle crashes for roadway segments by collision type for arterials with six or more lanes.

	Proportion of Crashes by Severity Level for Specific Road Types								
Collision Type	6Ū		6D		7 T		8D		
	FI	PDO	FI	PDO	FI	PDO	FI	PDO	
Collision with fixed object—left	0.100	0.174	0.296	0.353	0.158	0.248	0.167	0.273	
Collision with fixed object— right	0.350	0.413	0.332	0.397	0.495	0.481	0.611	0.591	
Collision with other object	0.050	0.130	0.032	0.073	0.011	0.037	0.000	0.045	
Other single-vehicle collision	0.500	0.283	0.339	0.177	0.337	0.234	0.222	0.091	

Source: HSIS data for California (2006–2010).

VEHICLE-PEDESTRIAN COLLISIONS

The number of vehicle-pedestrian crashes per year for a roadway segment is estimated using Equation 156.

$$N_{pedr} = N_{br} \times f_{pedr} \tag{156}$$

where,

N_{br}	=	predicted average crash frequency of an individual roadway segment (excluding
		vehicle-pedestrian and vehicle-bicycle collisions).

- N_{pedr} = predicted average crash frequency of vehicle-pedestrian collisions for a roadway segment.
- f_{pedr} = pedestrian crash adjustment factor.

The pedestrian crash adjustment factor is estimated by dividing the vehicle-pedestrian crashes by the total segment crashes (excluding vehicle-pedestrian and vehicle-bicycle collisions) for each segment type. Table 53 presents the values of f_{pedr} . All vehicle-pedestrian collisions are considered FI crashes. The HSM adjustment factors (from the original Table 12-16 in HSM Chapter 12) are also displayed for comparison.

Pedestrian crash adjustment factors are developed using Equation 157.

$$f_{pedr} = \frac{N_{pedr}}{N_{br}} \tag{157}$$

where,

 N_{pedr} = crash frequency of vehicle-pedestrian collisions for an individual roadway segment.

 N_{br} = crash frequency of an individual roadway segment (excluding vehicle-pedestrian and vehicle-bicycle collisions).

Source	Road		Pedestrian Crash Adjustment Factor (f _{pedr})							
Source	Туре	Post	ed Speed 30 n	nph or Low	er	Posted	Posted Speed Greater Than 30 mph			
		Number of Segments	Total Pedestrian Crashes	Total MV and SV Crashes ^a	f pedr	Number of Segments	Total Pedestrian Crashes	Total MV and SV Crashes ^a	f _{pedr}	
12	2U				0.036				0.005	
	3T				0.041				0.013	
HSM Ch.	4U				0.022				0.009	
SN	4D				0.067				0.019	
H	5T				0.030				0.023	
q	6U	22	10	549	0.018	72	18	1359	0.013	
ose	6D	106	69	2377	0.029	1661	369	24720	0.015	
Proposed	7T	16	11	324	0.034	250	138	10016	0.014	
P.	8D	1	1	612		122	150	6623	0.023	

Table 53. Pedestrian crash adjustment factor for two-way roadway segments.

Note: Shaded cell = data not available.

^a Excludes pedestrian and bicycle crashes.

VEHICLE-BICYCLE COLLISIONS

The number of vehicle-bicycle collisions per year for an intersection is estimated using Equation 158.

$$N_{biker} = N_{br} \times f_{biker} \tag{158}$$

where,

 N_{br} = predicted average crash frequency of an individual intersection (excluding vehiclepedestrian and vehicle-bicycle collisions). N_{biker} = predicted average crash frequency of vehicle-bicycle collisions for an intersection. f_{biker} = bicycle crash adjustment factor.

The bicycle crash adjustment factor is estimated by dividing the vehicle-bicycle crashes by the sum of single-vehicle and multiple-vehicle crashes for each intersection type. Table 54 presents the values of f_{biker} . All vehicle-bicycle collisions are considered FI crashes. The HSM adjustment factors (from HSM Table 12-17) are also displayed for comparison.

The adjustment factors are developed using Equation 159.

$$f_{biker} = \frac{N_{biker}}{N_{br}} \tag{159}$$

where,

 N_{br} = crash frequency of an individual roadway segment (excluding vehiclepedestrian and vehicle-bicycle collisions).

$$N_{biker}$$
 = crash frequency of vehicle-bicycle collisions for an individual roadway segment.

Source	Road		Bicycle Crash Adjustment Factor (f _{biker})						
Source	Туре	Post	ed Speed 30	mph or Lov	ver	Posted	Posted Speed Greater Than 30 mph		
		Number of Segments	Total Bicycle Crashes	Total MV and SV Crashes ^a	f _{biker}	Number of Segments	Total Bicycle Crashes	Total MV and SV Crashes ^a	f _{biker}
12	2U				0.018				0.004
	3T				0.027				0.007
I Ch.	4U				0.011				0.002
HSM	4D				0.013				0.005
H	5T				0.050				0.012
q	6U	22	7	549	0.013	72	9	1359	0.007
ose	6D	106	16	2377	0.007	1661	190	24720	0.008
Proposed	7T	16	8	324	0.025	250	46	10016	0.001
P	8D	1	0	612		122	92	6623	0.014

Table 54. Bicycle crash adjustment factor for two-way roadway segments.

Note: Shaded cell = data not available.

^a Excludes pedestrian and bicycle crashes.

CMFS FOR SIX-OR-MORE-LANE ARTERIALS

Several CMFs were calibrated in conjunction with the SPFs. All of them were calibrated using the FI crash data. Collectively, they describe the relationship between various geometric factors and crash frequency. These CMFs are described in this section and, where possible, compared with the findings from previous research as a means of model validation. Many of the CMFs found in the literature are typically derived from (and applied to) the combination of multiple-vehicle and single-vehicle crashes. That is, one CMF is used to indicate the influence of a specified geometric feature on total crashes. In contrast, the models developed for this project

include several CMFs that are calibrated for a specific crash type. If the standard errors of the CMFs are desired, then Equations 133–140 can be used to compute them.

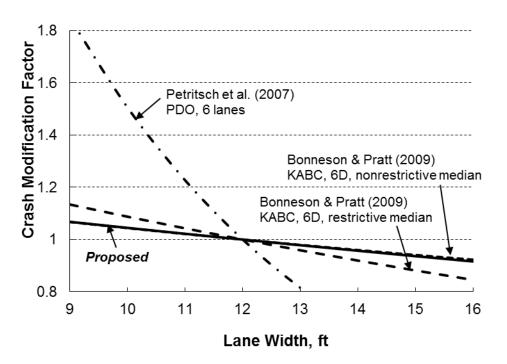
This section shows figures of the CMFs developed from the regression models described above for six-or-more-lane arterials. Where available, other CMFs from the literature are used for comparison purposes.

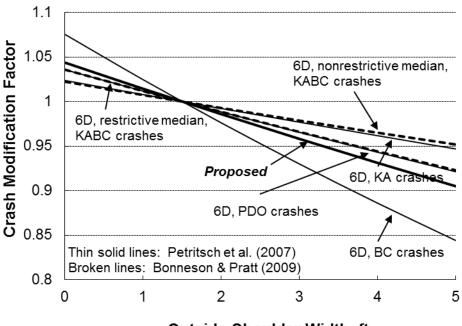
Lane Width CMF

The lane width CMF is described using Equation 160:

$$CMF_{lw} = e^{-0.0219(W_l - 12)} \tag{160}$$

The base condition for this CMF is a 12-ft lane width. The lane width used in this CMF is an average for all through lanes on the segment. The lane width CMF is shown in Figure 19 using a thick, solid trend line. The lane widths used to calibrate this CMF range from 9 to 16 ft. This CMF is applicable to both multi-vehicle and single-vehicle crashes. Also shown in Figure 19 are CMFs developed by other researchers. Broken lines are used to differentiate these CMFs from the one proposed in this research project. The proposed CMF closely tracks the CMFs developed by Petritsch et al. (2007) is shown to be more sensitive to lane width than the proposed CMF or the CMF developed by Bonneson and Pratt (2009).




Figure 19. Lane width CMF, six-or-more-lane arterials.

Outside Shoulder Width CMF

The outside shoulder width CMF is described using Equation 161.

$$CMF_{osw} = e^{-0.0285(W_{os} - 1.5)} \tag{161}$$

The base condition for this CMF is a 1.5-ft outside shoulder width. The shoulder width used in this CMF is an average of two roadbeds on the segment. The outside shoulder width CMF is shown in Figure 20 using a thick, solid trend line. The outside shoulder widths used to calibrate this CMF range from 0 to 14 ft. This CMF is applicable to both multi-vehicle and single-vehicle crashes. The outside shoulder width CMFs developed in different studies are compared in Figure 6. Thin lines or broken lines are used to differentiate these CMFs from the one developed for this research project. The CMF proposed in this research closely tracks the CMF for restrictive median segments developed by Bonneson and Pratt (2009) and for PDO crashes developed by Petritsch et al. (2007).

Outside Shoulder Width, ft

Figure 20. Outside shoulder width CMF, six-or-more-lane arterials.

Median Width CMF

The median width CMF is described using Equation 162.

$$CMF_{mw} = e^{-0.0057(W_m - 15)}$$
(162)

The base condition for this CMF is a 15-ft median width. The median width CMF is shown in Figure 21 using a thick, solid trend line. The median widths used to calibrate this CMF range from 0 to 60 ft. This CMF is applicable to both multi-vehicle and single-vehicle crashes. The

CMF proposed in this research is compared with the CMF in HSM Chapter 12 and CMFs developed by other researchers in Figure 21. The HSM Chapter 12 CMF applies only to traversable medians without traffic barriers, not including TWLTLs. As shown, there is considerable variation in the median width CMFs. This variation is likely due to other factors that are correlated with median type. For example, a restrictive median reduces the effective number of driveways by preventing through and left-turn movements into or out of driveways.

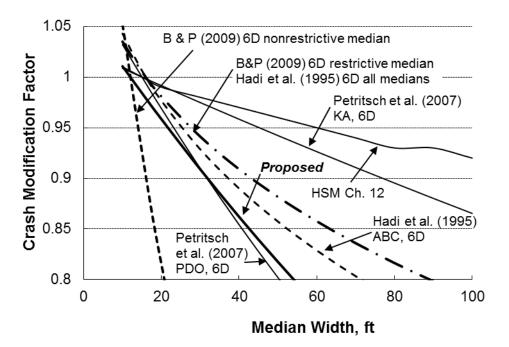


Figure 21. Median width CMF, six-or-more-lane arterials.

Median Barrier CMF

The median barrier CMF is applicable to cable barriers and concrete barriers on roadway segments. The base condition is a median with no barrier. The calibrated median barrier CMF has two forms, depending on which component model is being used. The median barrier CMF for multiple-vehicle crashes is described using Equation 163.

$$CMF_{bar,mv} = e^{-0.5106 \times I_{bar}} \tag{163}$$

Figure 22 shows the change in the median barrier CMF value for multiple-vehicle crashes with the presence of a median barrier. The results suggest that the presence of a median barrier reduces multiple-vehicle crash frequency. In general, a median barrier prevents vehicles from entering into opposing traffic on the other roadbed and thus reduces the number of crashes.

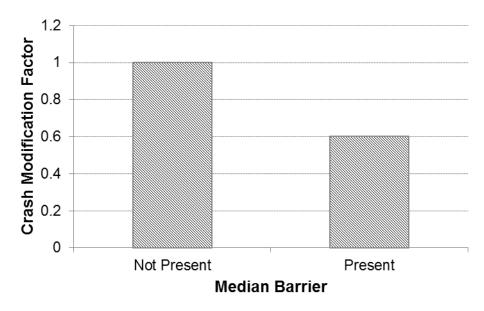


Figure 22. Median barrier CMF for multiple-vehicle crashes, six-or-more-lane arterials.

The median barrier CMF for single-vehicle crashes is described using Equation 164.

$$CMF_{bar,sv} = e^{0.6766 \times I_{bar}} \tag{164}$$

Figure 23 shows the change in the median barrier CMF value for single-vehicle crashes with the presence of a median barrier. The results suggest that the presence of a median barrier increases single-vehicle crash frequency. Although a median barrier prevents a vehicle from entering into opposing traffic on the other roadbed, the vehicle will still be involved in a collision with the barrier.

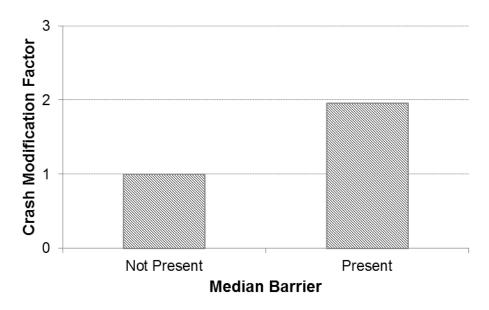


Figure 23. Median barrier CMF for single-vehicle crashes, six-or-more-lane arterials.

Railroad Crossing Presence CMF

The railroad crossing presence CMF is described using Equation 165.

$$CMF_{mw} = e^{0.0388 \times n_{rhx}/L} \tag{165}$$

The base condition for this CMF is the absence of a railroad crossing on the segment. This CMF is applicable to both multi-vehicle and single-vehicle crashes. The change in the CMF with the increase in railroad crossings is shown in Figure 24. The crashes increase by 4 percent with each railroad crossing on the segment.

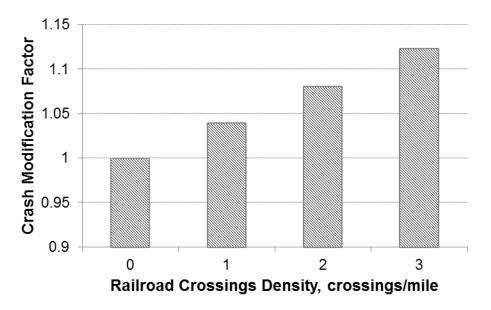


Figure 24. Railroad crossing CMF, six-or-more-lane arterials.

Driveway CMF

The driveway CMF is applicable to multiple-vehicle crashes only. Major commercial, major industrial, and minor driveways are found to be significant in influencing crashes. Minor driveways include all driveway types. Major driveways are those that serve sites with 50 or more parking spaces. Minor driveways are those that serve sites with fewer than 50 parking spaces. Commercial driveways provide access to establishments that serve retail customers. Industrial/institutional driveways serve factories, warehouses, schools, hospitals, churches, offices, public facilities, and other places of employment. Residential driveways serve single-and multiple-family dwellings.

The major commercial driveway CMF is described using Equation 166.

$$CMF_{dwc_mj} = e^{0.0350(n_{dwc_mj}-2)}$$
 (166)

The major industrial driveway CMF is described using Equation 167.

$$CMF_{dwi_mj} = e^{0.0107(n_{dwi_mj}-1)}$$
 (167)

The base condition for the commercial driveway CMF is two driveways per mile, whereas it is one driveway per mile for the industrial driveway CMF. The comparison of CMFs is shown in Figure 25. It can be seen that commercial driveways are associated with more multiple-vehicle crashes than are industrial driveways.

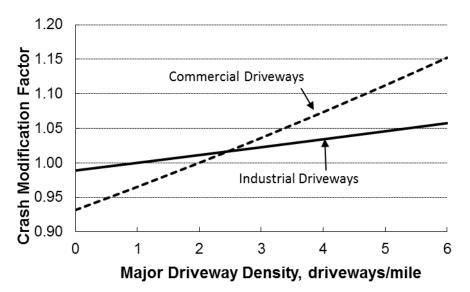


Figure 25. Major driveway CMF, six-or-more-lane arterials.

The minor driveway CMF is described using Equation 168.

$$CMF_{dw\ mn} = e^{0.0054(n_{dw\ mn}-10)} \tag{168}$$

The base condition for the minor driveway CMF is 10 driveways per mile. The change in CMF with the increase in the driveways is shown in Figure 26.

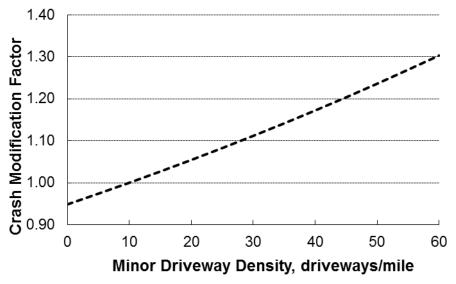


Figure 26. Minor driveway CMF, six-or-more-lane arterials.

Table 55 shows the comparison of percentage increase in crashes associated with the presence of a driveway on an example 1-mi urban street segment. The related percentage crash increase found in this research is similar to the increase found by other various researchers.

Source	Crash Severities	Percent Increase in Crashes per Driveway
Petritsch et al. (2007)	BC	0.2
Petritsch et al. (2007)	PDO	0.2
Sawalha & Sayed (2001)	KABCO	1.7
Bonneson & McCoy (1997)	KABCO	0.5
Proposed, major commercial	KABCO	4.0
Proposed, major industrial	KABCO	1.0
Proposed, minor	KABCO	0.5

Table 55. Increase in crashes with driveways.

Roadside Fixed-Object CMF

The roadside fixed-object CMF is applicable to single-vehicle crashes only. It is described using Equation 169.

$$CMF_{fo} = 1.0 + \frac{0.01D_{fo}}{\rho^{0.131(O_{fo})}}$$
(169)

The base condition for the roadside fixed-object CMF is absence of roadside objects. The change in the roadside fixed-object CMF with the increase in the offset distance for a segment with 50 roadside objects per mile is shown in Table 56.

Offset to Fixed Objects (O_{fo}) (ft)	CMF (Proposed)
0	1.50
2	1.38
5	1.26
10	1.13
15	1.07
20	1.04
25	1.02
30	1.01

Table 56. Roadside fixed-object CMF, six-or-more-lane arterials.

CHAPTER 6. PREDICTIVE MODELS FOR INTERSECTIONS OF URBAN AND SUBURBAN ARTERIALS WITH SIX OR MORE LANES

This chapter describes the activities undertaken to calibrate safety predictive models for both signalized and stop-controlled intersections of urban and suburban roadway arterials with six or more lanes. Each model consists of an SPF and a family of CMFs. The SPF is derived to estimate the crash frequency with specified design elements and operating conditions. The CMFs are used to adjust the SPF estimate whenever one or more elements or conditions deviate from those that are specified.

The calibrated safety predictive models were used to develop a safety predictive method for intersections of urban and suburban roadway arterials with six or more lanes. This method describes how to use the models to evaluate intersection safety, which may be influenced by road geometry, roadside features, and traffic volume. Collectively, the predictive models for intersections in this chapter address the following traffic control modes.

- Unsignalized three-leg intersection (stop control on minor-road approaches) (3ST).
- Signalized three-leg intersection (3SG).
- Unsignalized four-leg intersection (stop control on minor-road approaches) (4ST).
- Signalized four-leg intersection (4SG).

This chapter is divided into three sections. The first section provides details about the calibration data. The second section describes the calibration of the models to predict FI, PDO, vehicle-pedestrian, and vehicle-bicycle crash frequency. The third section provides a list of CMFs.

CALIBRATION DATA

The database assembly for these facility types focused on Texas, Michigan, and HSIS states California and Illinois. All crashes that were within 250 ft from the center of an intersection and coded as intersection or intersection-related were assigned to their respective intersection. If a particular crash was within 250 ft from more than one intersection, then it was assigned to the nearest intersection. The variables collected during database assembly are listed in Table 57 and Table 58.

Data Variable	Description
Intersection type	As defined by the HSM:
	3ST: Three-leg stop-controlled
	3SG: Three-leg signalized
	4ST: Four-leg stop-controlled
	4SG: Four-leg signalized
Roadway category	As defined below:
	$2 \times 2 =$ two-way street intersecting two-way street
	1×2 = one-way street intersecting two-way street
	1×1 = one-way street intersecting one-way street
Lighting	Presence of lighting at the intersection
Skew angle	Absolute value of the difference between 90 degrees and the intersection angle (i.e.,
	the acute or right angle between intersecting streets)
Area type	As defined below:
	Urban: If more than 50 percent of the land use within 250 ft of the center of
	intersection is commercial
	Suburban: If not urban

Table 57. Supplemental data collected for intersections as a whole.

Table 58. Supplemental data collected for individual streets (major and minor).

Data Variable	Description
Left-turn phasing (signalized	Type of left-turn phasing:
intersections)	0: Permitted
	1: Protected/permitted
	2: Protected only
Number of lanes	Two-way total number of traffic lanes (excluding left-turn and right-turn
	lanes added at the intersection)
Presence of left-turn lanes	Number of approaches (0,1, or 2) with exclusive left-turn lanes
Number of left-turn lanes	Two-way total number of exclusive left-turn lanes
Number of right-turn lanes	Two-way total number of exclusive right-turn lanes
Bicycle lanes	Number of approaches (0, 1, or 2) with bicycle lanes
Median type	Type of median:
	No median or TWLTL
	Raised curb
	Depressed median
Right-turn channelization	Number of approaches with channelized right-turn lanes
Offset left-turn lanes	Number of approaches with offset left-turn lanes (i.e., left-turn lanes
	separated from through traffic via raised curb, etc.)
Left-turn prohibition	Number of approaches from which left turns are prohibited for reasons
	other than one-way cross street or three-leg intersection
RTOR prohibition (signalized	Number of approaches from which RTOR is prohibited
intersections)	
U-turn prohibition	Number of approaches from which U-turns are prohibited via "No U-turn"
	signs

MODEL DEVELOPMENT—TWO-WAY STREET INTERSECTIONS

A two-way street intersection is defined as an intersection with traffic flow in both directions on the major and minor streets. The major street is defined as the intersecting street with the higher traffic volume, irrespective of the other geometric characteristics. The predicted average crash frequency for each site was computed using a predictive model. Each model represented the combination of an SPF and several CMFs. The SPF was used to estimate the average crash frequency for a generic site whose attributes were consistent with the SPF's stated base conditions. The CMFs were used to adjust the SPF estimate when the attributes of the subject site were not consistent with the base conditions.

Given the small sample size of single-vehicle crashes at intersections, separate models could not be developed for these crash types. The single-vehicle crashes were combined with multiplevehicle crashes, and a model was developed for total crashes. The following regression model form was used to predict the average crash frequency at an individual two-way street intersection.

Signalized Intersections:

$$N_{bi} = N_{spf int} \times CMF_{lg} \times CMF_{ltph} \times CMF_{rtor} \times CMF_{ut} \times CMF_{ch} \times CMF_{lanes}$$
(170)

Unsignalized Intersections:

$$N_{bi} = N_{spf int} \times CMF_{lg} \tag{171}$$

with,

$$N_{spf int} = n \times e^{b_0 + b_1 \ln(AADT_{Maj}) + b_2 \ln(AADT_{Min}) + b_{ca}I_{ca} + b_{il}I_{il} + b_{mi}I_{mi}}$$
(172)

$$CMF_{lg} = 1 - e^{b_{lg}} \times p_{ni} \tag{173}$$

$$CMF_{ltph} = e^{b_{pp} \times I_{pp} + b_{pt} \times I_{pt}}$$
(174)

$$CMF_{rtor} = (e^{b_{rtor}})^{n_{rtor}}$$
(175)

$$CMF_{ut} = (e^{b_{ut}})^{n_{ut}} \tag{176}$$

$$CMF_{ch} = e^{b_{ch} \times n_{ch}} \tag{177}$$

$$CMF_{lanes} = CMF_{lanes1} \times CMF_{lanes2}$$

$$\begin{bmatrix} b_{1} & (N_{1}-6) \\ P_{2} & (P_{2}-6) \end{bmatrix} \begin{bmatrix} b_{1} & (N_{2}-2) \\ P_{2} & (P_{2}-2) \end{bmatrix}$$
(178)

$$= \left[e^{b_{kanes}(N_{maj}-6)} P_{maj} + (1 - P_{maj}) \right] \times \left[e^{b_{kanes}(N_{min}-2)} P_{min} + (1 - P_{min}) \right]$$

$$P_{maj} = \frac{AADT_{maj}}{AADT_{maj}}$$
(179)

$$P_{maj} = \frac{maj}{AADT_{maj} + AADT_{min}}$$
(119)

$$P_{min} = \frac{MDT_{min}}{AADT_{maj} + AADT_{min}}$$
(180)

where,

N _{bi}	=	predicted annual average crash frequency.
n	=	number of years of crash data.
AADT _{Maj}	=	average annual daily traffic on the major street, veh/day.
AADT _{Min}	=	average annual daily traffic on the minor street, veh/day.
I _{ca}	=	California state indicator variable (= 1.0 if site is in California, 0.0 if not).
I_{il}	=	Illinois state indicator variable (= 1.0 if site is in Illinois, 0.0 if not).
I_{mi}	=	Michigan state indicator variable (= 1.0 if site is in Michigan, 0.0 if not).
CMF_{lg}	=	lighting CMF.
CMF _{ltph}	=	left-turn signal phasing CMF.
CMF _{rtor}	=	right-turn-on-red prohibition CMF.

CMF_{ut}	=	U-turn prohibition CMF.
CMF_{ch}^{av}	=	right-turn channelization CMF.
CMF _{lanes}	=	number of lanes CMF.
p_{ni}	=	proportion of total crashes for unlighted intersections that occur at night.
I_{pp}	=	major-street protected/permissive signal phasing indicator variable (= 1.0 if
PP		both approaches are protected/permissive, 0.0 otherwise).
I_{pt}	=	major-street protected signal phasing indicator variable (= 1.0 if both
pe		approaches are protected, 0.0 otherwise).
n_{rtor}	=	number of signalized intersection approaches for which right turn on red is
		prohibited.
n_{uturn}	=	number of signalized intersection approaches for which U-turn movements
		are prohibited.
n_{ch}	=	number of major-street approaches with right-turn channelization.
N _{maj}	=	number of lanes on the major street (excluding left-turn and right-turn lanes
		added at the intersection).
P_{maj}	=	proportion of annual average daily traffic volume on the major street.
N _{min}	=	number of lanes on the minor street (excluding left-turn and right-turn lanes
		added at the intersection).
P_{min}	=	proportion of annual average daily traffic volume on the minor street.
b_i	=	calibration coefficient for variable <i>i</i> .
·		

The predictive model calibration process consisted of the simultaneous calibration of total crash models for various intersection types. The simultaneous calibration approach was needed because several CMFs were common to three-leg and four-leg intersections.

Table 59 and Table 60 summarize the multivariate regression modeling results for two-way street intersections for FI and PDO crashes, respectively. Variables with corresponding p-values less than 0.05 can be considered statistically significant (at the significance level $\alpha = 0.05$). For those few variables where the p-value was greater than 0.05, it was decided that the variable was important to the model, and its trend was found to be consistent with previous research findings (even if the specific value was not known with a great deal of certainty when applied to this database).

Coefficient	Variable	Int. Control	Estimate	Std. Error	t-statistic	p-value
		3ST	-15.033	4.353	-3.45	0.0006
h	Intercent	3SG	-7.107	2.816	-2.52	0.0119
b_0	Intercept	4ST	-10.078	5.064	-1.99	0.0471
		4SG	-4.631	1.278	-3.62	0.0003
		3ST	1.087	0.416	2.62	0.0092
h	Major AADT	3SG	0.650	0.259	2.51	0.0124
b_1	Major AADT	4ST	0.579	0.480	1.20	0.2288
		4SG	0.358	0.114	3.13	0.0018
		3ST	0.532	0.176	3.03	0.0026
h	Minor AADT	3SG	0.156	0.104	1.50	0.1330
b_2		4ST	0.603	0.209	2.89	0.0040
		4SG	0.273	0.055	4.95	< 0.0001
b_{lg}	Lighting	All	-0.043	0.699	-0.06	0.9507
b _{pt}	Protected signal phasing	3SG/4SG	-0.285	0.106	-2.69	0.0074
b _{rtor}	Right-turn-on-red prohibition	3SG/4SG	-0.077	0.491	-0.16	0.8758
b_{ut}	U-turn prohibition	3SG/4SG	-0.038	0.064	-0.60	0.5486
b _{ch}	Right-turn channelization	3SG/4SG	0.218	0.069	3.16	0.0017
b _{lanes}	Number of lanes	3SG/4SG	0.194	0.056	3.45	0.0006
b _{ca}	Added effect of California	All	-1.335	0.099	-13.54	< 0.0001
b _{il}	Added effect of Illinois	All	-0.737	0.188	-3.92	< 0.0001
b_{mi}	Added effect of Michigan	All	-0.746	0.164	-4.54	< 0.0001
		3ST	1.536	0.586	2.62	0.0091
k	Inverse dispersion	3SG	1.927	0.612	3.15	0.0017
ĸ	parameter	4ST	1.667	0.652	2.56	0.0108
		4SG	1.771	0.166	10.69	< 0.0001
	Observations	549 intersectio	ons (3ST=55; 1	3SG=57; 4ST=	36; 4SG=401)	

 Table 59. Calibrated coefficients for FI crashes at two-way street intersections.

Coefficient	Variable	Int. Control	Estimate	Std. Error	t-statistic	p-value
		3ST	-14.973	4.113	-3.64	0.0003
h	Intercent	3SG	-5.073	3.662	-1.39	0.1665
b_0	Intercept	4ST	-12.011	5.666	-2.12	0.0345
		4SG	-3.772	1.591	-2.37	0.0181
		3ST	1.349	0.393	3.43	0.0006
b_1	Major AADT	3SG	0.472	0.337	1.40	0.1612
D_1	Major AAD I	4ST	0.672	0.541	1.24	0.2146
		4SG	0.268	0.143	1.88	0.0608
		3ST	0.153	0.156	0.98	0.3287
b_2	Minor AADT	3SG	0.135	0.119	1.14	0.2561
D_2		4ST	0.747	0.268	2.78	0.0056
		4SG	0.271	0.064	4.24	< 0.0001
b_{lg}	Lighting	All	-0.064	0.824	-0.08	0.9383
b_{pt}	Protected signal phasing	3SG/4SG	0.081	0.131	0.62	0.5385
b _{rtor}	Right-turn-on-red prohibition	3SG/4SG	-0.032	0.614	-0.05	0.9590
b_{ut}	U-turn prohibition	3SG/4SG	-0.033	0.077	-0.42	0.6726
b _{ch}	Right-turn channelization	3SG/4SG	0.269	0.089	3.04	0.0025
b_{lanes}	Number of lanes	3SG/4SG	0.296	0.064	4.64	< 0.0001
b_{ca}	Added effect of California	All	-1.242	0.118	-10.57	< 0.0001
b _{il}	Added effect of Illinois	All	0.558	0.235	2.38	0.0179
b _{mi}	Added effect of Michigan	All	0.000	0.000	0.00	0.0000
		3ST	1.342	0.449	2.99	0.0029
k	Inverse dispersion	3SG	1.004	0.258	3.89	0.0001
к	parameter	4ST	0.879	0.294	2.99	0.0029
		4SG	1.009	0.083	12.11	< 0.0001
	Observations	549 intersection	ons (3ST=55;	3SG=57; 4ST=	36; 4SG=401)	

Table 60. Calibrated coefficients for PDO crashes at two-way street intersections.

Indicator variables were included for the states of California, Illinois, and Michigan. All the coefficients were found to be statistically significant but with different magnitude and signs. The negative coefficient for all three states means that these states experience fewer FI crashes than Texas for the same conditions and exposure. The trend could not be explained by difference in intersection design among the states. It is likely that the differences between states are due to unobserved variables such as vertical grade, signing, pavement condition, weather, reporting accuracy, and speed limit.

The NLMIXED procedure in the SAS software was used to estimate the proposed model coefficients. This procedure was used because the proposed predictive model is both nonlinear and discontinuous. The log-likelihood function for the NB distribution was used to determine the best-fit model coefficients.

The relationship between crash frequency (FI and PDO crashes) and traffic demand for base conditions, as obtained from the calibrated models, is illustrated in Figure 27 for three-leg stop-controlled intersections.

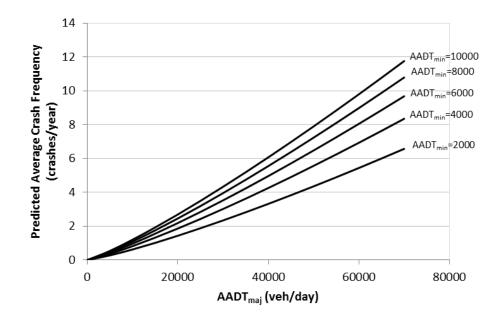


Figure 27. Graphical form of the intersection SPF for crashes on three-leg stop-controlled intersections (3ST).

The relationship between crash frequency (FI and PDO crashes) and traffic demand for base conditions, as obtained from the calibrated models, is illustrated in Figure 28 for three-leg signalized intersections.

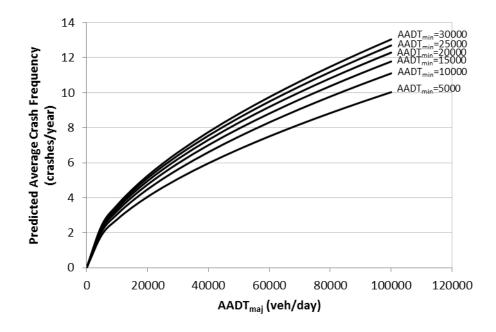


Figure 28. Graphical form of the intersection SPF for crashes on three-leg signalized intersections (3SG).

The relationship between crash frequency (FI and PDO crashes) and traffic demand for base conditions, as obtained from the calibrated models, is illustrated in Figure 29 for four-leg stop-controlled intersections.

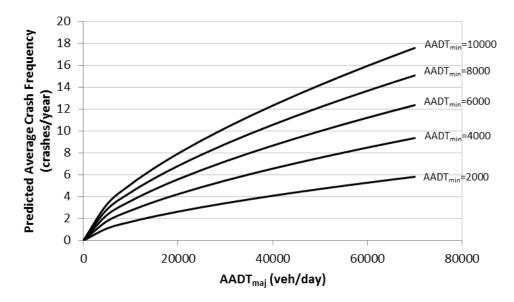


Figure 29. Graphical form of the intersection SPF for crashes on four-leg stop-controlled intersections (4ST).

The relationship between crash frequency (FI and PDO crashes) and traffic demand for base conditions, as obtained from the calibrated models, is illustrated in Figure 30 for four-leg signalized intersections.

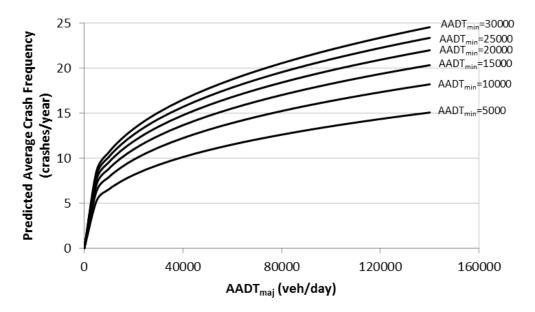


Figure 30. Graphical form of the intersection SPF for crashes on four-leg signalized intersections (4SG).

The proportions in Table 61 are used to separate total crashes into components by crash type for intersections with six-or-more-lane streets.

comsion type:									
Pr	Proportion of Crashes by Severity Level for Specific Intersection Types								
3ST		3SG		4	4ST		4SG		
FI	PDO	FI	PDO	FI	PDO	FI	PDO		
0.094	0.154	0.120	0.189	0.079	0.098	0.083	0.148		
0.043	0.023	0.056	0.034	0.030	0.012	0.093	0.046		
0.764	0.629	0.676	0.554	0.806	0.707	0.746	0.552		
0.052	0.120	0.063	0.149	0.055	0.122	0.038	0.171		
0.021	0.012	0.028	0.000	0.024	0.024	0.029	0.022		
0.026	0.062	0.056	0.074	0.006	0.037	0.012	0.061		
	FI 3 0.094 0.043 0.764 0.052 0.021 0.021	3ST FI PDO 0.094 0.154 0.043 0.023 0.764 0.629 0.052 0.120 0.021 0.012	Proportion of Crashes b 3ST 3 FI PDO FI 0.094 0.154 0.120 0.043 0.023 0.056 0.764 0.629 0.676 0.052 0.120 0.063 0.021 0.012 0.028	Proportion of Crashes by Severity 3ST 3SG FI PDO FI PDO 0.094 0.154 0.120 0.189 0.043 0.023 0.056 0.034 0.764 0.629 0.676 0.554 0.052 0.120 0.063 0.149 0.021 0.012 0.028 0.000	Proportion of Crashes by Severity Level for S 3ST 3SG 2 FI PDO FI PDO FI 0.094 0.154 0.120 0.189 0.079 0.043 0.023 0.056 0.034 0.030 0.764 0.629 0.676 0.554 0.806 0.052 0.120 0.063 0.149 0.055 0.021 0.012 0.028 0.000 0.024	Proportion of Crashes by Severity Level for Specific Intrastructure 3SG 4ST 3SG 4ST FI PDO FI PDO FI PDO 0.094 0.154 0.120 0.189 0.079 0.098 0.043 0.023 0.056 0.034 0.030 0.012 0.764 0.629 0.676 0.554 0.806 0.707 0.052 0.120 0.063 0.149 0.055 0.122 0.021 0.012 0.028 0.000 0.024 0.024	Proportion of Crashes by Severity Level for Specific Intersection 7 3SG 4ST 3SG FI PDO FI PDO FI PDO FI 0.094 0.154 0.120 0.189 0.079 0.098 0.083 0.043 0.023 0.056 0.034 0.030 0.012 0.093 0.764 0.629 0.676 0.554 0.806 0.707 0.746 0.052 0.120 0.063 0.149 0.055 0.122 0.038 0.021 0.012 0.028 0.000 0.024 0.024 0.029		

 Table 61. Distribution of total vehicle collisions for intersections with six or more lanes by collision type.

Source: HSIS data for California (2006-2010).

VEHICLE-PEDESTRIAN COLLISIONS

The HSM provides a model to estimate the number of vehicle-pedestrian crashes at signalized intersections (i.e., 3SG and 4SG), which is described using the Equations 181 and 182 (Equations 12–28 and 12–29, respectively, in the HSM).

$$N_{pedi} = N_{pedbase} \times CMF_{1p} \times CMF_{2p} \times CMF_{3p}$$
(181)

$$N_{pedbase} = \exp(a + b \times \ln(AADT_{total}) + c \times \ln\left(\frac{AADT_{min}}{AADT_{maj}}\right) + d \times \ln(PedVol) + e \times n_{lanesx})$$
(182)

where,

$N_{pedbase}$	=	predicted number of vehicle-pedestrian collisions per year for base
-		conditions at signalized intersections.
$AADT_{total}$	=	sum of the average daily volumes (veh/day) for the major and minor roads
		$(=AADT_{maj}+AADT_{min}).$
PedVol	=	sum of daily pedestrian volumes (ped/day) crossing all intersection legs.
n _{lanesx}	=	maximum number of traffic lanes crossed by a pedestrian in any crossing
		maneuver at the intersection considering the presence of refuge islands.
CMF_{1p}	=	CMF for bus stops (HSM Table 12-28).
CMF_{2p}	=	CMF for schools (HSM Table 12-29).
CMF_{3p}	=	CMF for alcohol sales establishment (HSM Table 12-30).
a, b, c, d, e	=	regression coefficients (HSM Table 12-14).

According to NCHRP 129: Phase III (Harwood et al., 2008), the above model was developed using data from a total of 1,883 signalized intersections—1,532 in Toronto and 351 in Charlotte, North Carolina—which did not include any one-way leg. The HSM model accounts for the vehicular and pedestrian traffic as well as the maximum length that a pedestrian may be exposed to the vehicular traffic (through n_{lanesx}). Based on the summary statistics in Table 13 of NCHRP 129: Phase III, the data used for development of the HSM model included intersections with number of lanes (n_{lanesx}) of up to nine, indicating that the application of the model may not be limited to intersections of arterials with fewer than six lanes (as is the case in the current HSM Chapter 12). Nonetheless, due to unavailability of the original data for development of the HSM model, the research team wanted to verify the applicability of the HSM model for intersections of six-or-more-lane arterials using field data.

A sample of 30 signalized intersections in California was selected for data collection. Out of those 30, five intersections are three-leg and 25 intersections are four-leg. The sites were selected along three corridors with six through lanes: CA-82 and US-101 in the San Francisco Bay Area and CA-187 in Los Angeles. Chapter 3 of Harwood et al. (2008) presents a summary of the collected data used for validation of the HSM model for vehicle-pedestrian collisions at signalized intersections. Two-hour pedestrian counts were collected at the selected intersections by Traffic Research & Analysis Inc. (TRA Inc.). Eighteen-hour (6:00 AM to 12:00 AM) pedestrian counts were collected at five sites, one along each of the corridors in California. The 18-hour counts were used to compute adjustments factors needed to convert two-hour counts to daily pedestrian volumes. It was assumed that pedestrian activity during the remaining six hours (between 12:00 AM and 6:00 AM) was negligible.

The major- and minor-street AADTs were determined using California HSIS data traffic volume data. The variable n_{lanesx} was determined using Google Earth aerial imagery. The presence of schools and number of bus stops and alcohol sales establishments within 1000 ft of the intersection were recorded for each site using Google Earth aerial imagery and Street View. The team followed the HSM instructions to determine these variables. The CMFs were determined using the respective tables in the HSM.

The observed number of vehicle-pedestrian collisions at the selected intersections was determined using the HSIS data for California. A vehicle-pedestrian collision was assigned to an intersection if it occurred within 250 ft of the intersection center and was coded as intersection-related. Where a collision occurred between two adjacent intersections that were less than 500 ft apart, the collision was assigned to the nearest intersection. Only fatal or injury collisions were considered in the analysis (consistent with the HSM).

Unfortunately, the small number of crashes observed at these sites (only 24 crashes) hindered the research team from performing a meaningful test of hypotheses for applicability of the HSM model because only four groups of observations with an expected crash frequency greater than 5 could be created. With this insufficient sample size, the chi-squared test that was used to perform the model validation might yield an inaccurate inference. Nonetheless, the research team concluded that the HSM model for vehicle-pedestrian collisions is applicable because of the following reasons:

- The HSM model controls for the significant traffic and exposure variables.
- The HSM model has been developed using a large sample from intersections with a wide range of lane counts that includes intersections of streets with six or more lanes as a subset.

For 3ST and 4ST, the number of vehicle-pedestrian collisions per year for an intersection is estimated using Equation 183.

$$N_{pedi} = N_{bi} \times f_{pedi} \tag{183}$$

where,

N_{bi} =	predicted average crash frequency of an individual intersection (excluding
	vehicle-pedestrian and vehicle-bicycle collisions).

$$N_{pedi}$$
 = predicted average crash frequency of vehicle-pedestrian collisions for an intersection.

 f_{pedi} = pedestrian crash adjustment factor.

The pedestrian crash adjustment factor is estimated by dividing the vehicle-pedestrian crashes by the total intersection crashes (excluding vehicle-pedestrian and vehicle-bicycle collisions) for each intersection type. Table 62 presents the values of f_{pedi} . All vehicle-pedestrian collisions are considered FI crashes. The HSM adjustment factors (from HSM Table 12-16) are also displayed for comparison.

The adjustment factors are developed using Equation 184.

$$f_{pedi} = \frac{N_{pedi}}{N_{bi}} \tag{184}$$

where,

$$N_{pedi}$$
 = crash frequency of vehicle-pedestrian collisions for an individual intersection.
 N_{bi} = crash frequency of an individual intersection (excluding vehicle-pedestrian and vehicle-bicycle collisions).

Intersection Type	Number of Intersections	Total Pedestrian Crashes	Total MV and SV Crashes ^a	f _{pedi} (proposed)	f _{pedi} (HSM)
3ST	55	16	312	0.051	0.021
4ST	36	10	205	0.049	0.022

Table 62. Pedestrian crash adjustment factors: two-way street intersections.

^aExcludes pedestrian and bicycle crashes.

VEHICLE-BICYCLE COLLISIONS

The number of vehicle-bicycle collisions per year for an intersection is estimated using Equation 185.

$$N_{bikei} = N_{bi} \times f_{bikei} \tag{185}$$

where,

N_{bi} =	= predicted average crash frequency of an individual in	tersection (excluding vehicle-
	pedestrian and vehicle-bicycle collisions).	

- N_{bikei} = predicted average crash frequency of vehicle-bicycle collisions for an intersection.
- f_{bikei} = bicycle crash adjustment factor.

The bicycle crash adjustment factor is estimated by dividing the vehicle-bicycle crashes by the sum of single-vehicle and multiple-vehicle crashes for each intersection type. Table 63 presents the values of f_{bikei} . All vehicle-bicycle collisions are considered FI crashes. The HSM adjustment factors (from HSM Table 12-17) are also displayed for comparison.

The adjustment factors are developed using Equation 186.

$$f_{bikei} = \frac{N_{bikei}}{N_{bi}} \tag{186}$$

where,

$$N_{bikei}$$
 = crash frequency of vehicle-bicycle collisions for an individual intersection.
 N_{bi} = crash frequency of an individual intersection (excluding vehicle-pedestrian and vehicle-bicycle collisions).

Intersection Type	Number of Intersections	Total Bicycle Crashes	Total MV and SV Crashes ^a	f _{bikei} (proposed)	f _{bikei} (HSM)
3ST	56	15	312	0.048	0.016
3SG	58	22	765	0.029	0.011
4ST	36	8	205	0.039	0.018
4SG	402	243	13,044	0.019	0.015

 Table 63. Bicycle crash adjustment factors: two-way street intersections.

^a Excludes pedestrian and bicycle crashes.

CMFS FOR 2×2 INTERSECTIONS

Several CMFs were calibrated in conjunction with the SPFs. All of them were calibrated using FI crash data. Collectively, they describe the relationship between various geometric factors and crash frequency. These CMFs are described in this section and, where possible, compared with the findings from previous research for model validation. Equations 133–140 can be used to compute the standard errors of the CMFs.

Lighting CMF

The base condition for lighting is the absence of intersection lighting. The lighting CMF is described using Equation 187.

$$CMF_{lg} = 1 - e^{-0.0432} \times p_{ni} = 1 - 0.96 \times p_{ni}$$
(187)

This CMF is similar to the CMF presented in the HSM ($CMF_{lg} = 1 - 0.38 \times p_{ni}$). However, the proposed coefficient in this research is highly insignificant, and thus the research team recommends using the CMF in the HSM. This CMF applies to total intersection crashes (not including vehicle-pedestrian and vehicle-bicycle crashes) and is applicable to both signalized and stop-controlled intersections. Table 64 presents default values for the nighttime crash proportion, p_{ni} .

Intersection Type	Proportion of Crashes That Occur at Night, p_{ni}				
3ST	0.238				
4ST	0.229				
3SG and 4SG	0.235				

 Table 64. Nighttime crash proportions for unlighted intersections.

Intersection Left-Turn Signal Phasing CMF

Types of left-turn signal phasing considered include permissive, protected, protected/permissive, and permissive/protected. Protected/permissive operation is also referred to as a leading left-turn signal phase; permissive/protected operation is also referred to as a lagging left-turn signal phase. Initially, an attempt was made to capture the safety effect of left-turn signal phasing by individual approach. However, the coefficient was highly insignificant, so an indicator variable was created to state if both approaches on the major street have the same phasing. That is, this variable takes the value of 1 if both approaches are protected/permitted or protected only, and 0 otherwise. The CMF values are presented in Table 65. The CMFs in the HSM are also provided for comparison. Note that the CMF is a function of number of approaches in the HSM. The base condition for this CMF is permissive left-turn signal phasing. This CMF applies to total intersection crashes (not including vehicle-pedestrian and vehicle-bicycle collisions) and is applicable only to signalized intersections. The CMF is determined using Equation 188.

$$CMF_{ltph} = e^{0 \times I_{pp} - 0.285 \times I_{pt}}$$

$$\tag{188}$$

Table 65. CMF for major-street left-turn signal phasing.

Type of Left-Turn Signal Phasing	CMF			
	HSM Ch. 12 (both major approaches)	Proposed		
Permissive	$1.00^2 = 1.00$	1.00		
Protected/Permissive	$0.99^2 = 0.98$	1.00		
Protected	$0.94^2 = 0.88$	0.74		

RTOR CMF

The base condition for the RTOR CMF is permitting an RTOR at all approaches to a signalized intersection. The CMF is determined using Equation 189.

$$CMF_{rtor} = (e^{-0.0768})^{n_{rtor}} = (0.93)^{n_{rtor}}$$
 (189)

This CMF is closer to the CMF presented in the HSM ($CMF_{rtor} = 0.98^{(n_{rtor})}$). However, the proposed coefficient in this research is highly insignificant, and thus the research team recommends using the CMF in the HSM. This CMF applies to total intersection crashes (not including vehicle-pedestrian and vehicle-bicycle collisions) and is applicable only to signalized intersections.

U-turn Prohibition CMF

The base condition for the U-turn prohibition CMF is permitting a U-turn movement at both approaches on the major street of an intersection. The CMF is determined using Equation 190.

$$CMF_{ut} = (e^{-0.0385})^{n_{ut}} = 0.96^{(n_{ut})}$$
(190)

This CMF applies to total intersection crashes (not including vehicle-pedestrian and vehiclebicycle collisions) and is applicable only to signalized intersections. When a U-turn is prohibited at one approach, a reduction of crashes by 4 percent can be observed. If a U-turn is prohibited at both approaches on the major street of a four-leg intersection, then an 8 percent reduction in crashes can be expected. This is mainly because the conflict between the U-turning vehicles and vehicles coming straight or turning right from other streets will be reduced.

Right-Turn Channelization CMF

The base condition for CMF_{ut} is absence of right-turn channelization at both approaches on the major street of an intersection. The CMF is determined using Equation 191.

$$CMF_{ch} = e^{(0.2175*n_{ch})} \tag{191}$$

This CMF applies to the total intersection crashes (not including vehicle-pedestrian and vehiclebicycle collisions) and is applicable only to signalized intersections. The proposed CMF suggests that the right-turn channelization at both approaches on the major street of an intersection would be associated with a 24 percent increase in crashes. Bonneson and Pratt (2009) developed a CMF and found that installation of right-turn channelization on both approaches on the major street of a four-leg signalized intersection would be associated with a 20 percent increase in FI crashes. Bauer and Harwood (1998) derived a CMF value of 1.35, suggesting a 35 percent increase in crashes, for the provision of right-turn channelization at all approaches of a four-leg stopcontrolled intersections. They stated that this finding seems counterintuitive, in that provision of right-turn channelization should be associated with a decrease in crashes. Bonneson and Pratt (2009) suggested that the increase in crashes may be due to the higher speeds associated with a free right-turn movement at a right-turn channel, compared to the slower speeds required to turn from a conventional right-turn lane. Another possible factor is the stopping of turning vehicles at the downstream portion of the right-turn channel while the drivers are waiting for a safe gap to merge into the receiving lane. Drivers waiting in this manner may become involved in rear-end crashes if other right-turning drivers do not have adequate sight distance to see them in the stopped position.

Number of Lanes CMF

The number of lanes CMF is determined using Equation 192.

$$CMF_{lanes} = \left[e^{0.194(N_{maj}-6)}P_{maj} + (1-P_{maj})\right] \times \left[e^{0.194(N_{min}-2)}P_{min} + (1-P_{min})\right]$$
(192)

with,

$$P_{maj} = \frac{AADT_{maj}}{AADT_{maj} + AADT_{min}}$$
(193)

$$P_{\min} = \frac{AADT_{\min}}{AADT_{maj} + AADT_{\min}}$$
(194)

The base condition for the number of lanes CMF is six lanes on the major street and two lanes on the minor street (excluding left-turn and right-turn lanes added at the intersection). Table 66 presents the relationship between number of lanes and FI crash frequency at signalized intersections when the volume on the minor street is equal to one-half the volume on the major street. This CMF applies to all intersection crashes (not including vehicle-pedestrian and vehicle-bicycle collisions) and is applicable only to signalized intersections. The CMF indicates that the increase in the number of lanes at a signalized intersection is associated with an increase in the frequency of crashes. The number of lanes in the cross-section tends to increase the size of the intersection conflict area, which could increase the exposure of vehicles to conflict with crossing movements.

Number of Major-Street Lanes	CMF Based on Number of Minor-Street Lanes					
	2	3	4	5	6	
6	1.00	1.07	1.16	1.26	1.39	
7	1.14	1.22	1.32	1.44	1.59	
8	1.32	1.41	1.52	1.66	1.83	

Table 66. CMF for number of lanes at a signalized intersection.

Note: Values based on minor-street volume equal to one-half of the major-street volume.

CHAPTER 7. PREDICTIVE MODELS FOR URBAN AND SUBURBAN ONE-WAY ARTERIAL ROADWAY SEGMENTS

This chapter describes the activities undertaken to calibrate safety predictive models for urban and suburban one-way arterial roadway segments. Each model consists of an SPF and a family of CMFs. The SPF is derived to estimate the crash frequency with specified design elements and operating conditions. The CMFs are used to adjust the SPF estimate whenever one or more elements or conditions deviate from those that are specified.

The calibrated safety predictive models were used to develop a one-way arterial roadway segment safety predictive method. This method describes how to use the models to evaluate safety of one-way arterials, which may be influenced by road geometry, roadside features, and traffic volume. Collectively, the predictive models for roadway segments in this chapter address the following facilities:

- Two-lane one-way arterials (2O).
- Three-lane one-way arterials (3O).
- Four-lane one-way arterials (4O).

This chapter is divided into three sections. The first section provides details about the calibration data. The second section describes the calibration of the models to predict FI, PDO, vehicle-pedestrian, and vehicle-bicycle crash frequency. The third section provides a list of CMFs.

CALIBRATION DATA

For one-way arterial segments, a new (unique) homogenous segment begins at the center of each intersection and where there is a change in at least one of the following characteristics of the roadway:

- AADT (vehicles per day).
- Number of through lanes.
- Right shoulder width.
- Speed category.

The database assembly for these type of arterials focused on Texas, Oregon, and two HSIS states: California and Illinois. The data acquired from these databases are summarized in Table 67 and Table 68 for the electronic and supplemental data, respectively.

Data Variable	Description
AADT	Annual average daily traffic volume (veh/day) during the study period
Segment length	Length of the homogenous segment (mi) in the state database
Lane width	Average width (ft) of the through lanes
Left shoulder width	Average width of the left shoulder (ft) along the segment
Right shoulder width	Average width of the right shoulder (ft) along the segment

Table 67. Variables acquired from state databases for one-way arterials.

Data Variable	Description
Bus or HOV lane presence	Presence of bus-only or HOV lanes.
Bicycle lane presence	Presence of bicycles lanes.
Sidewalks	Presence of sidewalks along each side of the roadway segment:
	0: No sidewalk.
	1: Sidewalk on one side of the roadway.
	2: Sidewalks on both sides of the roadway.
Lighting	Presence of lighting along each side of the roadway segment:
	0: No lighting.
	1: Lighting on one side of the roadway.
	2: Lighting on both sides of the roadway.
Parallel parking proportion	Proportion of the length of segment with parallel parking (considered in both
	directions of travel for two-way streets).
Angle parking proportion	Proportion of the length of segment with angle parking (considered in both
	directions of travel for two-way streets).
Speed limit	Posted speed limit (mph) as observed from speed limit signs.
Railroad crossings	Number of railroad-highway crossings within the limits of the roadway segment.
Driveway density	Density of driveways along the length of the segment (driveways/mile), classified
	consistently with the HSM Chapter 12 driveway categories:
	Major commercial driveways.
	Minor commercial driveways.
	Major industrial/institutional driveways.
	Minor industrial/institutional driveways.
	Major residential driveways.
	Minor residential driveways.
	Other driveways.
Roadside fixed-object	Density of fixed roadside objects (objects/mile) within 30 ft of the edge of traveled
density	way (in both directions of travel for two-way streets). In absence of marked edge
	lines, edge of traveled way was considered to be 2.0 ft from the face of the curb.
	Fixed objects were counted using the same method as required for application of the
	HSM CMF for roadside fixed objects (described on pages 12–41 of the HSM).
Roadside fixed-object offset	Average distance from the edge of the traveled way to the roadside fixed objects (as
	defined above).
Left curb proportion	Proportion of the length of the segment with left-side curb present.
Right curb proportion	Proportion of the length of the segment with right-side curb present.

Table 68. Supplemental data collected for one-way arterials.

MODEL DEVELOPMENT—ONE-WAY ARTERIALS

The following regression model form was used to predict the average crash frequency on an individual one-way roadway segment.

$$N_j = (N_{m\nu}I_{m\nu} + N_{s\nu}I_{s\nu}) \times CMF_{rsw}$$
⁽¹⁹⁵⁾

with,

$$N_{mv} = N_{spfmv} \times CMF_{pk_par} \times CMF_{pk_ang} \times CMF_{dwc_mj} \times CMF_{dw_mn}$$
(196)

$$N_{sv} = N_{spfsv} \times CMF_{fo} \tag{197}$$

$$\begin{split} N_{sv} &= N_{spfsv} \times CMF_{fo} \\ N_{spfmv} &= L \times n \times e^{b_{mv} + b_{mv1} \ln(AADT) + b_{ca}I_{ca} + b_{il}I_{il} + b_{or}I_{or}} \end{split}$$
(198)

$$N_{spfsv} = L \times n \times e^{b_{sv} + b_{sv1} \ln(AADT) + b_{ca}I_{ca} + b_{il}I_{il} + b_{or}I_{or}}$$
(199)

$$CMF_{rsw} = e^{b_{rsw}(W_{rs} - 4)}$$
(200)

$$CMF_{rsw} = e^{b_{rsw}(W_{rs}-4)}$$
 (200)

$$CMF_{pk_par} = 1 + p_{pk_par} \times (b_{pk_par} - 1.0)$$
(201)

$$CMF_{pk_{pk_qan}} = 1 + p_{pk_{pk_qan}} \times (b_{pk_{pk_qan}} - 1.0)$$
(202)

$$IF_{pk_ang} = 1 + p_{pk_ang} \times (b_{pk_ang} - 1.0)$$
(202)

$$CMF_{dwc_mj} = e^{b_{dwc_mj}(n_{dwc_mj}-2)}$$
(203)

$$CMF_{dw_mn} = e^{b_{dw_mn}(n_{dw_mn}-10)}$$
 (204)

$$0.01D_{fo}$$
 (205)

$$CMF_{fo} = 1.0 + \frac{0.01D_{fo}}{e^{b_{fo}(O_{fo})}}$$
(205)

where,

N_j	=	predicted annual average crash frequency for model j ($j=mv$, sv).
N_{mv}		predicted annual average multiple-vehicle crash frequency.
N_{sv}		predicted annual average single-vehicle crash frequency.
I_{mv}	=	crash indicator variable (= 1.0 if multiple-vehicle crash data, 0.0
		otherwise).
I_{sv}	=	crash indicator variable (= 1.0 if single-vehicle crash data, 0.0 otherwise).
L	=	segment length, mi.
n		number of years of crash data.
AADT	=	average annual daily traffic, veh/day.
I _{ca}	=	California state indicator variable (= 1.0 if site is in California, 0.0 if not).
I _{il}		Illinois state indicator variable (= 1.0 if site is in Illinois, 0.0 if not).
Ior	=	Oregon state indicator variable (= 1.0 if site is in Oregon, 0.0 if not).
CMF _{rsw}		right shoulder width CMF.
CMF_{pk_par}	=	on-street parallel parking CMF.
CMF_{pk_ang}	=	on-street angle parking CMF.
CMF _{dwc_mj}	=	major commercial driveways CMF.
CMF _{dwi_mj}	=	major industrial driveways CMF.
CMF _{dw_mn}	=	minor driveways CMF.
$CM\bar{F_{bar}}$	=	median barrier CMF.
CMF_{fo}		roadside fixed-object CMF.
W_{rs}	=	right shoulder width, ft.
p_{pk_par}	=	proportion of curb length with on-street parallel parking = $(0.5 L_{pk_par}/L)$.
p_{pk_ang}		proportion of curb length with on-street angle parking = $(0.5 L_{pk ang}/L)$.
L_{pk_par}		sum of curb length with on-street parallel parking for both sides of road
pn_pu		combined, mi.
L_{pk_ang}	=	sum of curb length with on-street angle parking for both sides of road
ph_ang		combined, mi.
n _{dwc mi}	=	major commercial driveway density, driveways/mile.
n_{dw_mn}	=	minor driveway density, driveways/mile.
O_{fo}	=	roadside fixed-object offset, ft.
D _{fo}		roadside fixed-object density, fixed objects/mile.
p_{fo}		roadside fixed-object collisions as a proportion of total crashes.
b_i	=	calibration coefficient for variable <i>i</i> .
D_i	_	

The inverse dispersion parameter K (which is the inverse of the overdispersion parameter k) is allowed to vary with the segment length. The inverse dispersion parameter is calculated using Equation 206.

$$K = L \times e^{\delta, j}; \ j = mv, sv \tag{206}$$

where,

K = inverse dispersion parameter. $\delta =$ calibration coefficient for inverse dispersion parameter.

The predictive model calibration process consisted of the simultaneous calibration of multiplevehicle and single-vehicle crash models and CMFs using the aggregate model represented by the equations above. The simultaneous calibration approach was needed because the right shoulder CMF was common to multiple-vehicle and single-vehicle crash models. The database assembled for calibration included two replications of the original database. The dependent variable in the first replication was set equal to the multiple-vehicle crashes. The dependent variable in the second replication was set equal to the single-vehicle crashes.

Table 69 and Table 70 summarize the modeling results for one-way arterial segments for FI and PDO, respectively. The variables with the corresponding p-values less than 0.05 can be considered statistically significant (at the significance level $\alpha = 0.05$). For those few variables where the p-value was greater than 0.05, it was decided that the variable was important to the model, and its trend was found to be consistent with previous research findings (even if the specific value was not known with a great deal of certainty when applied to this database).

Coefficient	Variable	Facility	Estimate	Std. Error	t-statistic	p-value
		20	-11.4766	0.7694	-14.92	< 0.0001
b_{mv}	Intercept for MV crashes	30	-11.4871	0.7999	-14.36	< 0.0001
		40	-11.7375	0.8067	-14.55	< 0.0001
b_{mv1}	AADT on MV crashes	All	1.2559	0.0839	14.98	< 0.0001
		20	-5.3153	1.1314	-4.70	< 0.0001
b_{sv}	Intercept for SV crashes	30	-4.9291	1.1859	-4.16	< 0.0001
		40	-4.9291	1.1859	-4.16	< 0.0001
b_{sv1}	AADT on SV crashes	All	0.4179	0.1259	3.32	0.0009
b_{rsw}	Right shoulder width	All	-0.0201	0.0098	-2.05	0.0403
	On-street parallel parking	20	1.1116	0.2515	4.42	< 0.0001
b_{pk_par}	on MV crashes	30/40	1.3586	0.3087	4.40	< 0.0001
b _{pk_ang}	On-street angle parking on MV crashes	20/30	4.3644	2.4706	1.77	0.0774
b _{dwc_mj}	Major commercial driveway density on MV crashes	20/30	0.0177	0.0113	1.56	0.1186
b _{dw_mn}	Minor driveway density on MV crashes	20/30	0.0046	0.0026	1.76	0.0793
b_{fo}	Roadside fixed-object density on SV crashes	All	0.0938	0.0838	1.12	0.2629
b _{il}	Added effect of Illinois	All	-0.1732	0.0803	-2.16	0.0311
	To see the sector	20	2.1203	0.1659	12.78	< 0.0001
δ_{mv}	Inverse dispersion parameter for MV crashes	30	2.5670	0.1931	13.29	< 0.0001
	parameter for wiv crashes	40	2.4619	0.4102	6.00	< 0.0001
6		20	1.1900	0.3160	3.77	0.0002
	Inverse dispersion	30	1.9423	0.4244	4.58	< 0.0001
δ_{sv}	parameter for SV crashes	40	1.9423	0.4244	4.58	< 0.0001
	Observations	1709 segmer	ts (20=1037; 3	30=536; 40=1	36)	

Table 69. Calibrated coefficients for FI crashes on one-way arterials.

Coefficient	Variable	Facility	Estimate	Std. Error	t-statistic	p-value
b_{mv}		20	-8.2598	0.5140	-16.07	< 0.0001
	Intercept for MV crashes	30	-8.2735	0.5376	-15.39	< 0.0001
	_	40	-8.6803	0.5443	-15.95	< 0.0001
b_{mv1}	AADT on MV crashes	All	1.0194	0.0569	17.92	< 0.0001
		20	-4.7133	0.7891	-5.97	< 0.0001
b_{sv}	Intercept for SV crashes	30	-4.7189	0.8323	-5.67	< 0.0001
	_	40	-4.7189	0.8323	-5.67	< 0.0001
b_{sv1}	AADT on SV crashes	All	0.4269	0.0885	4.82	< 0.0001
b _{rsw}	Right shoulder width	All	-0.0047	0.0076	-0.61	0.5390
	On-street parallel parking	20	1.2587	0.1695	7.42	< 0.0001
b_{pk_par}	on MV crashes	30/40	1.9568	0.3013	6.49	< 0.0001
b_{pk_ang}	On-street angle parking on MV crashes	20/30	4.2811	1.5850	2.70	0.0069
b _{dwc_mj}	Major commercial driveway density on MV crashes	20/30	0.0303	0.0100	3.02	0.0025
b _{dw_mn}	Minor driveway density on MV crashes	20/30	0.0015	0.0019	0.76	0.4450
b _{fo}	Roadside fixed-object density on SV crashes	All	0.2545	0.1436	1.77	0.0764
b _{il}	Added effect of Illinois	All	0.7450	0.0580	12.85	< 0.0001
	Inverse dispersion	20	2.4635	0.0955	25.80	< 0.0001
δ_{mv}	parameter for MV	30	2.4531	0.0952	25.77	< 0.0001
	crashes	40	2.5184	0.2164	11.64	< 0.0001
	Inverse dispension	20	2.1203	0.2287	9.27	< 0.0001
δ_{sv}	Inverse dispersion	30	1.9771	0.2265	8.73	< 0.0001
	parameter for SV crashes	40	1.9771	0.2265	8.73	< 0.0001
	Observations	1709 segmen	nts (20=1037;	30=536; 40=	136)	

 Table 70. Calibrated coefficients for PDO crashes on one-way arterials.

Indicator variables were included for the states of California, Oregon, and Illinois. However, only the coefficient for Illinois was statistically significant. This means that the magnitude of the crashes between Texas, Oregon, and California are about the same, but Illinois experiences fewer FI crashes and more PDO crashes for the same conditions and exposure. It is likely that the differences between states are due to unobserved variables such as vertical grade, signing, pavement condition, weather, reporting accuracy, and speed limit.

The NLMIXED procedure in the SAS software was used to estimate the proposed model coefficients. This procedure was used because the proposed predictive model is both nonlinear and discontinuous. The log-likelihood function for the NB distribution was used to determine the best-fit model coefficients.

Figure 31 and Figure 32 show the relationship between the number of FI crashes and traffic flow for two, three, and four lanes for multi-vehicle and single-vehicle crashes on one-way arterials, respectively. Figure 31 shows that four-lane one-way arterials experience fewer multi-vehicle crashes than two- and three-lane arterials. On the other hand, Figure 32 shows that four-lane and three-lane one-way arterials experience more single-vehicle crashes than two-lane one-way arterials.

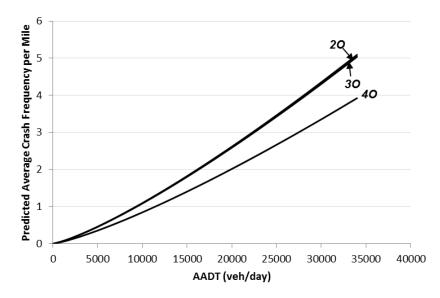


Figure 31. Graphical form of the SPF for FI multiple-vehicle collisions, one-way arterials.

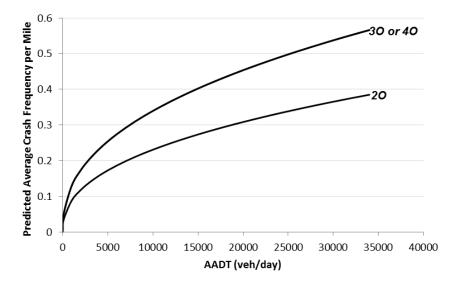


Figure 32. Graphical form of the SPF for FI single-vehicle collisions, one-way arterials.

Figure 33 and Figure 34 show the relationship between the number of PDO crashes and traffic flow for two, three, and four lanes for multi-vehicle and single-vehicle crashes on one-way arterials, respectively. Figure 33 shows that four-lane one-way arterials experience fewer multi-vehicle PDO crashes than two- and three-lane arterials. On the other hand, Figure 34 shows that four-lane one-way arterials experience more single-vehicle PDO crashes than two- or three-lane one-way arterials.

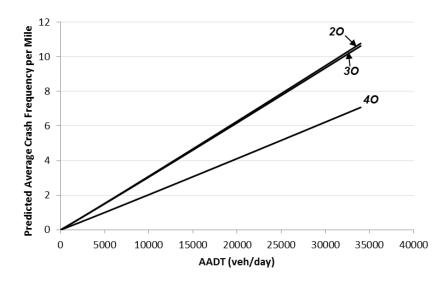


Figure 33. Graphical form of the SPF for PDO multiple-vehicle collisions, one-way arterials.

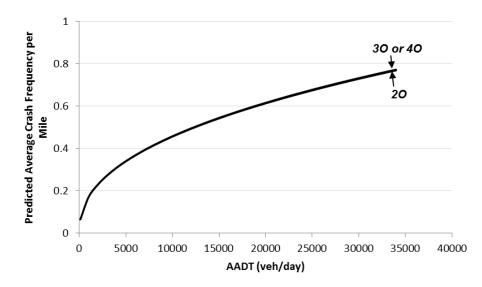


Figure 34. Graphical form of the SPF for PDO single-vehicle collisions, one-way arterials.

The proportions in Table 71 are used to separate multiple-vehicle crashes into components by collision type for one-way arterial roadway segments.

		001101	on type.					
	Proportion of Crashes by Severity Level for Specific Road Types							
Collision Type	20			30		40		
	FI	PDO	FI	PDO	FI	PDO		
Rear-end collision	0.617	0.445	0.671	0.435	0.714	0.400		
Head-on collision	0.021	0.017	0.013	0.013	0.000	0.067		
Angle collision	0.128	0.076	0.133	0.115	0.000	0.000		
Sideswipe, same direction	0.170	0.336	0.133	0.384	0.143	0.467		
Sideswipe, opposite direction	0.043	0.042	0.013	0.017	0.000	0.000		
Other multiple-vehicle collisions	0.021	0.084	0.038	0.036	0.143	0.067		

Table 71. Distribution of multiple-vehicle collisions for roadway segments by manner of
collision type.

Source: HSIS data for California (2006–2010).

The proportions in Table 72 are used to separate single-vehicle crashes into components by crash type for arterials with six or more lanes.

Table 72. Distribution of single-vehicle crashes for roadway segments by collision type for
arterials with six or more lanes.

	Proportion of Crashes by Severity Level for Specific Road Types						
Collision Type	20		30		40		
	FI	PDO	FI	PDO	FI	PDO	
Collision with fixed object—left	0.400	0.261	0.182	0.489	0.286	0.167	
Collision with fixed object—right	0.100	0.435	0.182	0.289	0.429	0.667	
Collision with other object	0.000	0.130	0.091	0.044	0.000	0.000	
Other single-vehicle collision	0.500	0.174	0.545	0.178	0.286	0.167	

Source: HSIS data for California (2006-2010).

VEHICLE-PEDESTRIAN COLLISIONS

The number of vehicle-pedestrian crashes per year for a roadway segment is estimated using Equation 156. The pedestrian crash adjustment factor is estimated by dividing the vehicle-pedestrian crashes by the total segment crashes (excluding vehicle-pedestrian and vehicle-bicycle collisions) for each segment type. Table 73 presents the values of f_{pedr} . All vehicle-pedestrian collisions are considered FI crashes. The HSM adjustment factors (from HSM Table 12-16) are also displayed for comparison. The adjustment factors are developed using Equation 157.

Table 73. Pedestrian crash adjustment factor for one-way roadway segments.

			Pedestrian Crash Adjustment Factor (f _{pedr})								
		Post	ed Speed 30 n	nph or Low	er	Posted	Speed Greate	er Than 30 i	nph		
Source	Road Type	Number of Segments	Total Pedestrian Crashes	Total MV and SV Crashes ^a	f ped	Number of Segments	Total Pedestrian Crashes	Total MV and SV Crashes ^a	f ped		
ed	20	774	48	2767	0.017	276	12	676	0.018		
Proposed	30	395	52	2217	0.024	162	15	911	0.017		
Pr	40	81	7	342	0.021	57	12	405	0.030		

^a Excludes pedestrian and bicycle crashes.

VEHICLE-BICYCLE COLLISIONS

The number of vehicle-bicycle collisions per year for an intersection is estimated using Equation 158. The bicycle crash adjustment factor is estimated by dividing the vehicle-bicycle crashes by the sum of single-vehicle and multiple-vehicle crashes for each segment type. Table 74 presents the values of f_{biker} . All vehicle-bicycle collisions are considered FI crashes. The HSM adjustment factors (from HSM Table 12-17) are also displayed for comparison. The adjustment factors are developed using Equation 159.

			Bicycle Crash Adjustment Factor (f _{biker})							
		Post	Posted Speed 30 mph or Lower				Posted Speed Greater Than 30 n			
Source	Road Type	Number of Segments	Total Bicycle Crashes	Total MV and SV Crashes ^a	f _{ped}	Number of Segments	Total Bicycle Crashes	Total MV and SV Crashes ^a	f _{ped}	
sed	20	774	29	2767	0.011	276	11	676	0.016	
Proposed	30	395	24	2217	0.011	162	11	911	0.012	
Pro	40	81	7	342	0.021	57	3	405	0.007	

Table 74. Bicycle crash adjustment factor for one-way roadway segments.

^aExcludes pedestrian and bicycle crashes.

CMFS FOR ONE-WAY ARTERIALS

Several CMFs were calibrated in conjunction with the SPFs. All of them were calibrated using FI crash data. Collectively, they describe the relationship between various geometric factors and crash frequency. The models developed for this project include several CMFs that are calibrated for a specific crash type. If the standard errors of the CMFs are desired, then Equations 133–140 can be used to compute them.

This section presents the CMFs developed from the regression models described above for oneway arterials. The CMFs for one-way arterials are compared with the CMFs for two-way arterials because there are no CMFs available in the literature for one-way arterials.

Right Shoulder Width CMF

The right shoulder width CMF is described using Equation 207.

$$CMF_{osw} = e^{-0.0201(W_{os}-4)} \tag{207}$$

The base condition for this CMF is a 4-ft outside shoulder width. The shoulder width used in this CMF is measured at places where parking is not present. For places with parking, the shoulder width is 0 ft. The right shoulder width CMF is shown in Figure 35 using a thick, solid trend line. The right shoulder widths used to calibrate this CMF range from 0 to 20 ft. This CMF is applicable to both multi-vehicle and single-vehicle crashes. The right shoulder width CMF is compared with the outside shoulder width CMF for two-way arterials with six or more lanes in Figure 35. A dotted line is used to differentiate this CMF from the one developed for one-way arterials. The CMF values suggest that the right shoulder on one-way streets has a more significant effect on crashes than the outside shoulder width on two-lane streets.

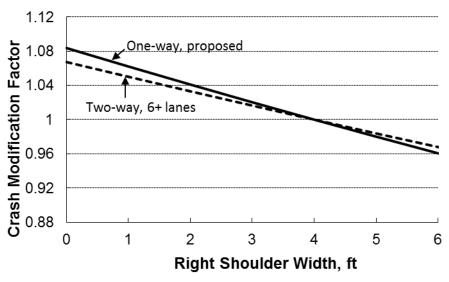


Figure 35. Right shoulder width CMF, one-way arterials.

On-Street Parking CMF

The on-street parking CMF is determined using Equations 208 and 209.

$$CMF_{pk_par} = 1 + (0.5 L_{pk_par}/L) \times (b_{pk_par} - 1.0)$$
 (208)

$$CMF_{pk_ang} = 1 + (0.5 L_{pk_ang}/L) \times (b_{pk_ang} - 1.0)$$
(209)

The base condition is the absence of on-street parking on a roadway segment. This CMF is applicable to multi-vehicle crashes only. The on-street parking CMF is compared with the CMFs for two-way arterials with five or fewer lanes in Table 75. A CMF could not be developed in this research by different land use type due to the small sample size. The CMF values developed in this research are in agreement with the CMFs presented in the HSM.

	Type of Parking and Land Use							
	Parallel Pa	rking (b_{pk_par})	Angle Parking (b_{pk_ang})					
Road Type	Residential/Other	Commercial or Industrial/Institutional	Residential/Other	Commercial or Industrial/Institutional				
2U	1.465	2.074	3.428	4.853				
3T	1.465	2.074	3.428	4.853				
4U	1.100	1.709	2.574	3.999				
4D	1.100	1.709	2.574	3.999				
5T	1.100	1.709	2.574	3.999				
20		1.112	4.364					
30		1.359	4.364					
40		1.359	4.364					

Table 75. Values of b_{pk} used in determining the CMF for on-street parking.

Driveway CMF

This CMF is applicable to multiple-vehicle crashes only. Major commercial and minor driveways are found to be significant in influencing the crashes. Minor driveways include all driveway types. Major driveways are those that serve sites with 50 or more parking spaces. Minor driveways are those that serve sites with fewer than 50 parking spaces. Commercial driveways provide access to establishments that serve retail customers. Industrial/institutional driveways serve factories, warehouses, schools, hospitals, churches, offices, public facilities, and other places of employment. Residential driveways serve single- and multiple-family dwellings.

The major commercial driveway CMF is described using Equation 210.

$$CMF_{dwc\ mi} = e^{0.0177(n_{dwc\ mj}-2)}$$
(210)

The base condition for commercial driveway CMF is two driveways per mile. The CMF is compared with the commercial driveway CMF for two-way arterials and is shown in Figure 36. It can be seen that commercial driveways on two-way arterials are associated with more multiple-vehicle crashes than on one-way arterials. On one-way arterials, there are fewer conflict points with the vehicles entering or exiting the driveways than on the two-way arterials.

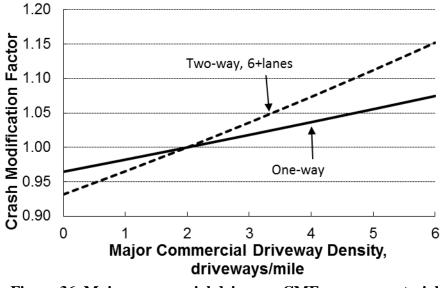


Figure 36. Major commercial driveway CMF, one-way arterials.

The minor driveway CMF is described using Equation 211.

$$CMF_{dw\ mn} = e^{0.0046(n_{dw_mn}-10)}$$
(211)

The base condition for the minor driveway CMF is 10 driveways per mile. The CMF is compared with the minor driveways CMF for two-way arterials and is shown in Figure 37. It can be seen that minor driveways on two-way arterials are associated with more multiple-vehicle crashes than on one-way arterials. On one-way arterials, there are fewer conflict points with the vehicles entering or exiting the driveways than on the two-way arterials.

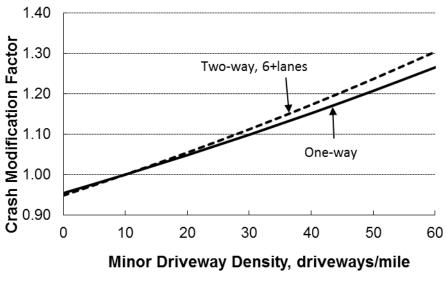


Figure 37. Minor driveway CMF, one-way arterials.

Roadside Fixed-Object CMF

The roadside fixed-object CMF is applicable to single-vehicle crashes only and is described by Equation 212:

$$CMF_{fo} = 1.0 + \frac{0.01D_{fo}}{e^{0.0938(O_{fo})}}$$
(212)

The base condition for the roadside fixed-object CMF is the absence of roadside objects. The change in the CMF with the increase in the offset distance for a segment with 50 roadside objects per mile is shown in Table 76.

	,
Offset to Fixed Objects (O_{fo}) (ft)	CMF (Proposed)
0	1.50
2	1.41
5	1.31
10	1.20
15	1.12
20	1.08
25	1.05
30	1.03

Table 76. Roadside fixed-object CMF, one-way arterials.

CHAPTER 8. PREDICTIVE MODELS FOR INTERSECTIONS OF URBAN AND SUBURBAN ONE-WAY ARTERIALS

This chapter describes the activities undertaken to calibrate safety predictive models for both signalized and stop-controlled intersections of urban and suburban one-way arterials. Each model consists of an SPF and a family of CMFs. The SPF is derived to estimate the crash frequency with specified design elements and operating conditions. The CMFs are used to adjust the SPF estimate whenever one or more elements or conditions deviate from those that are specified.

The calibrated safety predictive models were used to develop a safety predictive method for intersections of urban and suburban roadway one-way arterials. This method describes how to use the models to evaluate intersection safety, which may be influenced by road geometry, roadside features, and traffic volume. Collectively, the predictive models for intersections in this chapter address the following traffic control modes.

- Unsignalized three-leg intersection (stop control on minor-road approaches) (3ST).
- Signalized three-leg intersection (3SG).
- Unsignalized four-leg intersection (stop control on minor-road approaches) (4ST).
- Signalized four-leg intersection (4SG).

This chapter is divided into three sections. The first section provides details about the calibration data. The second section describes the calibration of the models to predict FI, PDO, vehicle-pedestrian, and vehicle-bicycle crash frequency. The third section provides a list of CMFs.

CALIBRATION DATA

The database assembly for these facility types focused on Texas, Michigan, and HSIS states California and Illinois. As described above, all crashes that were within 250 ft from the center of an intersection and coded as intersection or intersection-related were assigned to their respective intersection. If a particular crash was within 250 ft from more than one intersection, then it was assigned to the nearest intersection. The final variables used for the models are listed in Table 57 and Table 58 in Chapter 6.

MODEL DEVELOPMENT—ONE-WAY STREET INTERSECTIONS

A one-way street intersection is defined as an intersection that has only one-way traffic flow on the major street and has either two-way or one-way traffic on the minor street. The major street is always a one-way street and may or may not have traffic volume higher than the minor street. The predicted average crash frequency for each site was computed using a predictive model. Each model represented the combination of an SPF and several CMFs. The SPF was used to estimate the average crash frequency for a generic site whose attributes were consistent with the SPF's stated base conditions. The CMFs were used to adjust the SPF estimate when the attributes of the subject site were not consistent with the base conditions.

Given the small sample size of single-vehicle crashes at intersections, separate models could not be developed for these crash types. The single-vehicle crashes were combined with multiple-

vehicle crashes, and a model was developed for total crashes. The following regression model form was used to predict the average crash frequency at an individual one-way street intersection.

Signalized Intersections:

$$N_{bi} = N_{spf} \times CMF_{lg} \times CMF_{lanes}$$
(213)

Unsignalized Intersections:

$$N_{bi} = N_{spf} \times CMF_{lg} \tag{214}$$

with,

$$N_{spf} = n \times e^{b_0 + b_1 \ln(AADT_{Maj}) + b_2 \ln(AADT_{Min}) + b_{I11}I_{I11} + b_{ca}I_{ca} + b_{il}I_{il} + b_{mi}I_{mi}}$$
(215)

$$CMF_{lg} = 1 - e^{b_{lg}} \times p_{ni} \tag{216}$$

$$CMF_{lanes} = CMF_{lanes1} \times CMF_{lanes2}$$

$$[I = (y = z) = (z = z) = (z$$

$$= \left[e^{b_{kanes}(N_{maj}-2)} P_{maj} + \left(1 - P_{maj}\right) \right] \times \left[e^{b_{kanes}(N_{min}-2)} P_{min} + \left(1 - P_{min}\right) \right]$$
(217)

$$P_{maj} = \frac{AADT_{maj}}{AADT_{maj} + AADT_{min}}$$
(218)

$$P_{min} = \frac{AADT_{min}}{AADT_{maj} + AADT_{min}}$$
(219)

where,

N _i	=	predicted annual average crash frequency.
n	=	number of years of crash data.
AADT _{Mai}	=	average annual daily traffic on the major street, veh/day.
AADT _{Min}	=	average annual daily traffic on the minor street, veh/day.
I_{I11}	=	one-way on minor-street indicator variable (= 1.0 if minor street is one-way,
		0.0 if not).
I _{ca}	=	California state indicator variable (= 1.0 if site is in California, 0.0 if not).
I_{il}	=	Illinois state indicator variable (= 1.0 if site is in Illinois, 0.0 if not).
I_{mi}	=	Michigan state indicator variable (= 1.0 if site is in Michigan, 0.0 if not).
$CMF_{l,g}$	=	lighting CMF.
CMF _{lanes}	=	number of lanes CMF.
p_{ni}	=	proportion of total crashes for unlighted intersections that occur at night.
b_i	=	calibration coefficient for variable <i>i</i> .

The predictive model calibration process consisted of the simultaneous calibration of total crash models for various intersection types. The simultaneous calibration approach was needed because several CMFs were common to three-leg and four-leg intersections. The results of the multivariate regression model calibration are presented in Table 77 and Table 78 for one-way street intersections for FI and PDO crashes, respectively.

Variables with corresponding p-values less than 0.05 can be considered statistically significant (at the significance level $\alpha = 0.05$). For those few variables where the p-value was greater than 0.05, it was decided that the variable was important to the model, and its trend was found to be consistent with previous research findings (even if the specific value was not known with a great deal of certainty when applied to this database).

Coefficient	Variable	Int. Control	Estimate	Std. Error	t-statistic	p-value
		3ST	-9.117	3.808	-2.39	0.0170
h	Intercent	3SG	-11.206	3.128	-3.58	0.0004
b_0	Intercept	4ST	-10.829	1.927	-5.62	< 0.0001
		4SG	-5.468	1.098	-4.98	< 0.0001
		3ST	0.646	0.383	1.69	0.0918
h	Moior A ADT	3SG	0.594	0.238	2.50	0.0127
b_1	Major AADT	4ST	0.672	0.193	3.48	0.0005
		4SG	0.184	0.111	1.65	0.0996
		3ST	0.105	0.192	0.55	0.5848
h	Minor AADT	3SG	0.560	0.155	3.61	0.0003
b_2		4ST	0.414	0.108	3.85	0.0001
		4SG	0.372	0.089	4.19	< 0.0001
<i>b</i> _{<i>I</i>11}	Added effect for one-way traffic on minor street	All	-0.104	0.170	-0.61	0.5401
b _{lanes}	Number of lanes	3SG/4SG	0.242	0.078	3.12	0.0019
b_{lg}	Lighting	All	-1.484	18.00	-0.08	0.9343
b _{il}	Added effect of Illinois	All	0.414	0.182	2.28	0.0232
		3ST	0.495	0.193	2.57	0.0104
k	Inverse dispersion peremeter	3SG	1.049	0.368	2.85	0.0045
к	Inverse dispersion parameter	4ST	1.881	0.794	2.37	0.0182
		4SG	0.751	0.080	9.43	< 0.0001
	Observations	586 intersection	ons (3ST=107	7; 3SG=40; 4ST	Γ=155; 4SG=28	4)

Table 77. Calibrated coefficients for FI crashes at one-way street intersections.

Coefficient	Variable	Int. Control	Estimate	Std. Error	t-statistic	p-value	
		3ST	-17.602	2.588	-6.80	< 0.0001	
h	Intercent	3SG	-7.069	2.787	-2.54	0.0115	
b_0	Intercept	4ST	-12.064	1.611	-7.49	< 0.0001	
		4SG	-5.917	1.199	-4.94	< 0.0001	
		3ST	1.531	0.263	5.83	< 0.0001	
h	Maior AADT	3SG	0.485	0.220	2.20	0.0281	
b_1	Major AADT	4ST	0.855	0.167	5.13	< 0.0001	
		4SG	0.381	0.124	3.08	0.0021	
	Minor AADT	3ST	0.306	0.105	2.91	0.0037	
h		3SG	0.348	0.133	2.61	0.0093	
b_2		4ST	0.512	0.101	5.07	< 0.0001	
		4SG	0.362	0.093	3.88	0.0001	
<i>b</i> _{<i>I</i>11}	Added effect for one-way traffic on minor street	All	-0.392	0.176	-2.23	0.0264	
b_{lanes}	Number of lanes	3SG/4SG	0.069	0.094	0.73	0.4640	
b _{il}	Added effect of Illinois	All	0.726	0.158	4.61	< 0.0001	
		3ST	0.966	0.220	4.38	< 0.0001	
1-	Inverse dispension personator	3SG	1.113	0.268	4.15	< 0.0001	
k	Inverse dispersion parameter	4ST	1.039	0.188	5.52	< 0.0001	
		4SG	0.496	0.045	11.00	< 0.0001	
	Observations 586 intersections (3ST=107; 3SG=40; 4ST=155; 4SG=284)						

Table 78. Calibrated coefficients for PDO crashes at one-way street intersections.

Indicator variables were included for the states of California, Illinois, and Michigan. However, only the coefficient for Illinois was statistically significant. This means that the magnitude of the crashes between Texas, Michigan, and California are about the same, but Illinois experiences fewer crashes for the same conditions and exposure. The trend could not be explained by difference in road design among the states. It is likely that the differences between states are due to unobserved variables such as vertical grade, signing, pavement condition, weather, reporting accuracy, and speed limit, as well as reportability criteria.

The NLMIXED procedure in the SAS software was used to estimate the proposed model coefficients. This procedure was used because the proposed predictive model is both nonlinear and discontinuous. The log-likelihood function for the NB distribution was used to determine the best-fit model coefficients.

The relationship between crash frequency (FI and PDO crashes) and traffic demand for base conditions, as obtained from the calibrated models, is illustrated in Figure 38 for one-way street three-leg stop-controlled intersections, with one-way direction on the major street only.

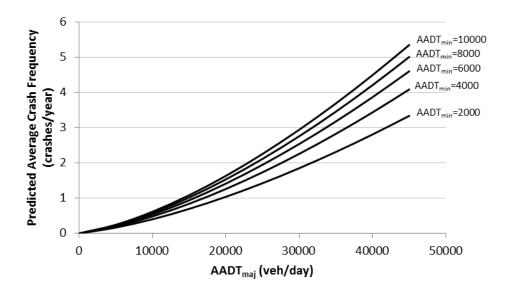


Figure 38. Graphical form of the intersection SPF for crashes on one-way street three-leg stop-controlled intersections (3ST).

The relationship between crash frequency (FI and PDO crashes) and traffic demand for base conditions, as obtained from the calibrated models, is illustrated in Figure 39 for one-way street three-leg signalized intersections, with one-way direction on the major street only.

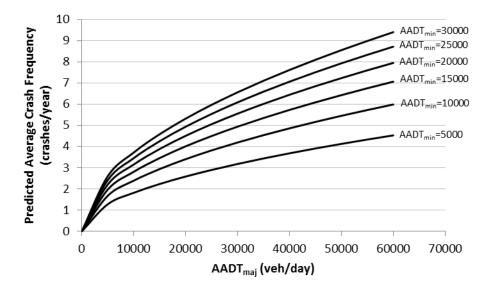


Figure 39. Graphical form of the intersection SPF for crashes on one-way street three-leg signalized intersections (3SG).

The relationship between crash frequency (FI and PDO crashes) and traffic demand for base conditions, as obtained from the calibrated models, is illustrated in Figure 40 for one-way street four-leg stop-controlled intersections, with one-way direction on the major street only.

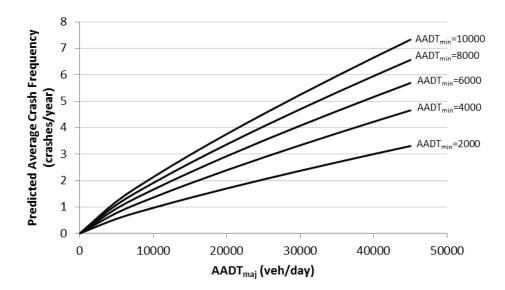


Figure 40. Graphical form of the intersection SPF for crashes on one-way street four-leg stop-controlled intersections (4ST).

The relationship between crash frequency (FI and PDO crashes) and traffic demand for base conditions, as obtained from the calibrated models, is illustrated in Figure 41 for one-way street four-leg signalized intersections, with one-way direction on the major street only.

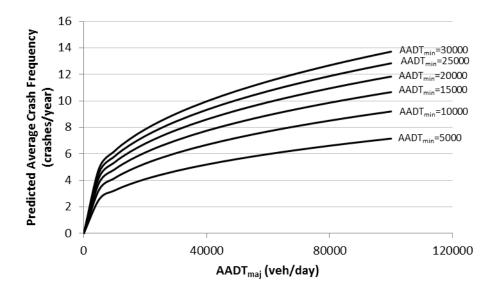


Figure 41. Graphical form of the intersection SPF for crashes on one-way street four-leg signalized intersections (4SG).

The comparison of crash frequency (FI and PDO crashes) between intersection categories, as obtained from the calibrated models, is illustrated in Figure 42 for one-way street four-leg signalized intersections. The intersection with two one-way streets would experience about 30 percent fewer crashes than the intersection with one-way direction on the major street only.

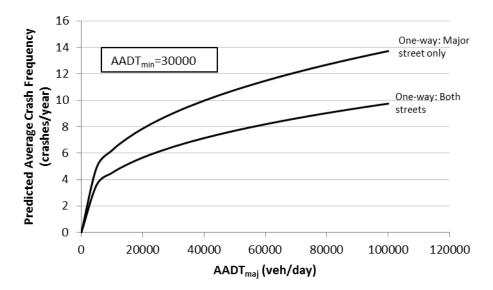


Figure 42. Comparison of the SPF by intersection category for crashes on one-way street four-leg signalized intersections (4SG).

The proportions in Table 79 are used to separate total crashes into components by crash type for 1×2 and 1×1 intersections.

type.									
	Pro	Proportion of Crashes by Severity Level for Specific Intersection Types							
Manner of Collision	3ST		3SG		4ST		4SG		
	FI	PDO	FI	PDO	FI	PDO	FI	PDO	
Rear-end collision	0.100	0.100	0.111	0.143	0.047	0.065	0.030	0.059	
Head-on collision	0.000	0.000	0.000	0.000	0.028	0.020	0.039	0.030	
Angle collision	0.300	0.250	0.889	0.571	0.822	0.706	0.837	0.733	
Sideswipe	0.400	0.350	0.000	0.214	0.075	0.157	0.059	0.145	
Other multiple-vehicle	0.100	0.050	0.000	0.071	0.009	0.013	0.030	0.012	
Single-vehicle crashes	0.100	0.250	0.000	0.000	0.019	0.039	0.006	0.021	

Table 79. Distribution of total vehicle collisions for 1×2 or 1×1 intersections by collision

Source: HSIS data for California (2006–2010).

Vehicle-Pedestrian Collisions

The HSM provides a model to estimate the number of vehicle-pedestrian crashes at signalized intersections (i.e., 3SG and 4SG), which is described in Equations 181 and 182 of Chapter 6.

According to NCHRP 129: Phase III (Harwood et al., 2008), the model was developed using data from a total of 1,883 signalized intersections—1,532 in Toronto and 351 in Charlotte, North Carolina—which did not include any one-way leg. Since the HSM model accounts for the vehicular and pedestrian traffic as well as the maximum length that a pedestrian may be exposed to the vehicular traffic (through n_{lanesx}), the research team hypothesized that the same model would be valid for intersections of one-way streets. This hypothesis was tested using field data, and the results are presented in this section.

A sample of 10 intersections in California and 24 intersections in San Antonio, Texas, were selected for data collection. All the intersections involved one-way streets. The sites in California were selected along a one-way street pair: CA-32 in Chico. The 24 intersections in San Antonio were all located downtown or the area near downtown.

Two-hour pedestrian counts were collected at the selected intersections by TRA Inc. in California and TTI research team members in San Antonio. Eighteen-hour (6:00 AM to 12:00 AM) pedestrian counts were collected at five sites, one along each of the corridors in California and one in downtown San Antonio. The 18-hour counts were used to compute adjustments factors needed to convert two-hour counts to daily pedestrian volumes. It was assumed that pedestrian activity during the remaining six hours (between 12:00 AM and 6:00 AM) was negligible.

The major- and minor-street AADTs were determined using California HSIS data and City of San Antonio traffic volume data. The variable n_{lanesx} was determined using Google Earth aerial imagery. The presence of schools and number of bus stops and alcohol sales establishments within 1000 ft of the intersection were recorded for each site using Google Earth aerial imagery and Street View. The team followed the HSM instructions to determine these variables. The CMFs were determined using the respective tables in the HSM.

The observed number of vehicle-pedestrian collisions at the selected intersections was determined using HSIS data for California and the CRIS database for Texas. A vehicle-pedestrian collision was assigned to an intersection if it occurred within 250 ft of the intersection center or was coded as intersection-related. Where a collision occurred between two adjacent intersections that were less than 500 ft apart, the collision was assigned to the nearest intersection. Only fatal or injury collisions were considered in the analysis (consistent with the HSM).

The HSM model for vehicle-pedestrian collisions at signalized intersections was used to predict the crash frequency. The objective was to validate the applicability of the HSM model for crash frequency prediction at signalized intersections where at least one of the approaches was a oneway street.

The model validation consisted of several tasks. The first task was to quantify the local calibration factor (C_i), which would be the first step for any agency using the HSM methodology:

$$C_{i} = \frac{\sum_{all \ sites} observed \ crashes}{\sum_{all \ sites} predicted \ crashes}$$
(220)

The local calibration factor was determined to be 0.51 and 0.23 for San Antonio and California, respectively. Since the estimated calibrated coefficient for California was too low, it was not considered in further analysis. The second task was to apply the recalibrated model to compute the expected crash frequency at each intersection and compare it with the reported crash frequency for each site.

The third task was to perform a goodness-of-fit evaluation to assess the applicability of the HSM model to signalized intersections of one-way streets. The Pearson's chi-squared test was used for this purpose. To meet the requirements of this test, observations (intersections) had to be grouped so that each group had an expected crash frequency greater than 5 (Yates et al., 1999). The observations were sorted by $AADT_{total}$ and combined into seven groups with expected crash frequencies greater than 5.

The Pearson χ^2 statistic was determined to be 8.62, which is less than $\chi^2_{0.05}$ with n - 1 = 6 degrees of freedom (12.59), so the hypothesis that the model fits the validation data from San Antonio could not be rejected at significance level (α) = 0.05. Therefore, the HSM model for vehicle-pedestrian collisions at signalized intersections is applicable to intersections of one-way streets.

For 3ST and 4ST, the number of vehicle-pedestrian collisions per year for an intersection is estimated using Equation 183. The pedestrian crash adjustment factor is estimated by dividing the vehicle-pedestrian crashes by the total intersection crashes (excluding vehicle-pedestrian and vehicle-bicycle collisions) for each intersection type. Table 80 presents the values of f_{pedi} . All vehicle-pedestrian collisions are considered FI crashes. The HSM adjustment factors (from HSM Table 12-16) are also displayed for comparison. The adjustment factors are developed using Equation 184.

Intersection Type	Number of Intersections	Total Pedestrian Crashes	Total MV and SV Crashes ^a	f _{pedi} (proposed)	f _{pedi} (HSM)
3ST	107	5	342	0.015	0.021
4ST	155	14	687	0.020	0.022

Table 80. Pedestrian crash adjustment factors: one-way street intersections.

^a Excludes pedestrian and bicycle crashes.

Vehicle-Bicycle Collisions

The number of vehicle-bicycle collisions per year for an intersection is estimated using Equation 185. The bicycle crash adjustment factor is estimated by dividing the vehicle-bicycle crashes by the sum of single-vehicle and multiple-vehicle crashes for each intersection type. Table 81 presents the values of f_{bike} . All vehicle-bicycle collisions are considered FI crashes. The HSM adjustment factors (from HSM Table 12-17) are also displayed for comparison. The adjustment factors are developed using Equation 186.

Table 81. Bicyc	le crash adjustmen	t factors: one-way	y street intersections.

Intersection Type	Number of Intersections	Total Bicycle Crashes	Total MV and SV Crashes ^a	f _{bikei} (proposed)	f _{bikei} (HSM)
3ST	107	6	342	0.018	0.016
3SG	40	8	514	0.016	0.011
4ST	155	15	687	0.022	0.018
4SG	288	65	5571	0.012	0.015

^aExcludes pedestrian and bicycle crashes.

CMFS FOR 1×2 OR 1×1 INTERSECTIONS

CMFs were calibrated in conjunction with the SPFs. All of them were calibrated using FI crash data. Collectively, they describe the relationship between various geometric factors and crash

frequency. This section shows figures of the CMFs developed from the regression models described above for one-way street intersections. If the standard errors of the CMFs are desired, then Equations 133–140 can be used to compute them.

Lighting CMF

The base condition for lighting is the absence of intersection lighting. The lighting CMF is described using Equation 221.

$$CMF_{lg} = 1 - e^{-1.484} \times p_{ni} = 1 - 0.23 \times p_{ni}$$
(221)

This CMF is similar to the CMF presented in the HSM ($CMF_{lg} = 1 - 0.38 \times p_{ni}$). However, the proposed coefficient in this research is highly insignificant, and thus the research team recommends using the CMF in the HSM. This CMF applies to total intersection crashes (not including vehicle-pedestrian and vehicle-bicycle crashes) and is applicable to both signalized and unsignalized intersections. Table 82 presents default values for the nighttime crash proportion, p_{ni} .

Table 62. Nightunie crash	proportions for uningitied intersections.
	Proportion of Crashes That Occur at Night,
Intersection Type	p_{ni}
3ST	0.238
4ST	0.229
3SG and 4SG	0.235

Table 82. Nighttime crash proportions for unlighted intersections.

Number of Lanes CMF

The number of lanes CMF is determined using Equation 222.

$$CMF_{lanes} = \left[e^{0.242(N_{maj}-6)}P_{maj} + (1-P_{maj})\right] \times \left[e^{0.242(N_{min}-2)}P_{min} + (1-P_{min})\right]$$
(222)

with,

$$P_{maj} = \frac{AADT_{maj}}{AADT_{maj} + AADT_{min}}$$
(223)

$$P_{\min} = \frac{AADT_{\min}}{AADT_{maj} + AADT_{\min}}$$
(224)

The base condition for the number of lanes CMF is two lanes on the major street and two lanes on the minor street. Table 83 presents the relationship between number of lanes and FI crash frequency at signalized intersections when the volume on the minor street is equal to one-half the volume on the major street. This CMF applies to all intersection crashes (not including vehiclepedestrian and vehicle-bicycle collisions) and is applicable only to signalized intersections. The CMF indicates that the increase in the number of lanes at a signalized intersection is associated with an increase in the frequency of crashes. The number of lanes in the cross-section tends to increase the size of the intersection conflict area, which could increase the exposure of vehicles to conflict with crossing movements.

Number of Maior Street Long		CMF Based on Number of Minor-Street Lanes						
Number of Major-Street Lanes	2	3	4	5	6			
2	1.00	1.09	1.21	1.36	1.54			
3	1.18	1.29	1.43	1.60	1.83			
4	1.42	1.54	1.71	1.92	2.19			

Table 83. CMF for number of lanes at a signalized intersection.

Note: Values based on minor-street volume equal to one-half of the major-street volume.

CHAPTER 9. SEVERITY DISTRIBUTION FUNCTIONS

This chapter describes the activities undertaken to calibrate SDFs for various components of the urban and suburban arterial system. An SDF is a discrete choice model that includes variables describing a site's geometric design, traffic control features, and traffic characteristics, along with a calibration factor. It is used to predict for each site the proportion of crashes associated with each of the following severity levels:

- Fatal (K).
- Incapacitating injury (A).
- Non-incapacitating injury (B).
- Possible injury (C).

The SDFs were developed to be used with a predictive model to estimate the expected crash frequency for each severity level. They were calibrated using a highway safety database that combines crash data with road inventory data. The database assembled for calibration included crash severity level as a dependent variable and the geometric variables of each site as independent variables. From the database described in Chapter 4, each row (site characteristics) is repeated to the frequency of each severity level. Thus, a segment with *n* crashes will be repeated *n* number of times. It should be noted that the segments with no injury crashes are not included in the database. The total sample size of the final dataset for model calibration will be equal to the total number of injury (and fatal) crashes in the original dataset. During the model calibration, the "possible injury" category is set as the base scenario, with coefficients restricted at zero.

This chapter is divided into five sections. The first section describes the development of an SDF for six-or-more-lane arterial segments. The second section describes the development of an SDF for one-way arterial segments. The third section describes the development of an SDF for signalized intersections of six-or-more-lane arterials. The fourth section describes the development of an SDF for signalized intersections of one-way streets. The last section describes the development of an SDF for unsignalized intersections of either six-or-more-lane arterials or one-way streets.

METHODOLOGY

The multinomial logit (MNL) model was used to predict the probability of crash severities. An individual crash severity among the given severities was considered to be predicted if the crash severity likelihood function was maximum for that particular severity. Each crash severity likelihood function, which is a dimensionless measure of the crash likelihood, was considered to have a deterministic component and an error/random component. While the deterministic part is assumed to contain variables that can be measured, the random part corresponds to the unaccounted factors that impact injury severity. The deterministic part of the crash severity likelihood was designated as a linear function of the driver, roadway, vehicle, and weather characteristics, as shown in Equation 225:

$$V_{j} = ASC_{j} + \sum_{k=1}^{K} b_{k,j} X_{k}$$
(225)

where,

 V_{i} = systematic component of crash severity likelihood for severity j.

 ASC_{i} = alternative specific constant for crash severity *j*.

 $b_{k,j}$ = regression coefficient for crash severity j and variable k, k = 1,...,K.

 X_{ki} = independent variable k.

K _ total number of independent variables included in the model.

The logit model was derived assuming that the error components are extreme value (or Gumbel) distributed (McFadden, 1981), and the probability for each crash severity is given by Equation 226:

$$P_{j} = \frac{e^{V_{j}}}{\sum_{j=1}^{J} e^{V_{j}}}$$
(226)

where,

 P_i = probability of the occurrence of crash severity *j*.

J = total number of crash severities to be modeled.

To adjust for the local conditions, Equation 226 is modified by considering the local calibration factor. The adjusted probability for each severity category is given as follows.

$$P_{K} = \frac{e^{V_{K}}}{\frac{1}{C} + e^{V_{K}} + e^{V_{A}} + e^{V_{B}}}$$
(227)

$$P_{A} = \frac{e^{V_{A}}}{\frac{1}{C} + e^{V_{K}} + e^{V_{A}} + e^{V_{B}}}$$
(228)

$$P_{B} = \frac{e^{V_{B}}}{\frac{1}{C} + e^{V_{K}} + e^{V_{A}} + e^{V_{B}}}$$
(229)

$$P_{C} = 1 - (P_{K} + P_{A} + P_{B})$$
(230)

where,

C =local calibration factor.

The NLMIXED procedure in the SAS software was used for model calibration.

On a few facilities, fatal crashes rarely occur due to lower speeds. When a small number of fatal crashes are reported, the calibrated model may provide unreliable and insignificant estimates (Ye and Lord, 2014). In those cases, the fatal and incapacitating injury crashes can be combined into one category during the final model calibration. The probabilities in those situations are given as follows.

$$P_{K+A} = \frac{e^{V_{K+A}}}{\frac{1}{C} + e^{V_{K+A}} + e^{V_B}}$$
(231)

$$P_{B} = \frac{e^{V_{B}}}{\frac{1}{C} + e^{V_{K+A}} + e^{V_{B}}}$$
(232)

$$P_{C} = 1 - (P_{K+A} + P_{B}) \tag{233}$$

SIX-OR-MORE-LANE ARTERIAL SEGMENTS

The database included 15,172 FI crashes reported in California, Illinois, and Texas. Table 84 summarizes the estimation results of model calibration. Although many variables were considered, the results presented in Table 84 show the variables that are significant in influencing crash severities. An examination of the coefficient values and their implication on the corresponding crash severity levels are documented in a subsequent section. In general, the sign and magnitude of the regression coefficients in Table 84 are logical and consistent with previous research findings. The t-statistic for each coefficient in Table 84 indicates a test of the hypothesis that the coefficient value is equal to 0.0. Those t-statistics with an absolute value larger than 2.0 indicate that the hypothesis can be rejected, with the probability of error in this conclusion being less than 0.05. For those few variables where the absolute value of the t-statistic was smaller than 2.0, it was decided that the variable was important to the model, and its trend was found to be intuitive and, where available, consistent with previous research findings (even if the specific value was not known with a great deal of certainty when applied to this database).

Variable	Fatality (K)		Incapacitating Injury (A)		Non-incapacitating Injury (B)		
	Value	t-statistic	Value	t-statistic	Value	t-statistic	
Alternative specific constant	-5.1142	-9.77	-1.7347	-23.58	-0.5751	-12.62	
Area type (urban=1)	-0.4714	-3.33	-0.2505	-5.86	-0.2505	-6.25	
Posted speed limit	0.0442	4.19					
Indicator for 6D	-0.3327	-2.32	-0.2923	-4.06	-0.0938	-2.17	
Indicator for 8D	-0.2296	-1.07	-0.5230	-4.71	-0.2373	-3.83	
Added effect of Illinois	0.6748	14.84	0.6748	14.84	0.6748	14.84	
Added effect of California	-0.2884	-6.12	-0.2884	-6.12	-0.2884	-6.12	
Observations	15,172 crashes (K=247; A=1086; B=4407; C=9432)						

Table 84. Crash SDF: six-or-more-lane arterials.

Note: Possible injury is the base scenario with coefficients restricted at zero. Shaded cell means coefficient is highly insignificant.

Indicator variables were included for the states of California and Illinois. The state-specific variables were included to improve the accuracy of the model in order to account for differences between states that could not be explained with the other variables in the model. There may be differences between states, such as weather and driver behavior, that were not included in the model. The definition of a reportable crash also varied per state. In the final model, state-specific variables were not included, but this effect was captured through the calibration process. The coefficients for both California and Illinois were statistically significant. The coefficients for these variables are shown in the last two rows of Table 84. Their values indicate that a crash on a six-or-more-lane segment in Illinois is likely to be more severe, and a crash in California is likely to be less severe than a crash on a segment in Texas. The differences may be caused by different highway design practices (e.g., use of different roadside design features, etc.), terrain, weather pattern, driver behavior, and reporting accuracy.

The coefficients in Table 84 were combined with Equation 225 to obtain the deterministic component of each crash severity level for crashes on six-or-more-lane segments. The form of each model is described by Equations 234–236.

$$V_{K} = -5.1142 + \left(-0.4714 \times I_{urban}\right) + \left(0.0442 \times PSL\right) + \left(-0.3327 \times I_{6D}\right) + \left(-0.2296 \times I_{8D}\right)$$
(234)

$$V_{A} = -1.7347 + (-0.2505 \times I_{urban}) + (0.0000 \times PSL) + (-0.2923 \times I_{6D}) + (-0.5230 \times I_{8D})$$
(235)

$$V_{B} = -0.5751 + (-0.2505 \times I_{urban}) + (0.0000 \times PSL) + (-0.0938 \times I_{6D}) + (-0.2373 \times I_{8D})$$
(236)

where,

$$I_{urban}$$
 = area type indicator variable (= 1.0 if urban, 0.0 if suburban).

- PSL = posted speed limit (mph).
- I_{6D} = indicator variable for six-lane divided highway (= 1.0 if six-lane divided, 0.0 otherwise).
- I_{8D} = indicator variable for eight-lane divided highway (= 1.0 if eight-lane divided, 0.0

otherwise).

The probability of each severity level is obtained by combining Equations 234 to 236 with Equations 227–230.

Predicted Probabilities

The below subsections provide the influence of variables on crash severities for six-or-more-lane arterials.

Area Type

The sites considered in the project were located in both urban and suburban area types. About 68 percent of crashes occurred in urban areas. The negative coefficient for the area type shown in Table 84 indicates that a crash occurring in an urban area is generally less severe than a crash in a suburban area. As seen in Table 85, the likelihood of fatal and severe injury crashes (i.e., K, A, and B) changes from 33.9 percent in urban areas to 40.7 percent in suburban areas. The trend with area type can be attributed to higher operating speeds in suburban areas. A crash that occurs at a higher speed typically has higher severity than a crash at a lower speed.

Area Type	Crash Severity							
	K	Α	В	С				
Urban	1.3%	6.1%	26.5%	66.1%				
Suburban	1.9%	8.2%	30.6%	59.3%				

Table 85. Crash severity distribution of six-or-more-lane segments based on area type.

Speed Limit

The speed limit variable indicates the posted speed limit on a particular segment. The speed limit of all segments considered in the SDF model calibration ranged from 25 mph to 60 mph. The average speed limit was 42 mph. The positive sign for posted speed limit in Table 84 shows that as speed limit increases, the likelihood of a fatal injury also increases. As seen in Table 86, the likelihood of a fatal crash increases from 0.7 percent at 25 mph to 3.1 percent at 60 mph. This is not unexpected because speed limit is highly correlated to crash severity.

Table 86. Crash severity distribution of six-or-more-lane segments based on posted speed limit.

		111111.		
Posted Speed Limit				
(mph)	K	Α	B	С
25	0.7%	6.8%	28.0%	64.5%
30	0.8%	6.8%	27.9%	64.4%
35	1.1%	6.8%	27.9%	64.3%
40	1.3%	6.8%	27.8%	64.1%
45	1.6%	6.7%	27.7%	63.9%
50	2.0%	6.7%	27.6%	63.7%
55	2.5%	6.7%	27.5%	63.3%
60	3.1%	6.6%	27.3%	62.9%

Road Type

The effect of road type on crash severity was also considered in the calibrated model. About 55 percent of crashes occurred on six-lane divided roads, 16 percent occurred on eight-lane divided roads, and the remaining 29 percent occurred on six-lane undivided or six-lane with TWLTL segments. The model coefficients in Table 84 indicate that a crash on a six-lane or eight-lane divided road segment is less severe than a crash on a six-lane undivided or six-lane with TWLTL segment. As seen in Table 87, the likelihood of fatal and severe injury crashes (i.e., K, A, and B) is about 39 percent on six-lane undivided or six-lane with TWLTL segments, about 36 percent on six-lane divided segments, and about 32 percent on eight-lane divided segments. Overall, the chance of high severe crashes is lower on eight-lane divided segments. These road types are generally located in downtown areas, which typically have lower speeds. A crash that occurs at a lower speed has less severity than a crash at a higher speed.

Dood Type	Crash Severity				
Road Type	K	Α	В	С	
6U or 7T	1.8%	8.2%	29.0%	61.1%	
6D	1.3%	6.5%	27.8%	64.4%	
8D	1.6%	5.4%	25.3%	67.7%	

Table 87. Crash severity distribution of six-or-more-lane segments based on road type.

ONE-WAY ARTERIAL SEGMENTS

The database included 1,615 FI crashes reported in California, Illinois, Oregon, and Texas. Initially, a model was developed to predict the proportion of crashes in each severity category (i.e., K, A, B, and C). However, due to a small number of reported fatal crashes, the model provided unreliable and insignificant estimates. Thus, the fatal and incapacitating injury crashes were combined into one category during the final model calibration. The results of crash severity models are summarized in Table 88 for one-way arterials. Although many variables were considered, the results presented in Table 88 show the variables that are significant in influencing crash severities. An examination of the coefficient values and their implication on the corresponding crash severity levels are documented in a subsequent section. In general, the sign and magnitude of the regression coefficients in Table 88 are logical and consistent with previous research findings.

	Fatality (K)+Incapacitating Injury (A)		Non-incapacitating Injury (B)	
Variable	Coefficient	t-value	Coefficient	t-value
Alternative specific constant	0.2933	0.54	-0.381	-3.8
Lane width	-0.1226	-3.01		
Right shoulder width	-0.126	-4.53	-0.05755	-3.7
Area type (urban=1)	-0.3994	-2.38		
Bike lanes (yes =1)	0.9969	2.19	0.8691	3.01
Illinois	0.5035	4.03	0.5035	4.03
Observations	1615 crashes (K=17; A=154; B=611; C=833)			

Table 88	Crash SDF	• one-way	roadways.
1 aute 00.	CI asii SDI	• Unc-way	Tuauways.

Note: Possible injury is the base scenario, with coefficients restricted at zero. Shaded cell means coefficient is highly insignificant.

In addition to the variables included in the calibrated model, there may be differences between states, such as weather and driver behavior, that were not included in the model. Thus, indicator variables for the states of California, Oregon, and Illinois were included in the calibrated model to account for the overall differences between the states, which could not be explained with the variables included in the model. The coefficients for Oregon and California were very small and not statistically significant, suggesting that the state effects are very similar among Texas, Oregon, and California. The positive coefficient for Illinois in Table 88 shows that a crash occurring on roads in Illinois is likely to be more severe than a crash in other states, when all other variables are controlled. The differences may be explained by different highway design practices (e.g., use of different roadside design features, etc.), terrain, weather pattern, driver behavior, and reporting accuracy or criteria.

The coefficients in Table 88 were combined with Equation 225 to obtain the deterministic component of each crash severity level for crashes on six-or-more-lane segments. The form of each model is described by Equations 237 and 238.

$$V_{K+A} = 0.2933 + \left(-0.1226 \times W_l\right) + \left(-0.126 \times W_{rs}\right) + \left(-0.3994 \times I_{urban}\right) + \left(-0.9969 \times I_{bike}\right)$$
(237)

$$V_{B} = -0.381 + (0.0000 \times W_{l}) + (-0.05755 \times W_{rs}) + (0.0000 \times I_{urban}) + (0.8691 \times I_{bike})$$
(238)

where,

 W_l = lane width (ft). W_{rs} = shoulder width on the right side (ft). I_{urban} = area type indicator variable (= 1.0 if urban, 0.0 if suburban). I_{bike} = bike lane presence indicator variable (= 1.0 if present, 0.0 otherwise).

The probability of each severity level is obtained by combining Equations 237 and 238 with Equations 231–233.

Predicted Probabilities

The subsections below provide the influence of variables on crash severities for one-way arterials.

Lane Width

The lane width used in this research was an average for all through lanes on the segment. The average lane width in the dataset was 13 ft. The negative coefficients for the lane width variable for fatal and non-incapacitating crashes in Table 88 suggests that as the lane width increases, the likelihood of these severity levels decreases. As seen in Table 89, the likelihood of fatal and incapacitating injury crashes (i.e., K and A) changes from 18.2 percent for 10-ft lanes to 9.6 percent for 16-ft lanes. For every 1-ft increase in lane width, an average reduction of 1.4 percent in K and A crashes can be expected. The relative effect of lane width reduces at the higher widths. Generally, the lane width is positively correlated with safety because it allows drivers more room to maneuver within the lane.

Long Width (ft)	Crash Severity			
Lane Width (ft)	K+A	В	С	
10	18.2%	30.5%	51.3%	
11	16.4%	31.2%	52.4%	
12	14.8%	31.8%	53.4%	
13	13.3%	32.4%	54.3%	
14	12.0%	32.9%	55.1%	
15	10.8%	33.3%	55.9%	
16	9.6%	33.7%	56.6%	

Table 89. Crash severity distribution of one-way segments based on lane width.

Right Shoulder Width

The effect of both left and right shoulders on crash severity was initially considered in the calibrated model. However, only the right shoulder width was statistically significant. The average right shoulder width in the dataset was 3 ft. The negative model coefficients in Table 88 indicate that as right shoulder width increases, probability of fatal and incapacitating injury crashes decreases. As seen in Table 90, the likelihood of fatal and incapacitating injury crashes (i.e., K and A) changes from 17.1 percent with no right shoulder to 6.7 percent with 10-ft right shoulder. For every 1-ft increase in right shoulder width, an average reduction of 1.0 percent in K+A crashes can be expected. The relative effect of right shoulder width reduces at the higher widths. Generally, the right width is positively correlated with safety because it prevents drivers from hitting the roadside fixed objects.

Table 90. Crash severity distribution of one-way segments based on right shoulder width.	Table 90. Crash severity dist	ribution of one-way segments based	l on right shoulder width.
--	-------------------------------	------------------------------------	----------------------------

Diald Charddon Wildle (64)	Crash Severity			
Right Shoulder Width (ft)	K+A	В	С	
0	17.1%	34.3%	48.6%	
2	14.4%	33.0%	52.5%	
4	12.0%	31.6%	56.4%	
6	9.9%	30.0%	60.1%	
8	8.2%	28.3%	63.5%	
10	6.7%	26.5%	66.8%	

Area Type

The sites considered in the project were located in both urban and suburban areas. About 68 percent of crashes occurred in urban areas. The negative coefficient for the area type shown in Table 88 indicates that a crash occurring in an urban area is generally less severe than a crash in a suburban area. The possible reason for this influence could be due to higher speeds on roads located in suburban areas. As seen in Table 91, the likelihood of a fatal and incapacitating injury changes from 11.9 percent in urban areas to 16.7 percent in suburban areas. The trend with area type can be attributed to higher operating speeds in suburban areas. A crash that occurs at a higher speed typically has higher severity than a crash at a lower speed.

A ree Trine	Crash Severity		
Агеа Туре	K+A	В	С
Urban	11.9%	32.9%	55.2%
Suburban	16.7%	31.1%	52.2%

Table 91. Crash severit	v distribution of a	one-way segments]	based on area type.
Tuble / It Clubit Severite	y and induction of v	one way segments ,	Juscu on area type.

Bike Lanes

The effect of bike lane presence on crash severity was also considered in the calibrated model. About 4 percent of crashes occurred on segments with bike lanes. The positive coefficients for high severe crashes in Table 88 indicate that a crash on a road with bike lanes is generally more severe than on a road without bike lanes. As seen in Table 92, the likelihood of a fatal and incapacitating injury changes from 13.0 percent on segments without bike lanes to 21.1 percent on segments with bike lanes. It is important to note that this result does not suggest that the bike lanes increase the crash severity. It is a proxy for the presence of more bicycle volume. If the bike lanes are not physically separated from the vehicular lanes, then the chances of vehicle-bicycle collisions increase and are much more severe than vehicle-vehicle crashes.

Table 92. Crash severity distribution of one-way segments base	d on bike lane presence.
--	--------------------------

Progence of Pilve Lenes	Crash Severity			
Presence of Bike Lanes	K+A	В	С	
No	13.0%	31.8%	55.2%	
Yes	21.1%	45.7%	33.2%	

TWO-WAY STREET SIGNALIZED INTERSECTIONS

The database included 5,850 FI crashes reported in California, Illinois, Michigan, and Texas. Initially, a model was developed to predict the proportion of crashes in each severity category (i.e., K, A, B, and C). However, due to a small number of reported fatal crashes, the model provided unreliable and insignificant estimates. Thus, the fatal and incapacitating injury crashes were combined into one category during the final model calibration. The results of crash severity models are summarized in Table 93 for two-way street signalized intersections. Although many variables were considered, the results presented in Table 93 show the variables that are significant in influencing crash severities. An examination of the coefficient values and their implication on the corresponding crash severity levels are documented in a subsequent section. In general, the sign and magnitude of the regression coefficients in Table 93 are logical and consistent with previous research findings.

	Fatality (K)+ Incapacitating Injury (A)		Non-incapacitating Injury (B)	
Variable	Coefficient	t-value	Coefficient	t-value
Alternative specific constant	-1.7673	-5.15	-0.7250	-5.95
Area type (1=urban, 0=suburban)	-0.1161	-1.66	-0.1161	-1.66
Right-turn-on-red prohibition (1=prohibited, 0=allowed)	-1.1661	-1.13	-1.0743	-2.19
U-turn prohibition (1=prohibited, 0=allowed)	-0.1415	-1.23	-0.0693	-1.17
Presence of major-street left lanes (2=both approaches, 1=one approach, 0=none)	-0.1784	-1.55	-0.1075	-1.66
Lighting presence (1=present, 0=absent)	-0.3310	-1.11		
Added effect of Illinois (1=Illinois, 0=other)	0.7363	5.10	0.7363	5.10
Observations 5850 crashes (K=31; A=300; B=1488; C=4031)				

Table 93. Crash SDF: two-way street signalized intersections.

Note: Possible injury is the base scenario, with coefficients restricted at zero. Shaded cell means coefficient is highly insignificant.

In addition to the variables included in the calibrated model, there may be differences between states, such as weather and driver behavior, that were not included in the model. The definition of a reportable crash also varied per state. Thus, an indicator variable for each state was included in the calibrated model to account for the overall differences between the states, which could not be explained with the variables included in the model. However, the coefficients for Michigan and California were very small and not statistically significant. This finding suggests that the state effects are very similar among Texas, Michigan, and California. The Michigan and California indicator variables were removed as a result.

The coefficient for Illinois was relatively large and statistically significant. Its positive sign in Table 93 indicates that a crash at two-way street signalized intersections in Illinois is likely to be more severe than a crash in Texas, Michigan, or California, when all other variables are controlled. This difference may be explained by different highway design practices (e.g., use of different roadside design features, etc.), terrain, weather pattern, driver behavior, and reporting accuracy for the various states.

The coefficients in Table 93 were combined with Equation 225 to obtain the deterministic component of each crash severity level for crashes at two-way street intersections. The form of each model is described by Equations 239 and 240.

$$V_{K+A} = -1.7673 + (-0.1161 \times I_{urban}) + (-1.1661 \times I_{rtor}) + (-0.1415 \times I_{uturn}) + (-0.1784 \times n_{lt}) + (-0.331 \times I_{light})$$
(239)

$$V_{B} = 0.725 + (-0.1161 \times I_{urban}) + (-1.0743 \times I_{rtor}) + (-0.0693 \times I_{uturn}) + (-0.1075 \times n_{lt}) + (0.000 \times I_{light})$$
(240)

where,

$$I_{urban}$$
 = area type indicator variable (= 1.0 if urban, 0.0 if suburban).
 I_{rtor} = right-turn-on-red prohibition indicator variable (= 1.0 if prohibited, 0.0 if allowed).

- I_{uturn} = U-turn prohibition indicator variable (= 1.0 if prohibited, 0.0 if allowed).
 - n_{lt} = number of major-street approaches with exclusive left-turn lanes (= 2.0 if both approaches, 1.0 if one approach, 0.0 if none).
- I_{light} = lighting presence indicator variable (= 1.0 if present, 0.0 otherwise).

The probability of each severity level is obtained by combining Equations 239 and 240 with Equations 231–233.

Predicted Probabilities

The subsections below provide the influence of variables on crash severities at two-way signalized intersections.

Area Type

The sites considered in the project were located in both urban and suburban areas. About 75 percent of the crashes occurred in urban areas. The negative coefficient for the area type shown in Table 93 indicates that a crash occurring in an urban area is generally less severe than a crash in a suburban area. As seen in Table 94, the likelihood of K, A, and B crashes changes from 30.3 percent in urban areas to 32.8 percent in suburban areas. The trend with area type can be attributed to higher operating speeds in suburban areas. A crash that occurs at a higher speed typically has higher severity than a crash at a lower speed.

Table 94. Two-way street signalized intersection se	everity distribution based on area type.
Tuble 74. Two-way street signalized intersection se	verity distribution based on area type.

A noo Tumo	Crash Severity		
Area Type	K+A	В	С
Urban	5.5%	24.8%	69.7%
Suburban	5.9%	26.9%	67.2%

Right Turn on Red

The RTOR prohibition variable indicates the right-turn movement at a signalized intersection. Less than 1 percent of crashes occurred at intersections with RTOR prohibition. The negative sign for the RTOR prohibition variable in Table 93 indicates that K and A crash severity decreases when RTOR is prohibited. Table 95 suggests that the probability of K and A crashes decreases from 5.6 percent when RTOR is allowed to 2.2 percent when RTOR is prohibited. Since a collision during an RTOR involves at least two vehicles or roadway users, the likelihood that one road user gets injured increases. A similar trend is seen for non-incapacitating injury crashes.

RTOR	Crash Severity		
RIOR	K+A	В	С
Allowed	5.6%	25.5%	68.9%
Prohibited	2.2%	11.0%	86.8%

U-turn

The U-turn prohibition variable indicates U-turn movement presence on the major street of a signalized intersection. About 27 percent of crashes occurred at intersections with U-turn prohibition. The negative sign for the U-turn prohibition variable in Table 93 indicates that K and A crash severity decreases when the U-turn movement is prohibited. Similar to RTOR, U-turns involve more than one vehicle, which increases the likelihood of injuries. Table 96 suggests that the probability of K, A, and B crashes decreases from 31.4 percent when U-turns are allowed to 29.7 percent when they are prohibited.

	pronibition.		
II turun	Crash Severity		
U-turn	K+A	В	С
Allowed	5.8%	25.6%	68.6%
Prohibited	5.2%	24.5%	70.3%

Table 96. Two-way street signalized intersection severity distribution based on U-turn
prohibition.

Left-Turn Lanes

The left-turn lane variable indicates the presence of a left-turn lane on each approach of the major street. About 84 percent of crashes occurred at intersections with left-turn lanes on both approaches of the major street. Crashes occurring at intersections with left-turn lanes on only one approach of the major street accounted for 8 percent of all crashes. The remaining 8 percent of crashes occurred at intersections without left-turn lanes on both major-street approaches. The negative sign for the left-turn lane variable in Table 93 indicates that the chance of high severity crashes decreases when a left-turn lane is present. Table 97 suggests that the probability of K, A, and B crashes decreases from 35.6 percent when no left-turn lane is present to 30.3 percent when a left-turn lane is present on both approaches. Providing a left-turn lane may reduce the speed of the turning vehicle since the driver has more flexibility to find a gap in the approaching traffic.

Table 97. Two-way street signalized intersection severity distribution based on major-street
left-turn lane.

Laft Turn Lana an Major Streat		Crash Severity		
Left-Turn Lane on Major Street	K+A	В	С	
Not present	7.1%	28.5%	64.3%	
One approach only	6.2%	26.7%	67.1%	
Both approaches	5.4%	24.9%	69.7%	

Lighting

About 97 percent of intersections where crashes occurred had the presence of lighting. The relationship between lighting presence and severity level is shown in Table 98. The negative value of the associated coefficient (in Table 93) indicates that a crash occurring at an unlighted intersection is more severe than a crash at an intersection with lighting presence, when all other variables are controlled. The percentages in Table 98 indicate that the fatal and severe injury crash percentage at an unlighted intersection is 31.4 percent, and it is 29.7 percent when lighting is present. At unlighted intersections, a driver's perception might be obscured and reaction time might be longer, which could result in hitting the other vehicle, road user, or object at a higher rate of speed.

	presence.		
Lighting	Crash Severity		
Lighting	K+A	В	С
Not present	5.8%	25.6%	68.6%
Present	5.2%	24.5%	70.3%

Table 98. Two-way street signalized intersection severity distribution based on lighting presence.

ONE-WAY STREET SIGNALIZED INTERSECTIONS

The database included 2,056 FI crashes reported in California, Illinois, Michigan, and Texas. Initially, a model was developed to predict the proportion of crashes in each severity category (i.e., K, A, B, and C). However, due to a small number of reported fatal crashes, the model provided unreliable and insignificant estimates. Thus, the FI crashes were combined into one category during the final model calibration. The results of crash severity models are summarized in Table 99 for one-way street signalized intersections. Although many variables were considered, the results presented in Table 99 show the variables that are significant in influencing crash severities. An examination of the coefficient values and their implication on the corresponding crash severity levels are documented in a subsequent section. In general, the sign and magnitude of the regression coefficients in Table 99 are logical and consistent with previous research findings.

	Fatality (K)+ Incapacitating Injury (A)		Non-incapacitating Injury (B)	
Variable	Coefficient	t-value	Coefficient	t-value
Alternative specific constant	-2.0416	-10.74	-0.7406	-6.27
Area type (1=urban, 0=suburban)	-0.4074	-1.94	-0.0992	-0.85
Presence of major-street left lanes (1=present, 0=absent)	-0.2956	-1.20	-0.2551	-1.97
Channelization on major street (1=present, 0=absent)			0.5566	3.09
Channelization on minor street (1=present, 0=absent)	-0.3057	-0.97	-0.5040	-2.79
Added effect of Michigan (1=Michigan, 0=other)	-0.4251	-3.31	-0.4251	-3.31
Added effect of Illinois (1=Illinois, 0=other)	0.5425	2.28	0.5425	2.28
Observations	as 2056 crashes (K=5; A=104; B=530; C=1417)			

Table 99. Crash SDF: one-way street signalized intersections.

Note: Possible injury is the base scenario, with coefficients restricted at zero. Shaded cell means coefficient is highly insignificant.

In addition to the variables included in the calibrated model, there may be differences between states, such as weather and driver behavior, that were not included in the model. The definition of a reportable crash also varied per state. Thus, an indicator variable for each state was included in the calibrated model to account for the overall differences between the states, which could not be explained with the variables included in the model. However, the coefficient for California was very small and not statistically significant. This finding suggests that the state effects are very similar between Texas and California. The California indicator variable was removed as a result.

The coefficients for Michigan and Illinois were relatively large and statistically significant. The negative sign of the coefficient for Michigan indicates that a crash at one-way street signalized intersections in Michigan is less likely to be classified as severe than a similar crash in Texas or California, when all other variables are controlled. However, a similar crash in Illinois is likely to be categorized as severe than in Texas or California. This difference may be explained by different highway design practices (e.g., use of different roadside design features, etc.), terrain, weather pattern, driver behavior, and reporting accuracy for the various states.

The coefficients in Table 99 were combined with Equation 225 to obtain the deterministic component of each crash severity level for crashes at two-way street intersections. The form of each model is described by Equations 241 and 242.

$$V_{K+A} = -2.0416 + (-0.4074 \times I_{urban}) + (-0.2956 \times I_{lt}) + (0.000 \times I_{mjch}) + (-0.3057 \times I_{mnch})$$

$$V_B = -0.7406 + (-0.0992 \times I_{urban}) + (-0.2551 \times I_{lt}) + (0.5566 \times I_{mjch})$$
(241)
(242)

where,

 I_{urban} = area type indicator variable (= 1.0 if urban, 0.0 if suburban).

 $+(-0.5040 \times I_{much})$

 I_{lt} = presence of exclusive left-turn lane on the major-street indicator variable (= 1.0 if present, 0.0 if absent).

$$I_{mjch}$$
 = presence of right-turn channelization on the major-street indicator variable (= 1.0 if present, 0.0 if absent).

$$I_{mnch}$$
 = presence of right-turn channelization on the minor-street indicator variable (= 1.0 if present, 0.0 if absent).

The probability of each severity level is obtained by combining Equations 241 and 242 with Equations 231–233.

Predicted Probabilities

The subsections below provide the influence of variables on crash severities at one-way signalized intersections.

Area Type

The sites considered in the project were located in both urban and suburban areas. About 66 percent of the crashes occurred at intersections in urban areas. The relationship between area type and severity level is shown in Table 100. The negative value of the associated coefficient (in Table 99) indicates that a crash in an urban area is likely to be less severe than a crash in a suburban area, when all other variables are controlled. The percentages in Table 100 indicate that the likelihood of fatal and severe injury crashes (i.e., K, A, and B) changes from 29.6 percent in urban areas to 32.9 percent in suburban areas. The trend with area type can be attributed to higher operating speeds in suburban areas. A crash that occurs at a higher speed typically has higher severity than a crash at a lower speed.

Anos Tuns	Crash Severity		
Area Type	K+A	В	С
Urban	4.6%	25.0%	70.4%
Suburban	6.6%	26.3%	67.1%

Table 100, One-wa	v street signalized inter	rsection severity distrib	oution based on area type.
Table 100. One-wa	y street signanzed meet	section severity distribution	Judon Dascu on area type.

Left-Turn Lane

The left-turn lane variable indicates the presence of left-turn lanes on the major street. It should be noted that the left-turn lane is possible on one approach only because the major street always serves one-way traffic. About 44 percent of crashes occurred at intersections with a left-turn lane on the major street. The negative sign for the left-turn lane variable in Table 99 indicates that the chance of high severity crashes decreases when a left-turn lane is present. Table 101 suggests that the probability of fatal and severe injury crashes decreases from 33.2 percent when a left-turn lane is not present to 27.7 percent when one is present. Providing a left-turn lane helps maintain free flow of the through traffic and thus reduces the chance of rear-end crashes at higher speeds.

Table 101. One-way street signalized intersection severity distribution based on major-
street left-turn lane.

Laft Turn Long on Maior Street	Crash Severity			
Left-Turn Lane on Major Street	K+A	В	С	
Not present	5.7%	27.5%	66.8%	
Present	4.6%	23.1%	72.3%	

Channelization

The channelization variable indicates the presence of right-turn channelization at an intersection. Separate variables representing channelization on major and minor streets were included in the calibrated model. About 20 percent of intersections where crashes occurred had right-turn channelization on the major street. Similarly, 22 percent of intersections had right-turn channelization on the minor street. The negative sign for the right-turn channelization variable on the minor street in Table 99 indicates that the chance of high severity crashes decreases when channelization is present. In contrast, the positive sign for major-street channelization indicates that the chance of non-incapacitating injury crashes increases when channelization is present. The coefficient for fatal and incapacitating injury was very small and not statistically significant. Even though insignificant, there will be a small change in fatal and incapacitating injury crashes that the probability of fatal and severe injury crashes decreases from 33 percent when right-turn channelization on the minor street is not present to 23.5 percent when it is present. At the same time, the presence of channelization on the major street increases the likelihood of non-incapacitating injury from 23.4 percent to 34.8 percent.

S4moot	Channelization -		Crash Severity		
Street		K+A	В	С	
Minor	Not present	5.4%	27.6%	67.0%	
MIIIOF	Present	4.5%	19.0%	76.4%	
Maian	Not present	5.3%	23.4%	71.2%	
Major	Present	4.5%	34.8%	60.7%	

Table 102. One-way street signalized intersection severity distribution based on channelization.

STOP-CONTROLLED INTERSECTIONS

The database included 503 FI crashes reported in California, Illinois, Michigan, and Texas. Initially, a model was developed to predict the proportion of crashes in each severity category (i.e., K, A, B, and C). However, due to a small number of reported fatal crashes, the model provided unreliable and insignificant estimates. Thus, the fatal and incapacitating injury crashes were combined into one category during the final model calibration. The results of crash severity models are summarized in Table 103 for stop-controlled intersections. Although many variables were considered, the results presented in Table 103 show the variables that are significant in influencing crash severities. An examination of the coefficient values and their implication on the corresponding crash severity levels are documented in a subsequent section. In general, the sign and magnitude of the regression coefficients in Table 103 are logical and consistent with previous research findings.

	Fatality (K)+			
	Incapacitating	Injury (A)	Non-incapacitating Injury (B)	
Variable	Coefficient	t-value	Coefficient	t-value
Alternative specific constant	-1.1062	-2.46	-0.3610	-1.02
Area type (1=urban, 0=suburban)	-0.3823	-1.16	-0.2775	-1.34
Lighting presence (1=present, 0=absent)	-0.9178	-1.88	-0.3972	-1.07
Presence of minor-street left lanes (1=present,				
0=absent)			-0.4343	-0.91
Added effect of Illinois (1=Illinois, 0=other)	0.8174	4.13	0.8174	4.13
Observations	503 crashes (K=	2; A=45; B=1	61; C=295)	

Table 103. Crash SDF: stop-controlled intersections.

Note: Possible injury is the base scenario, with coefficients restricted at zero. Shaded cell means coefficient is highly insignificant.

In addition to the variables included in the calibrated model, there may be differences between states, such as weather and driver behavior, that were not included in the model. The definition of a reportable crash also varied per state. Thus, an indicator variable for each state was included in the calibrated model to account for the overall differences between the states, which could not be explained with the variables included in the model. However, the coefficients for Michigan and California were very small and not statistically significant. This finding suggests that the state effects are very similar among Texas, Michigan, and California. The Michigan and California indicator variables were removed as a result.

The coefficient for Illinois was relatively large and statistically significant. Its positive sign in Table 103 indicates that a crash at stop-controlled intersections in Illinois is likely to be more severe than a crash in Texas, Michigan, or California, when all other variables are controlled. This difference may be explained by different highway design practices (e.g., use of different

roadside design features, etc.), terrain, weather pattern, driver behavior, and reporting accuracy for the various states.

The coefficients in Table 103 were combined with Equation 225 to obtain the deterministic component of each crash severity level for crashes at stop-controlled intersections. The form of each model is described by Equations 243 and 244.

$$V_{K+A} = -1.1062 + (-0.3823 \times I_{urban}) + (-0.9178 \times I_{light}) + (0.0000 \times I_{ltmn})$$
(243)

$$V_{B} = -0.3610 + (-0.2775 \times I_{urban}) + (-0.3972 \times I_{light}) + (-0.4343 \times I_{ltmn})$$
(244)

where,

- I_{urban} = area type indicator variable (= 1.0 if urban, 0.0 if suburban).
- I_{light} = lighting presence indicator variable (= 1.0 if present, 0.0 otherwise).
 - I_{ltmn} = presence of exclusive left-turn lanes on the minor-street indicator variable (= 1.0 if present, 0.0 if absent).

The probability of each severity level is obtained by combining Equations 243 and 244 with Equations 231–233.

Predicted Probabilities

The subsections below provide the influence of variables on crash severities at stop-controlled intersections.

Area Type

The sites considered in the project were located in both urban and suburban areas. About 48 percent of the crashes occurred at intersections in urban areas. The relationship between area type and severity level is shown in Table 104. The negative value of the associated coefficient (in Table 103) indicates that a crash in an urban area is likely to be less severe than a crash in a suburban area, when all other variables are controlled. The percentages in Table 104 indicate that the likelihood of fatal and severe injury crashes (i.e., K, A, and B) changes from 37.2 percent in urban areas to 44.5 percent in suburban areas. The trend with area type can be attributed to higher operating speeds in suburban areas. A crash that occurs at a higher speed typically has higher severity than a crash at a lower speed.

Table 104. Stop-controlled intersection severity distribution based on area type.			
A noo Trino	Crash Severity		
Area Type	K+A	В	С
Urban	7.9%	29.3%	62.8%
Suburban	10.3%	34.2%	55.5%

 Table 104. Stop-controlled intersection severity distribution based on area type.

Lighting

About 92 percent of intersections where crashes occurred had the presence of lighting. The relationship between lighting presence and severity level is shown in Table 105. The negative

value of the associated coefficient (in Table 103) indicates that a crash occurring at a lighted intersection is likely to be less severe than a crash at an unlighted intersection, when all other variables are controlled. The percentages in Table 105 indicate that the fatal and severe injury crash percentage at an unlighted intersection is 53.2 percent, and it is 40.0 percent when lighting is present. At unlighted intersections, a driver's perception might be obscured and reaction time might be longer, which could result in hitting the other vehicle, road user, or object at a higher rate of speed.

Table 105. Stop-controlled intersection severity distribution based on lighting presence.				
Lighting	Crash Severity			
Lighting	K+A	В	С	
Not present	16.8%	36.4%	46.8%	
Present	8.6%	31.4%	60.0%	

Table 105. Stop-controlled intersection severity distribution based on lighting presence.

Left-Turn Lanes

The left-turn lane variable indicates the presence of a left-turn lane on one or both approaches of the minor street. Only about 5 percent of intersections where crashes occurred had left-turn lane presence on the minor street. The negative sign of the associated coefficient (in Table 103) indicates that the chance of non-incapacitating injury crashes decreases when a left-turn lane is present. The coefficient for fatal and incapacitating injury was very small and not statistically significant. Even though insignificant, there will be a small change in fatal and incapacitating injury crash proportion because the sum of all crash severity proportions must equal 1. Table 106 suggests that the probability of non-incapacitating injury crashes decreases from 32.3 percent when a left-turn lane is not present to 23.6 percent when one is present.

Table 106. Stop-controlled intersection severity distribution based on minor-street left-turn lane.

Left-Turn Lane on Minor Street	Crash Severity			
Lett-Turn Lane on Wintor Street	K+A	B	С	
Not present	9.0%	32.3%	58.7%	
Present	10.2%	23.6%	66.2%	

CHAPTER 10. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The following summary and conclusions have been developed based on the research conducted for this project:

- Crash and roadway data from California and Illinois were obtained from the HSIS, while data from Texas, Michigan, and Oregon were obtained directly from the state highway agencies. Data for the five states were combined for model calibration and the development of CMFs. These data were enriched through the inclusion of additional road inventory data extracted from Google Earth and Street View. The enhanced database was then combined with the crash data to form the highway safety database needed for model and CMF development and calibration.
- Since pedestrian exposure data were not available in the electronic databases that were assembled for this project, on-site data collection activities were done to supplement the data already collected. A sample of 40 intersections in California and 24 intersections in San Antonio, Texas, were therefore selected for data collection for the pedestrian evaluation. The data for pedestrians were used to assess and recalibrate the existing predictive method for estimating pedestrian safety in HSM Chapter 12.
- SPFs and CMFs were estimated for the following four types of two-way and three types of one-way roadway segments on urban and suburban arterials:
 - Six-lane two-way undivided arterials (6U).
 - Six-lane two-way divided arterials (i.e., including a raised or depressed median) (6D).
 - Seven-lane two-way arterials including a center TWLTL (7T).
 - Eight-lane two-way divided arterials (i.e., including a raised or depressed median) (8D).
 - Two-lane one-way arterials (2O).
 - Three-lane one-way arterials (3O).
 - Four-lane one-way arterials (40).
- SPFs and CMFs were estimated for the following intersection types for both two-way street intersections and one-way street intersections on urban and suburban arterials:
 - Three-leg intersections with stop control on the minor-road approach (3ST).
 - Three-leg signalized intersections (3SG).
 - \circ Four-leg intersections with stop control on the minor-road approaches (4ST).
 - Four-leg signalized intersections (4SG).
- The intersections were separated by the type of operational characteristics of each leg: two-way (x2), or one-way (x1). Hence, the models and CMFs were estimated for 12 different intersection types: 2×2, 1×2, and 1×1 for all four categories of intersections.
- A safety prediction method for six-or-more-lane and one-way urban and suburban arterials as well as intersections located on these facilities that is suitable for incorporation in the HSM was documented. It included CMFs that describe the observed relationship between crash frequency and on-street parking, roadside fixed objects, median width, lighting, automated speed enforcement, lane width, outside shoulder width, rail-highway crossing, median barriers, major industrial driveways, major

commercial driveways, minor driveways, and right shoulder width for six-or-more-lane and one-way segments. For intersections, the CMFs influencing crash counts included those related to intersection left-turn lanes, intersection left-turn signal phasing, intersection right-turn lanes, right turn on red, lighting, red-light cameras, number of lanes, intersection right-turn channelization, and U-turn prohibition. Finally, the CMFs influencing vehicle-pedestrian crashes included those associated with bus stops, schools, and alcohol sales establishments.

• A safety prediction method for estimating the proportion of crashes by severity levels was also documented. The SDFs are available for urban and suburban six-or-more-lane arterials; one-way streets; 2×2 signalized intersections with six or more lanes; 1×2 and 1×1 signalized intersections; and 2×2 (with six or more lanes), 1×2, and 1×1 stop-controlled intersections. Various factors influence the severity of collisions. They include lane width, right shoulder width, the presence of an exclusive left-turn lane on the major road, the presence of right-turn channelization on the major road, the presence of right-turn channelization on the major others.

The following recommendations have been developed based on the research conducted for this project:

- Although not very common, facilities such as eight-lane undivided, eight-lane with twoway left-turn lane, and 10-lane divided arterials do exist. Predictive models could not be estimated for these facilities due to the small sample size. Further research may be needed to include such facilities in safety prediction methodologies.
- Similarly, a small number of one-way segments with one lane or five lanes do exist. Similar to the previous point, the sample size was too small. Hence, additional research is needed to include such facilities in safety prediction methodologies.
- Frontage roads mostly serve one-way traffic. One-way frontage roads were included in this research for developing models for 1×2/1×1 intersections. However, the safety performance of these intersections may differ from a typical one-way street intersection. Additional research is needed to quantify the difference.
- Since speed limits are higher in suburban areas, the geometric variables may have a different effect in suburban areas than in urban areas. Although the SDFs capture the overall safety performance difference, more research is needed to capture the performance of each geometric feature by area type. This is applicable to the proposed new material for HSM Chapter 12 as well as the existing HSM Chapter 12 material.

REFERENCES

American Association of State Highway and Transportation Officials (AASHTO), 2010. Highway safety manual, 1st edition. AASHTO, Washington, DC.

Bauer, K., Harwood, D., 1998. Statistical models of at-grade intersection accidents—addendum. Report No. FHWA-RD-99-094. Midwest Research Institute, Kansas City, Missouri.

Bonneson, J., Geedipally, S., Pratt, M., Lord, D., 2012. Safety prediction methodology and analysis tool for freeways and interchanges. NCHRP Project 17-45 Report. Texas A&M Transportation Institute, College Station, Texas.

Bonneson, J., McCoy, P., 1997. Capacity and operational effects of midblock left-turn lanes. NCHRP Report 395. University of Nebraska-Lincoln, Lincoln, Nebraska.

Bonneson, J., Pratt, M., 2008. Calibration factors handbook: safety prediction models calibrated with Texas highway system data. Report No. FHWA/TX-08/0-4703-5. Texas A&M Transportation Institute, College Station, Texas.

Bonneson, J., Pratt, M., 2009. Roadway safety design workbook. Report No. FHWA/TX-09/0-4703-P2. Texas A&M Transportation Institute, College Station, Texas.

Cameron, A.C., Trivedi, P.K., 1998. Regression analysis of count data. Cambridge University Press, Cambridge, UK.

Cheng, L., Geedipally, S.R., Lord, D., 2012. Examining the Poisson-Weibull generalized linear model for analyzing crash data. Safety Science 54, 38–42.

Eisele, W., Yager, C., Brewer, M., Frawley, W., Park, E., Lord, D., Robertson, J., Kuo, P., 2011. Safety and economic impacts of converting two-way frontage roads to one-way: methodology and findings. Report No. FHWA/TX-11/0-5856-1. Texas A&M Transportation Institute, College Station, Texas.

FHWA, 2008. Planning glossary. Federal Highway Administration, U.S. Department of Transportation, Washington, DC. Available at <u>http://www.fhwa.dot.gov/planning/glossary/glossary_listing.cfm?sort=definition&TitleStart=A</u>.

Geedipally, S.R., Lord, D., 2010. Investigating the effect of modeling single-vehicle and multi-vehicle crashes separately on confidence intervals of Poisson-gamma models. Accident Analysis & Prevention 42(4), 1273–1282.

Geedipally, S.R., Lord, D., Dhavala, S.S., 2012. The negative binomial-Lindley generalized linear model: characteristics and application using crash data. Accident Analysis & Prevention 45(2), 258–265.

Geedipally, S.R., Lord, D., Park, B.-J., 2009. Analyzing different parameterizations of the varying dispersion parameter as a function of segment length. Transportation Research Record 2103, 108–118.

Geedipally, S.R., Patil, S., Lord, D., 2010. Examination of Methods for Estimating Crash Counts According to their Collision Type. Transportation Research Record 2165, 12–20.

Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B., 2004. Bayesian data analysis, 2nd edition. Chapman & Hall/CRC, London, England.

Gross, F., Jovanis, P.P., Eccles, K.A., 2009. Safety effectiveness of lane and shoulder width combinations on rural, two-lane, undivided roads. In: Proceedings of the 88th Annual Meeting of the Transportation Research Board (Compendium of Papers, DVD), No. 09-1294, Washington, DC.

Gross, F., Persaud, B., Lyon, C., 2010. A guide to developing quality crash modification factors. Report No. FHWA-SA-10-032. Federal Highway Administration, Washington, D.C.

Hadi, M., Aruldhas, J., Chow, L., Wattleworth, J., 1995. Estimating safety effects of crosssection design for various highway types using negative-binomial regression. Transportation Research Record 1500, 169–177.

Harwood, D.W., Bauer, K.M., Potts, I.B., Torbic, D.J., Richard, K.R., Kohlman Rabbani, K., Hauer, E., Elefteriadou, L., 2002. Safety effectiveness of intersection left- and right-turn lanes. Report No. FHWA-RD-02-089. Federal Highway Administration, Washington, DC.

Harwood, D.W., Bauer, K.M., Richard, K.R., Gilmore, D.K., Graham, J.L., Potts, I.B., Torbic, D.J., Hauer, E., 2007. NCHRP Document 129: Phases I and II: methodology to predict the safety performance of urban and suburban arterials (Web-only document). Transportation Research Board, Washington, DC.

Harwood, D.W., Council, F.M., Hauer, E., Hughes, W.E., Vogt, A., 2000. Prediction of the expected safety performance of rural two-lane highways. Report No. FHWA-RD-99-207. Federal Highway Administration, Washington, DC.

Harwood, D.W., Torbic, D.J., Gilmore, D.K., Bokenkroger, C.D., Dunn, J.M., Zegeer C.V., Srinivasan, R., Carter, D., Raborn, C., 2008. NCHRP 129: Phase III: methodology to predict the safety performance of urban and suburban arterials: pedestrian safety prediction methodology (Web-only document). Transportation Research Board, Washington, DC.

Hauer, E., 1997. Observational before-after studies in road safety: estimating the effect of highway and traffic engineering measures on road safety. Pergamon Press, Elsevier Science, Ltd., Oxford, United Kingdom.

Hauer, E., 2001. Overdispersion in modeling accidents on road sections and in empirical Bayes estimation. Accident Analysis & Prevention 33(6), 799–808.

Heydari, S., Fu, L., Lord, D., Mallick, B.K., 2016. Multilevel Dirichlet process mixture analysis of railway grade crossing crash data. Analytic Methods in Accident Research 9, 27–43.

Heydecker, B.G., Wu J., 2001. Identification of sites for road accident remedial work by Bayesian statistical methods: an example of uncertain inference. Advances in Engineering Software 32, 859–869.

Hilbe, J.M., 2011. Negative binomial regression, 2nd edition. Cambridge University Press, Cambridge, UK.

Hocherman, I., Hakkert, A., Bar-Ziv, J., 1990. Safety of one-way urban streets. Transportation Research Record 1270, 22–27.

Jonsson, T., Lyon, C., Ivan, J.N., Washington, S., van Schalkwyk, I., Lord, D., 2009. Investigating differences in the performance of safety performance functions estimated for total crash count and crash count by crash type. Transportation Research Record 2102, 115–123.

Lord, D., 2008. Methodology for estimating the variance and confidence intervals of the estimate of the product of baseline models and AMFs. Accident Analysis & Prevention 40(3), 1013–1017.

Lord, D., Geedipally, S.R., Guikema, S., 2010. Extension of the application of Conway-Maxwell-Poisson models: analyzing traffic crash data exhibiting under-dispersion. Risk Analysis 30(8), 1268–1276.

Lord, D., Guikema, S., Geedipally, S.R., 2008. Application of the Conway-Maxwell-Poisson generalized linear model for analyzing motor vehicle crashes. Accident Analysis & Prevention 40(3), 1123–1134.

Lord, D., Kuo, P.-F., 2012. Examining the effects of site selection criteria for evaluating the effectiveness of traffic safety improvement countermeasures. Accident Analysis & Prevention 47, 52–63.

Lord, D., Manar, A., Vizioli, A., 2005. Modeling crash-flow-density and crash-flow-V/C ratio for rural and urban freeway segments. Accident Analysis & Prevention 37(1), 185–199.

Lord, D., Mannering, F., 2010. The statistical analysis of crash-frequency data: a review and assessment of methodological alternatives. Transportation Research—Part A 44(5), 291–305.

Lord, D., Washington, S.P., Ivan, J.N., 2005. Poisson, Poisson-gamma and zero inflated regression models of motor vehicle crashes: balancing statistical fit and theory. Accident Analysis & Prevention 37(1), 35–46.

Mannering, F.L., Bhat, C.R. 2014. Analytic methods in accident research: Methodological frontier and future directions. Analytic Methods in Accident Research 1, 1-22.

Mannering, F.L., Shankar, V., Bhat, C.R., 2016. Unobserved heterogeneity and the statistical analysis of highway accident data. Analytic Methods in Accident Research 11, 1-16.

McFadden, D., 1981. Econometric models of probabilistic choice. In Structural Analysis of Discrete Data with Econometric Applications. Eds. C. Manski and D. McFadden. MIT Press, Cambridge, MA.

Miaou, S.-P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus Empirical Bayes. Transportation Research Record 1840, 31–40.

Miaou, S.-P., Song, J.J., Mallick, B.K., 2003. Roadway traffic crash mapping: a space-time modeling approach. Journal of Transportation and Statistics 6(1), 33–57.

Milton, J.C., Shankar, V.N., Mannering, F.L., 2008. Highway accident severities and the mixed logit model: an exploratory empirical analysis. Accident Analysis & Prevention 40(1), 260–266.

Mitra, S., Washington, S.P., 2007. On the nature of over-dispersion in motor vehicle crash prediction models. Accident Analysis & Prevention 39(3), 459–468.

Oh, J., Washington, S.P., Nam, D., 2006. Accident prediction model for railway-highway interfaces. Accident Analysis & Prevention 38(2), 346–356.

Petritsch, T., Challa, S., Huang, H., Mussa, R., 2007. Evaluation of geometric and operational characteristics affecting the safety of six-lane divided roadways. Report No. BD-543-RPWO-5. Sprinkle Consulting, Inc., Lutz, Florida.

Savolainen, P.T., Mannering, F.L., Lord, D., Quddus, M.A., 2011. The statistical analysis of highway crash-injury severities: a review and assessment of methodological alternatives. Accident Analysis & Prevention 43(5), 1666–1676.

Sawalha, Z., Sayed, T., 2001. Evaluating safety of urban arterial roadways. ASCE Journal of Transportation Engineering 127(2), 151–158.

Shirazi, M., Lord, D., Dhavala, S.S., Geedipally, S.R., 2016. A Semiparametric Negative Binomial Generalized Linear Model for Modeling Over Dispersed Count Data with a Heavy Tail: Characteristics and Applications to Crash Data. Accident Analysis & Prevention 91, 10–18.

Smith, W., Hart, J., 1949. A case study of one-way streets. Traffic Quarterly (Eno Foundation for Highway Traffic Control) 3(4), 378–399.

Squires, C., Parsonson, P., 1989. Accident comparison of raised median and two-way left-turn lane median treatments. Transportation Research Record 1239, 30–40.

Stemley, J., 1998. One-way streets provide superior safety and convenience. ITE Journal 68(8), 47–50.

Wang, C., Quddus, M., Ison, S., 2011. Prediction of accident frequency at their severity levels and its application in site ranking using two-stage mixed multivariate model. In: Transportation Research Board 90th Annual Meeting, Washington, DC.

Wiley, T., 1959. Traffic engineering in the city of New York. ITE Traffic Engineering 29(12), 11–13, 50.

Winkelmann, R., 2008. Econometric analysis of count data, 5th edition. Springer-Verlag, Berlin, Heidelberg.

Wu, L., Lord, D., Zou, Y., 2015. Validation of CMFs Derived from Cross Sectional Studies Using Regression Models. Transportation Research Record 2514, 88–96.

Xie, Y., Zhang, Y., 2008. Crash frequency analysis with generalized additive models. Transportation Research Record 2061, pp. 39-45.

Yates, D., Moore, D., McCabe, G., 1999. The practice of statistics, 1st edition. W.H. Freeman, New York.

Ye, F., Lord, D., 2014. Comparing three commonly used crash severity models on sample size requirements: multinomial logit, ordered probit and mixed logit models. Analytic Methods in Accident Research 1, 72–85.

Zegeer, C., 1983. Feasibility of roadway countermeasures for pedestrian accident experience. Pedestrian Impact Injury and Assessment. P-121. Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 39–49.

Zegeer, C., Opelia, K., Cynecki, M., 1983. Pedestrian signal alternatives. Report No. FHWA/RD-83/102. Federal Highway Administration, Washington, DC.

Zou, Y., Lord, D., Zhang, Y., 2013. Comparison of Sichel and negative binomial models in estimating empirical Bayes estimates. Transportation Research Record 2392, 11–21.

Draft Version of the Revised HSM Chapter 12—Predictive Method for Urban and Suburban Arterials

12.1. INTRODUCTION

This chapter presents the predictive method for urban and suburban arterial facilities. A general introduction to the *Highway Safety Manual* (HSM) predictive method is provided in the Part C---Introduction and Applications Guidance.

The predictive method for urban or suburban arterial facilities provides a structured methodology to estimate the expected average crash frequency, crash severity, and collision types for facilities with known characteristics. All types of crashes involving vehicles of all types, bicycles, and pedestrians are included, with the exception of crashes between bicycles and pedestrians. The predictive method can be applied to existing sites, design alternatives to existing sites, new sites, or for alternative traffic volume projections. An estimate can be made for crash frequency in a period of time that occurred in the past (i.e., what did or would have occurred) or in the future (i.e., what is expected to occur). The development of the Safety Performance Functions (SPFs) in Chapter 12 is documented by Harwood et al.(8) (9), and Lord et al. (11). The Crash Modification Factors (CMFs) used in this chapter have been reviewed and updated by Harkey et al. (6) and in related work by Srinivasan et al. (14) and Lord et al. (11). The SPF coefficients, default collision type distributions, and default nighttime crash proportions have been adjusted to a consistent basis by Srinivasan et al. (15) and Lord et al. (11).

This chapter presents the following information about the predictive method for urban and suburban arterial facilities:

- A concise overview of the predictive method.
- The definitions of the facility types included in Chapter 12, and site types for which predictive models have been developed for Chapter 12.
- The steps of the predictive method in graphical and descriptive forms.
- Details for dividing an urban or suburban arterial facility into individual sites, consisting of intersections and roadway segments.
- SPFs for urban and suburban arterials. Note that the SPFs are grouped separately for arterials with five or fewer lanes and either arterials with six or more lanes or one-way arterials, since they were developed under two different projects.
- CMFs applicable to the SPFs in Chapter 12.
- Guidance for applying the Chapter 12 predictive method, and limitations of the predictive method specific to Chapter 12.
- Sample problems illustrating the application of the Chapter 12 predictive method for urban and suburban arterials.

12.2 OVERVIEW OF THE PREDICTIVE METHOD

The predictive method provides an 18-step procedure to estimate the "expected average crash frequency," N_{expected} (by total crashes, crash severity, or collision type) of a roadway network, facility, or site. In the predictive method, the roadway is divided into individual sites, which are homogenous roadway segments and intersections. A facility consists of a contiguous set of individual intersections and roadway segments referred to as "sites." Different facility types are determined by surrounding land use, roadway cross-section, and degree of access. For each facility type, a number of different site types may exist, such as divided and undivided roadway segments and signalized and unsignalized intersections. A roadway network consists of a number of contiguous facilities.

The method is used to estimate the expected average crash frequency of an individual site, with the cumulative sum of all sites used as the estimate for an entire facility or network. The estimate is for a given time period of interest (in years) during which the geometric design and traffic control features are unchanged and traffic volumes are known or forecasted. The estimate relies on estimates made using predictive models which may be combined with observed crash data using the Empirical Bayes (EB) Method.

The predictive models used within Chapter 12 predictive method are described in detail in Section 12.3.

The predictive models used in Chapter 12 to predict average crash frequency, $N_{\text{predicted}}$, are of the general form shown in Equations 12-1 and 12-2.

$$N_{\text{predicted }x} = \left(\sum_{z} N_{bxz} + N_{pedx} + N_{bikex}\right) \times C_{x}$$
(12-1)

$$N_{bxz} = N_{spfxz} \times (CMF_{1x} \times CMF_{2x} \times ... \times CMF_{yx})$$
(12-2)

Where:

N _{predicted x}	= predicted average crash frequency for a specific year for site type x ;
N _{bxz}	 predicted average crash frequency of collision type z (multiple-vehicle, single-vehicle, or driveway-related) per year for site type x;
N _{pedx}	= predicted average crash frequency of vehicle-pedestrian collisions per year for site type <i>x</i> ;
N_{bikex}	= predicted average crash frequency of vehicle-bicycle collisions per year for site type <i>x</i> ;
C_x	= calibration factor to adjust SPF for local conditions for site type <i>x</i> ;
N _{spf x z}	= predicted average crash frequency of collision type z (multiple-vehicle, single-vehicle, or driveway-related) per year for site type x for base conditions; and
CMF_{yx}	= crash modification factors specific to site type x and specific geometric design or traffic control feature y.

The predictive models in Chapter 12 provide estimates of the crash severity and collision type distributions for roadway segments and intersections. The SPFs in Chapter 12 address two general crash severity levels: fatal-and-injury (FI) and property-damage-only (PDO) crashes. FI crashes include crashes involving all levels of injury severity including fatalities, incapacitating injuries, nonincapacitating injuries, and possible injuries. The relative proportions of crashes for the two severity levels are determined from separate SPFs for each severity level. For arterials with five or fewer lanes, the default estimates of the crash severity and crash type distributions are both provided with the SPFs for roadway segments and intersections in Section 12.6. For arterials with six or more lanes and one-way arterials, the default estimates of the crash type distributions are provided with the SPFs for roadway segments and intersections in Section 12.6. For arterials with the SPFs for roadway segments and intersections in Section 12.6. For arterials with the SPFs for roadway segments and intersections in Section 12.6. For arterials with the SPFs for roadway segments and intersections in Section 12.6. For arterials with the SPFs for roadway segments and intersections in Section 12.6. Section 12.6. Section 12.6 whereas the default estimates of the crash severity distributions are provided with the SPFs for roadway segments and intersections in Section 12.6. Section 12.8.

12.3 URBAN AND SUBURBAN ARTERIALS—DEFINITIONS AND PREDICTIVE MODELS IN CHAPTER 12

This section provides the definitions of the facility and site types and the predictive models for each of the site types included in Chapter 12. These predictive models are applied following the steps of the predictive method presented in Section 12.4

12.3.1. Definition of Chapter 12 Facility Types

The predictive method in Chapter 12 addresses the following urban and suburban arterial facilities: two-, four- and sixlane undivided facilities, four-, six- and eight-lane divided facilities, three-, five- and seven-lane facilities with a center two-way left-turn lane (TWLTL), and one-way arterials with two, three and four lanes. Divided arterials are nonfreeway facilities (i.e., facilities without full control of access) that have lanes in the two directions of travel separated by a raised or depressed median. Such facilities may have occasional grade-separated interchanges, but these are not the primary form of access. The predictive models do not apply to any section of an arterial within the limits of an interchange which has free-flow ramp terminals on the arterial of interest. Arterials with a flush separator (i.e., a painted median) between the lanes in the two directions of travel are considered undivided facilities, not divided facilities. Separate prediction models are provided for arterials with flush separator that serves as a center two-way left-turn lane.

The terms "highway" and "road" are used interchangeably in this chapter and apply to all urban and suburban arterials independent of official state or local highway designation.

Classifying an area as urban, suburban, or rural is subject to the roadway characteristics, surrounding population and land uses and is at the user's discretion. In the HSM, the definition of "urban" and "rural" areas is based on Federal Highway Administration (FHWA) guidelines which classify "urban" areas as places inside urban boundaries where the population is greater than 5,000 persons. "Rural" areas are defined as places outside urban areas where the population is less than 5,000 persons. The HSM uses the term "suburban" to refer to outlying portions of an urban area; the predictive method does not distinguish between urban and suburban portions of a developed area. The term "arterial" refers to facilities that meet the FHWA definition of "roads serving major traffic movements (high-speed, high volume) for travel between major points" (5).

Table 12-1 identifies the specific site types on urban and suburban arterial highways that have predictive models. For roadway segments with five or fewer lanes, separate SPFs are used for each individual site to predict multiple-vehicle nondriveway collisions, driveway-related collisions, single-vehicle collisions, vehicle-pedestrian collisions, and vehicle-bicycle collisions. A similar set of SPFs is used for roadway segments with six or more lanes and one-way roadway segments, except that multiple-vehicle nondriveway collisions and driveway-related collisions are combined with a single SPF for all multiple-vehicle collisions (nondriveway or driveway-related). For intersections of arterial highways with five or fewer lanes, separate SPFs are used for each individual site to predict multiple-vehicle collisions, single-vehicle collisions. A similar set of SPFs is used for each individual site to predict multiple-vehicle collisions, single-vehicle collisions, with five or fewer lanes, separate SPFs are used for each individual site to predict multiple-vehicle collisions, single-vehicle collisions, weith five or fewer lanes, separate SPFs are used for each individual site to predict multiple-vehicle collisions, single-vehicle collisions, vehicle-pedestrian collisions, and vehicle-bicycle collisions. A similar set of SPFs is used for intersections of arterials with six or more lanes and intersections of one-way arterials, except that multiple-vehicle and single-vehicle collisions are combined with a single SPF for all multiple- or single-vehicle collisions. The predictions from SPFs are combined to predict the total average crash frequency at an individual site.

Site Type	Site Types with SPFs in Chapter 12			
Roadway Segments	Two-lane undivided arterials (2U)			
	Three-lane arterials including a center TWLTL (3T)			
	Four-lane undivided arterials (4U)			
	Four-lane divided arterials (including a raised or depressed median) (4D)			
	Five-lane arterials including a center TWLTL (5T)			
	Six-lane undivided arterials (6U)			
	Six-lane divided arterials (including a raised or depressed median) (6D)			
	Seven-lane arterials including a center TWLTL (7T)			
	Eight-lane divided arterials (including a raised or depressed median) (8D)			
	Two-lane one-way arterials (2O)			
	Three-lane one-way arterials (3O)			
	Four-lane one-way arterials (4O)			
Intersections	Unsignalized three-leg intersection (stop control on minor-road approaches) (3ST)			
	Signalized three-leg intersection (3SG)			
	Unsignalized four-leg intersection (stop control on minor-road approaches) (4ST)			
	Signalized four-leg intersection (4SG)			

Table 12-1. Urban and Suburban Arterial Site Type SPFs included in Chapter 12

These specific site types are defined as follows:

- *Two-lane undivided arterial (2U)*—a roadway consisting of two lanes with a continuous cross-section providing two directions of travel in which the lanes are not physically separated by either distance or a barrier.
- *Three-lane arterials including a center TWLTL (3T)*—a roadway consisting of three lanes with a continuous cross-section providing two directions of travel in which center lane is a TWLTL.
- *Four-lane undivided arterials (4U)*—a roadway consisting of four lanes with a continuous cross-section providing two directions of travel in which the lanes are not physically separated by either distance or a barrier.
- *Four-lane divided arterials (including a raised or depressed median) (4D)*—a roadway consisting of four lanes with a continuous cross-section providing two directions of travel in which the lanes are physically separated by either distance or a barrier.
- Five-lane arterials including a center TWLTL (5T)—a roadway consisting of five lanes with a continuous crosssection providing two directions of travel in which the center lane is a TWLTL.
- *Six-lane undivided arterial (6U)*—a roadway consisting of six lanes with a continuous cross-section providing two directions of travel in which the lanes are not physically separated by either distance or a barrier.
- Six-lane divided arterials (including a raised or depressed median) (6D)—a roadway consisting of six lanes with a continuous cross-section providing two directions of travel in which the lanes are physically separated by either distance or a barrier.
- Seven-lane arterials including a center TWLTL (7T)—a roadway consisting of seven lanes with a continuous crosssection providing two directions of travel in which the center lane is a TWLTL.
- *Eight-lane divided arterials (including a raised or depressed median) (8D)*—a roadway consisting of eight lanes with a continuous cross-section providing two directions of travel in which the lanes are physically separated by either distance or a barrier.
- *Two-lane one-way arterial (20)*—a roadway consisting of two lanes with a continuous cross-section providing one direction of travel in which the lanes are not physically separated by either distance or a barrier.

- *Three-lane one-way arterial (30)*—a roadway consisting of three lanes with a continuous cross-section providing one direction of travel in which the lanes are not physically separated by either distance or a barrier.
- *Four-lane one-way arterial (40)*—a roadway consisting of four lanes with a continuous cross-section providing one direction of travel in which the lanes are not physically separated by either distance or a barrier.
- *Three-leg intersection with stop control (3ST)*—an intersection of an urban or suburban arterial and a minor road. A stop sign is provided on the minor road approach to the intersection only.
- Three-leg signalized intersection (3SG)—an intersection of an urban or suburban arterial and one minor road. Signalized control is provided at the intersection by traffic signalss.
- *Four-leg intersection with stop control (4ST)*—an intersection of an urban or suburban arterial and two minor roads. A stop sign is provided on both the minor road approaches to the intersection.
- *Four-leg signalized intersection (4SG)*—an intersection of an urban or suburban arterial and two minor roads. Signalized control is provided at the intersection by traffic signals.

12.3.2. Predictive Models for Urban and Suburban Arterial Roadway Segments

The predictive models can be used to estimate total average crashes (i.e., all crash severities and collision types) or can be used to predict average frequency of specific crash severity types or specific collision types. The predictive model for an individual roadway segment or intersection combines the SPFs, CMFs, and a calibration factor. Chapter 12 contains separate predictive models for roadway segments and for intersections.

The predictive models for roadway segments estimate the predicted average frequency of crashes occurring outside the limits of intersections that are non-intersection-related. The roadway segment predictive models estimate crashes that would occur regardless of the presence of the intersection.

The predictive models for roadway segments are presented in Equations 12-3 and 12-4.

$$N_{\text{predicted }rs} = C_r \times (N_{br} + N_{pedr} + N_{biker}) \tag{12-3}$$

$$N_{br} = N_{brmv} + N_{brsv} \tag{12-4}$$

Where:

Npredicted rs	= predicted average crash frequency of an individual roadway segment for the selected year;
N _{br}	= predicted average crash frequency of an individual roadway segment (excluding vehicle-pedestrian and vehicle-bicycle collisions);
N_{pedr}	 predicted average crash frequency of vehicle-pedestrian collisions for an individual roadway segment;
N_{biker}	= predicted average crash frequency of vehicle-bicycle collisions for an individual roadway segment;
N _{brmv}	 predicted average crash frequency of multiple-vehicle collisions for an individual roadway segment;
N _{brsv}	 predicted average crash frequency of single-vehicle crashes for an individual roadway segment; and
C_r	= calibration factor for roadway segments of a specific type developed for use for a particular geographical area.

(12-5)

Equation 12-3 shows that roadway segment crash frequency is estimated as the sum of three components: N_{br} , N_{pedr} , and N_{biker} . Equation 12-3 shows that N_{br} is further separated into two components by collision type: multiple-vehicle collisions and single-vehicle crashes. Only for arterial roadway segments with five or fewer lanes, multiple-vehicle collisions, N_{brmv} , are further separated into two components as shown in Equation12-5. For two-way arterial roadway segments with six or more lanes or one-way arterial segments, driveway-related and nondriveway collisions are combined.

$$N_{brmv} = N_{brnondwy} + N_{brdwy}$$

Where:

- $N_{brondwy}$ = predicted average crash frequency of multiple-vehicle nondriveway collisions for an individual roadway segment; and
- N_{brdwy} = predicted average crash frequency of multiple-vehicle driveway-related collisions for an individual roadway segment.

The components of N_{br} are noted as N_{brz} where z indicates the collision type: "mv" for multiple-vehicle collisions, "sv" for single-vehicle collisions, "nondwy" for multiple-vehicle nondriveway collisions, and "dwy" for multiple-vehicle driveway-related collisions. The predictive models used to predict each component of N_{br} are of the general form shown in Equation 12-6.

$$N_{brz} = N_{spfrs} \times (CMF_{1r} \times CMF_{2r} \times \dots \times CMF_{nr})$$
(12-6)

Where:

N _{brz}	=	predicted average crash frequency of collision type z ($z = mv$, sv , nondwy, or dwy) for an individual roadway segment;
N _{spf} rs z	=	predicted average crash frequency of collision type z ($z = mv$, sv , nondwy, or dwy) for an individual roadway segment for base conditions; and

$$CMF_{1r}$$
... CMF_{nr} = crash modification factors for roadway segments.

Some of the CMFs in Equation 12-6 only apply to specific categories of roadway segments (two-way roadway segments with 5 or fewer lanes, two-way roadway segments with 6 or more lanes, and one-way roadway segments). Also, some CMFs only apply to a particular collision type (i.e., multiple-vehicle or single-vehicle). Therefore, there is a distinct set of applicable CMFs for each category of roadway segments and collision type. The detailed information regarding the application of each CMF is presented in Section 12-7.

Thus, the SPFs, adjustment factors, and CMFs are applied to determine the components of the total average crash frequency: N_{brmv} (sum of $N_{brnondwy}$ and N_{brdwy} for roadway segments with five or fewer lanes), N_{brsv} , N_{pedr} , and N_{biker} , which together provide a prediction of total average crash frequency for a roadway segment.

Equation 12-3 through 12-6 are applied to estimate roadway segment crash frequencies for all crash severity levels combined (i.e., total crashes) or for FI or PDO crashes.

12.3.3. Predictive Models for Urban and Suburban Arterials Intersections

The predictive models for intersections estimate the predicted total average crash frequency for crashes that occur within the limits of an intersection and those that occur on the intersection legs that are intersection-related (i.e., occurring as a result of the presence of the intersection). The predictive model for intersections is presented in Equation 12-7.

$$N_{\text{predicted int}} = C_i \times (N_{bi} + N_{pedi} + N_{bikei})$$

(12-7)

Where:

N _{predicted} int	= predicted average crash frequency of an individual intersection for the selected year;
N_{bi}	= predicted average crash frequency of an individual intersection (excluding vehicle-pedestrian and vehicle-bicycle collisions);
N_{pedi}	= predicted average crash frequency of vehicle-pedestrian collisions for an individual intersection;
N_{bikei}	= predicted average crash frequency of vehicle-bicycle collisions for an individual intersection; and

$$C_i$$
 = calibration factor for intersections developed for use for a particular geographical area.

Equation 12-7 shows that the intersection crash frequency is estimated as the sum of three components: N_{bi} , N_{pedi} , and N_{bikei} . Only for intersections with five or fewer lanes (on all intersection legs), N_{bi} is further separated into two components by collision type shown in Equation 12-8.

$$N_{bi} = N_{binv} + N_{bisv} \tag{12-8}$$

Where:

 N_{bimv} = predicted average crash frequency of multiple-vehicle collisions for an individual intersection; and

 N_{bisv} = predicted average crash frequency of single-vehicle crashes for an individual intersection.

The predictive models used to predict N_{bi} or its components N_{binv} and N_{bisv} (for intersections of two-way arterials with five or fewer lanes) are of the general form shown in Equation 12-9.

$$N_{biz} = N_{spf \text{ int } z} \times (CMF_{1i} \times CMF_{2i} \times ... \times CMF_{ni})$$
(12-9)

Where:

N _{brz}	· ·	e crash frequency of collision type z ($z = mv$ or sv for intersections of two-way e or fewer lanes) for an individual intersection;
$N_{spf int z}$		e crash frequency of collision type z ($z = mv$ or sv for intersections of two-way e or fewer lanes) for an individual intersection for base conditions; and
$CMF_{1i}CMF_{ni}$	crash modification	on factors for intersections.

Some of the CMFs in Equation 12-9 only apply to certain categories of intersections (intersections of two-way arterials with five or fewer lanes, intersections of two-way arterials with six or more lanes, or intersections of one-way arterials). The CMFs shown in Equation 12-9 do not apply to vehicle-pedestrian and vehicle-bicycle collisions. A separate set of CMFs that apply to vehicle-pedestrian collisions at signalized intersections is presented in Section 12.7.3. The detailed information regarding the application of each CMF is presented in Section 12-7.

Thus, the SPFs and adjustment factors are applied to determine the components of the total average crash frequency: N_{bi} (sum of N_{binv} and N_{bisv} for intersections of arterials with five or fewer lanes), N_{pedi} , and N_{bikei} , which together provide a prediction of total average crash frequency for an intersection.

Equation 12-7 through 12-9 are applied to estimate intersection crash frequencies for all crash severity levels combined (i.e., total crashes) or for FI or PDO crashes.

The SPFs for urban and suburban arterial highways are presented in Section 12.6. The associated CMFs for each of the SPFs are presented in Section 12.7 and summarized in Table 12-31. Only specific CMFs associated with each SPF are applicable to that SPF (as these CMFs have base conditions which are identical to the base conditions of the SPF). The calibration factors, C_r , and C_i , can be determined using the procedures in Part C, Appendix A.1.1. Due to continual change in the crash frequency and severity distributions with time, the value of the calibration factors may change for the selected year of the study period.

12.4. PREDICTIVE METHOD STEPS FOR URBAN AND SUBURBAN ARTERIALS

The predictive method for urban and suburban arterials is shown in Figure 12-1. Applying the predictive method yields an estimate of the expected average crash frequency and distribution of crash severity and collision type for an urban or suburban arterial facility. The components of the predictive models in Chapter 12 are determined and applied in Steps 9, 10, and 11 of the predictive method. The information to apply each step is provided in the following sections and in Part C, Appendix A. In some situations, certain steps will not require any action. For example, a new facility will not have observed crash data and therefore steps relating to the EB Method require no action.

There are 18 steps in the predictive method. In some situations, certain steps will not be needed because data are not available or the step is not applicable to the situation at hand. In other situations, steps may be repeated if an estimate is desired for several sites or for a period of several years. In addition, the predictive method can be repeated as necessary to undertake crash estimation for each alternative design, traffic volume scenario, or proposed treatment option (within the same period to allow for comparison).

The following explains the details of each step of the method as applied to urban and suburban arterials.

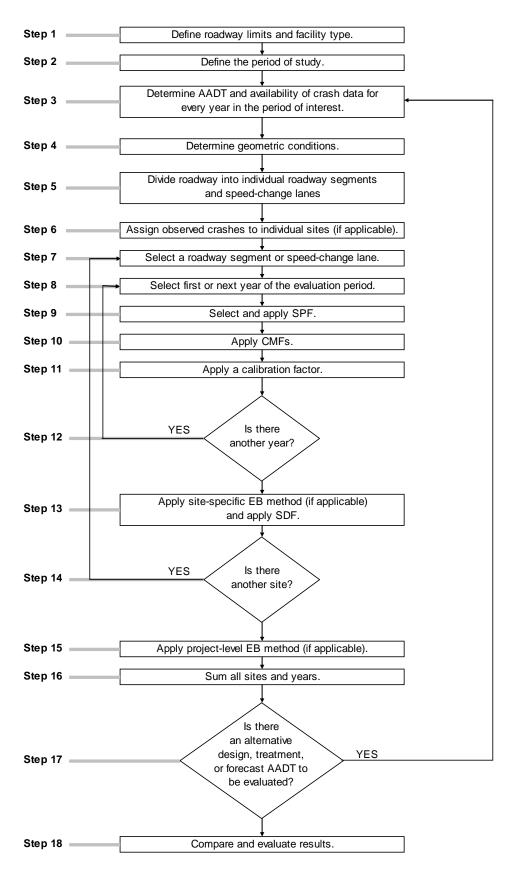


Figure 12-1. The HSM Predictive Method

Step 1—Define the limits of the roadway and facility types in the study network, facility, or site for which the expected average crash frequency, severity, and collision types are to be estimated.

The predictive method can be undertaken for a roadway network, a facility, or an individual site. A site is either an intersection or a homogeneous roadway segment. Sites may consist of a number of types, such as signalized and unsignalized intersections. The definitions of urban and suburban arterials, intersections, and roadway segments and the specific site types included in Chapter 12 are provided in Section 12.3.

The predictive method can be undertaken for an existing roadway, a design alternative for an existing roadway or a new roadway (which may be either unconstructed or yet to experience enough traffic to have observed crash data).

The limits of the roadway of interest will depend on the nature of the study. The study may be limited to only one specific site or group of contiguous sites. Alternatively, the predictive method can be applied to a very long corridor for the purpose of network screening which is discussed in Chapter 4.

Step 2—Define the period of interest.

The predictive method can be undertaken for either a past period or a future period. All periods are measured in years. Years of interest will be determined by the availability of observed or forecast average annual daily traffic (AADT) volumes, observed crash data, and geometric design data. Whether the predictive method is used for a past or future period depends upon the purpose of the study. The period of study may be:

- A past period (based on observed AADTs) for:
- An existing roadway network, facility, or site. If observed crash data are available, the period of study is the period of time for which the observed crash data are available and for which (during that period) the site geometric design features, traffic control features and traffic volumes are known.
- An existing roadway network, facility, or site for which alternative geometric design features or traffic control features are proposed (for near term conditions).
- A future period (based on forecast AADTs) for:
- An existing roadway network, facility, or site for a future period where forecast traffic volumes are available.
- An existing roadway network, facility, or site for which alternative geometric design or traffic control features are proposed for implementation in the future.
- A new roadway network, facility, or site that does not currently exist but is proposed for construction during some future period.

Step 3—For the study period, determine the availability of AADT, pedestrian crossing volumes, and, for an existing roadway network, the availability of observed crash data (to determine whether the EB Method is applicable).

Determining Traffic Volumes

The SPFs used in Step 9 include AADT volumes (vehicles per day) as a variable. For a past period, the AADT may be determined by an automated recording or estimated by a sample survey. For a future period, the AADT may be a forecast estimate based on appropriate land use planning and traffic volume forecasting models or based on the assumption that current traffic volumes will remain relatively constant.

For each roadway segment, the AADT is the average daily two-way 24-hour traffic volume on that roadway segment in each year of the period to be evaluated selected in Step 8.

For each intersection, the two-way AADT of both intersecting roads are required in each predictive model. The two intersecting roads are designated as major and minor as follows: if both of the intersecting roads have two-way or one-way traffic, the major and minor roads are defined as the road with the higher and lower AADT, respectively. However, if one of the intersecting roads has two-way traffic and the other has one-way traffic, the major road is defined as the

one-way road (and the minor road as the two-way road) regardless of the AADTs. The AADT of the major and minor roads are denoted as AADT_{maj} and AADT_{min}, respectively.

For intersections of two-way arterials with five or fewer lanes, if the AADTs on the two legs of an intersecting road differ, the larger of the two AADT values is used. For intersections of two-way arterials with six or more lanes and intersections of one-way arterials, if the AADTs on the two legs of an intersecting road differ, the average of the two AADT values is used.

In many cases, it is expected that AADT data will not be available for all years of the evaluation period. In that case, an estimate of AADT for each year of the evaluation period is interpolated or extrapolated, as appropriate. If there is not an established procedure for doing this, the following may be applied within the predictive method to estimate the AADTs for years for which data are not available.

- If AADT data are available for only a single year, that same value is assumed to apply to all years of the before period.
- If two or more years of AADT data are available, the AADTs for intervening years are computed by interpolation.
- The AADTs for years before the first year for which data are available are assumed to be equal to the AADT for the first year.
- The AADTs for years after the last year for which data are available are assumed to be equal to the last year.

If the EB Method is used (discussed below), AADT data are needed for each year of the period for which observed crash frequency data are available. If the EB Method will not be used, AADT data for the appropriate time period—past, present, or future—determined in Step 2 are used.

For signalized intersections, the pedestrian volumes crossing each intersection leg are determined for each year of the period to be evaluated. The pedestrian crossing volumes for each leg of the intersection are then summed to determine the total pedestrian crossing volume for the intersection. Where pedestrian volume counts are not available, they may be estimated using the guidance presented in Table 12-28. Where pedestrian volume counts are not available for each year, they may be interpolated or extrapolated in the same manner as explained above for AADT data.

Determining Availability of Observed Crash Data

Where an existing site or alternative conditions for an existing site are being considered, the EB Method is used. The EB Method is only applicable when reliable observed crash data are available for the specific study roadway network, facility, or site. Observed data may be obtained directly from the jurisdiction's crash report system. At least two years of observed crash frequency data are desirable to apply the EB Method. The EB Method and criteria to determine whether the EB Method is applicable are presented in Part C, Appendix A.2.1.

The EB Method can be applied at the site-specific level (i.e., observed crashes are assigned to specific intersections or roadway segments in Step 6) or at the project level (i.e., observed crashes are assigned to a facility as a whole). The site-specific EB Method is applied in Step 13. Alternatively, if observed crash data are available but cannot be assigned to individual roadway segments and intersections, the project level EB Method is applied (in Step 15).

If observed crash frequency data are not available, then Steps 6, 13, and 15 of the predictive method are not conducted. In this case the estimate of expected average crash frequency is limited to using a predictive model (i.e., the predictive average crash frequency).

Step 4—Determine geometric design features, traffic control features, and site characteristics for all sites in the study network.

The following geometric design and traffic control features are used to apply the SPFs and CMFs in Step 9 and Step 10 and estimate the expected average crash frequency of roadway segments and intersections:

For Two-Way Arterials with Five or Fewer Lanes

Length of roadway segment (miles)

- AADT (vehicles per day)
- Number of through lanes
- Presence/type of median (undivided, divided by raised or depressed median, center TWLTL)
- Width of median, if present (feet)
- Presence/type of on-street parking (parallel vs. angle; one side vs. both sides of the street)
- Number of driveways for each driveway type (major commercial, minor commercial; major industrial/institutional; minor industrial/institutional; major residential; minor residential; other)
- Roadside fixed object density (fixed objects/mile, only obstacles 4-in or more in diameter that do not have a breakaway design are counted)
- Average offset to roadside fixed objects from edge of traveled way (feet)
- Presence/absence of roadway lighting
- Speed category (based on actual traffic speed or posted speed limit)
- Presence of automated speed enforcement

For Two-Way Arterials with Six or More Lanes

- Length of roadway segment (miles)
- AADT (vehicles per day)
- Number of through lanes
- Presence/type of median (undivided, divided by raised or depressed median, center TWLTL)
- Widths of traffic lanes, outside shoulders and median, (if present (feet)
- Presence of median barriers
- Density of railroad crossing (crossing/mile)
- Driveway density for the following driveway types: major commercial, major industrial/institutional, and all minor driveways (for any land use)
- Roadside fixed object density (fixed objects/mile, only obstacles 4-in or more in diameter that do not have a breakaway design are counted)
- Average offset to roadside fixed objects from edge of traveled way (feet)
- Speed category (based on actual traffic speed or posted speed limit)
- Presence of automated speed enforcement

For One-Way Arterials

Length of roadway segment (miles)

- AADT (vehicles per day)
- Number of through lanes
- Width of right shoulder (feet)
- Presence/type of on-street parking (parallel vs. angle; one side vs. both sides of the street)
- Driveway density for the following driveway types: major commercial, and all minor driveways (of any type)
- Roadside fixed object density (fixed objects/mile, only obstacles 4-in or more in diameter that do not have a breakaway design are counted)
- Average offset to roadside fixed objects from edge of traveled way (feet)
- Speed category (based on actual traffic speed or posted speed limit)
- Presence of automated speed enforcement

For Intersections of Two-Way Arterials with Five or Fewer Lanes

For all intersections within the study area, the following geometric and traffic control features are identified:

- Number of intersection legs (3 or 4)
- Type of traffic control (minor-road stop or signal)
- AADT of each intersecting road
- Number of approaches with aleft-turn lane (all approaches, 0,1, 2, 3, or 4 for signalized intersections; only major approaches, 0, 1, or 2, for stop-controlled intersections)
- Number of major-road approaches with left-turn signal phasing (0, 1, or 2) (signalized intersections only) and type of left-turn signal phasing (permissive, protected/permissive, or protected)
- Number of approaches with a right turn lane (all approaches, 0, 1, 2, 3, or 4 for signalized intersections; only major approaches, 0, 1, or 2, for stop-controlled intersections)
- Number of approaches with right-turn-on-red operation prohibited (0, 1, 2, 3, or 4) (signalized intersections only)
- Presence/absence of intersection lighting
- Presence of red light camera (signalized intersections only)
- Proportion of nighttime crashes for unlighted intersections

For Intersections of Two-Way Arterials with Six or More Lanes:

- Number of intersection legs (3 or 4)
- Type of traffic control (minor-road stop or signal)
- AADT of each intersecting road
- Number of lanes on each intersecting road

- Number of major-road approaches with left-turn signal phasing (0, 1, or 2) (signalized intersections only) and type of left-turn signal phasing (permissive, protected/permissive, or protected)
- Number of major-road approaches with channelized right turn lane
- Number of approaches with right-turn-on-red operation prohibited (0, 1, 2, 3, or 4) (signalized intersections only)
- Number of approaches from which U-turn operation is prohibited (0, 1, 2, 3, or 4) (signalized intersections only)
- Presence/absence of intersection lighting
- Presence of red light camera (signalized intersections only)
- Proportion of nighttime crashes for unlighted intersections

For Intersections of One-Way Arterials:

- Number of intersection legs (3 or 4)
- Type of traffic control (minor-road stop or signal)
- AADT of the intersecting roads
- Number of lanes on the intersecting roads
- Number of approaches with right-turn-on-red operation prohibited (0, 1, 2, 3, or 4) (signalized intersections only)
- Presence/absence of intersection lighting
- Presence of red light camera (signalized intersections only)
- Proportion of nighttime crashes for unlighted intersections

In addition, for signalized intersections, the following land use and demographic data are needed to estimate the expected average crash frequency of vehicle-pedestrian collisions:

- Daily pedestrian volumes crossing the intersection legs
- Maximum number of traffic lanes to be crossed by a pedestrian from corner to corner in any crossing maneuver at the intersection considering the presence of refuge islands
- Number of bus stops within 1,000 feet of the intersection
- Presence of schools within 1,000 feet of the intersection
- Number of alcohol sales establishments within 1,000 feet of the intersection

Step 5—Divide the roadway network or facility into individual homogenous roadway segments and intersections which are referred to as sites.

Using the information from Step 1 and Step 4, the roadway is divided into individual sites, consisting of individual homogenous roadway segments and intersections. The definitions and methodology for dividing the roadway into individual intersections and homogenous roadway segments for use with the Chapter 12 predictive models are provided in Section 12.5. When dividing roadway facilities into small homogenous roadway segments, limiting the segment length to a minimum of 0.10 miles will decrease data collection and management efforts.

Step 6—Assign observed crashes to the individual sites (if applicable).

Step 6 only applies if it was determined in Step 3 that the site-specific EB Method was applicable. If the site-specific EB Method is not applicable, proceed to Step 7. In Step 3, the availability of observed data and whether the data could be assigned to specific locations was determined. The specific criteria for assigning crashes to individual roadway segments or intersections are presented in Part C, Appendix A.2.3.

All crashes that occur within the limits of an intersection and intersection-related crashes (i.e., crashes related to the presence of an intersection) that occur on an intersection leg, are assigned to the intersection and to be used in the EB Method together with the predicted average crash frequency for the intersection. Crashes that occur between intersections, and are not related to the presence of an intersection, are assigned to the roadway segment on which they occur. Such crashes are used in the EB Method together with the predicted average crash frequency for the roadway segment.

Step 7—Select the first or next individual site in the study network.

In Step 5, the roadway network within the study limits has been divided into a number of individual homogenous sites (intersections and roadway segments).

The outcome of the HSM predictive method is the expected average crash frequency of the entire study network, which is the sum of the all of the individual sites, for each year in the study. Note that this value will be the total number of crashes expected to occur over all sites during the period of interest. If a crash frequency is desired, the total can be divided by the number of years in the period of interest.

The estimation for each site (roadway segments or intersection) is conducted one at a time. Steps 8 through 13 are repeated for each site.

Step 8—For the selected site, select the first or next year in the period of interest.

The individual years of the evaluation period may have to be analyzed one year at a time for any particular roadway segment or intersection because SPFs are dependent on AADT, which may change from year to year.

For each site, steps 9 through 11 are repeated for each year in the study period.

Step 9—For the selected site, determine and apply the appropriate SPFs for the site's facility type and traffic control features.

Steps 9 through 13 are repeated for each year of the evaluation period as part of the evaluation of any particular roadway segment or intersection. The predictive models in Chapter 12 follow the general form shown in Equations 12-1 and 12-2. Other than vehicle-pedestrian and vehicle-bicycle collisions, the predicted average crash frequency of each collision type is determined using an SPF, which is adjusted to site specific conditions using a set of CMFs (in Step 10). The total predicted average crash frequency (including all collision types) for each site is adjusted to local jurisdiction conditions (in Step 11) using a calibration factor (C). The SPFs, CMFs, and calibration factor attained in Steps 9, 10, and 11 are applied to calculate the predicted average crash frequency for the selected year of the selected site.

The SPFs (which are regression models based on observed crash data for a set of similar sites) determine the predicted average crash frequency (of each collision type) for a site with the base conditions (i.e., a specific set of geometric design and traffic control features). The SPFs are calculated using the AADT determined in Step 3 (AADT_{maj} and AADT_{min} for intersections) for the selected year. A detailed explanation and overview of the SPFs are provided in Section C.6.3.

The SPFs developed for Chapter 12 are presented in Section 12.6 and summarized in Table 12-2. For the selected site, the appropriate set of SPFs for the site type (intersection or roadway segment) and the geometric and traffic control features (undivided roadway, divided roadway, stop-controlled intersection, signalized intersection, etc.) should be selected. Different sets of SPFs apply to arterial roadway segments with five or fewer lanes (provided in Section 12.6.1.1) and roadway segment with six or more lanes or one-way arterial roadway segments (provided in Section 12.6.1.2). Similarly, different sets of SPFs apply to intersections of arterials with five or fewer lanes (provided in Section 12.6.2.1) and intersection of arterials with six or more lanes or intersections of one-way arterials.

Each SPF determined in Step 9 is provided with default distributions of crash severity and manner of collision (presented in Section 12.6). These default distributions can benefit from being updated based on local data as part of the calibration process presented in Part C, Appendix A.1.1.

Step 10—Multiply the result obtained in Step 9 by the appropriate CMFs to adjust base conditions to site specific geometric design and traffic control features.

In order to account for differences between the base conditions and the specific conditions of the site, CMFs are used to adjust the SPF estimate. An overview of CMFs and guidance for their use is provided in Section C.6.4, including the limitations of current knowledge related to the effects of simultaneous application of multiple CMFs. In using multiple CMFs, engineering judgment is required to assess the interrelationships and/or independence of individual elements or treatments being considered for implementation within the same project.

All CMFs used in Chapter 12 have the same base conditions as the SPFs used in Chapter 12 (i.e., when the specific site has the same condition as the SPF base condition, the CMF value for that condition is 1.00). Only the CMFs presented in Section 12.7 may be used as part of the Chapter 12 predictive method. Table 12-31 indicates which CMFs are applicable to the SPFs in Section 12.6.

The CMFs for roadway segments are those described in Section 12.7.1. These CMFs are applied as shown in Equation 12-6. The CMFs for intersections are those described in Section 12.7.2, which apply to both signalized and stop-controlled intersections, and in Section 12.7.3, which apply to vehicle-pedestrian collisions at signalized intersections only. These CMFs are applied as shown in Equation 12-9 and Equation 12-35.

In Chapter 12, the multiple- and single-vehicle base crashes determined in Step 9 and the CMF values calculated in Step 10 are then used to estimate the vehicle-pedestrian and vehicle-bicycle base crashes for roadway segments and intersections (present in Sections 12.6.1 and 12.6.2 respectively).

Step 11—Multiply the result obtained in Step 10 by the appropriate calibration factor

The SPFs used in the predictive method have each been developed with data from specific jurisdictions and time periods. Calibration to local conditions will account for these differences. A calibration factor (C_r for roadway segments or C_i for intersections) is applied to the total predicted average crash frequency (including all collision types) for each site. An overview of the use of calibration factors is provided in Section C.6.5. Detailed guidance for the development of calibration factors is included in Part C, Appendix A.1.1.

Steps 9, 10, and 11 together implement the predictive models in Equation 12-3 through Equation 12-9 to determine the predicted average crash frequency for each site within the facility.

Step 12—If there is another year to be evaluated in the study period for the selected site, return to Step 8. Otherwise, proceed to Step 13.

This step creates a loop through Steps 8 to 12 that is repeated for each year of the evaluation period for the selected site.

Step 13—Apply site-specific EB Method (if applicable).

Whether the site-specific EB Method is applicable is determined in Step 3. The site-specific EB Method combines the Chapter 12 predictive model estimate of predicted average crash frequency, $N_{\text{predicted}}$, with the observed crash frequency of the specific site, N_{observed} . This provides a more statistically reliable estimate of the expected average crash frequency of the selected site.

In order to apply the site-specific EB Method, the overdispersion parameter, k, for the SPF is also used. This is in addition to the material in Part C, Appendix A.2.4. The overdispersion parameter provides an indication of the statistical reliability of the SPF. The closer the overdispersion parameter is to zero, the more statistically reliable the SPF. This parameter is used in the site-specific EB Method to provide a weighting to N_{predicted} and N_{observed}.

If appropriate, the site-specific EB Method should be applied to a future time period. The estimated expected average crash frequency obtained above applies to the time period in the past for which the observed crash data were obtained. Part C, Appendix A.2.6 provides a method to convert the estimate of expected average crash frequency for a past time period to a future time period. In doing this, consideration is given to significant changes in geometric or roadway characteristics caused by the treatments considered for future time period.

Step 14—If there is another site to be evaluated, return to Step 7. Otherwise, proceed to Step 15.

This step creates a loop through Steps 7 to 14 that is repeated for each roadway segment or intersection within the facility.

Step 15—Apply the project level EB Method (if the site-specific EB Method is not applicable).

This step is only applicable to existing conditions when observed crash data are available, but cannot be accurately assigned to specific sites (e.g., the crash report may identify crashes as occurring between two intersections, but is not accurate to determine a precise location on the segment). Detailed description of the project level EB Method is provided in Part C, Appendix A.2.5.

Step 16—Sum all sites and years in the study to estimate total crash frequency.

The total estimated number of crashes within the network or facility limits during a study period of n years is calculated using Equation 12-10:

$$N_{total} = \left(\sum_{\substack{all\\roadway\\segments}} N_{rs}\right) + \left(\sum_{\substack{all\\intersections}} N_{int}\right)$$
(12-10)

Where:

- N_{total} = total expected number of crashes within the limits of an urban or suburban arterial for the period of interest. Or, the sum of the expected average crash frequency for each year for each site within the defined roadway limits during the study period;
- N_{rs} = expected average crash frequency during the study period for a roadway segment using the predictive method; and
- N_{int} = expected average crash frequency during the study period for an intersection using the predictive method.

Equation 12-10 represents the total number of crashes estimated to occur during the study period. Equation 12-11 is used to estimate the total expected average crash frequency within the network or facility limits for an average year during the study period.

$$N_{\text{total average}} = \frac{N_{\text{total}}}{n} \tag{12-11}$$

Where:

 $N_{\text{total average}}$ = total expected average crash frequency estimated to occur within the defined network or facility limits for an average year during the study period; and

$$n$$
 = number of years in the study period.

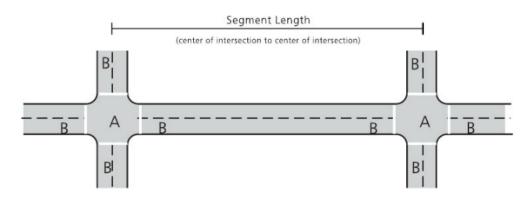
Step 17—Determine if there is an alternative design, treatment, or forecast AADT to be evaluated.

Steps 3 through 16 of the predictive method are repeated as appropriate for the same roadway limits but for alternative conditions, treatments, periods of interest, or forecast AADTs.

Step 18—Evaluate and compare results.

The predictive method is used to provide a statistically reliable estimate of the expected average crash frequency within defined network or facility limits over a given period of time, for given geometric design and traffic control features, and known or estimated AADT. In addition to estimating total crashes, the estimate can be made for different crash severity types and different manners of collision. For roadway segments and intersections of arterials with five or fewer lanes, default distributions of crash severity are provided with each SPF in Section 12.6. For roadway segments and intersections of arterials with six or more lanes and one-way arterials, default distributions of crash severity can be

predicted using Severity Distribution Functions (SDFs) in Section 12.8. Default distributions for manners of collisions for all site roadway segment and intersection types are provided with each SPF in Section 12.6. These default distributions can benefit from being updated based on local data as part of the calibration process presented in Part C, Appendix A.1.1.


12.5 ROADWAY SEGMENTS AND INTERSECTIONS

Section 12.4 provides an explanation of the predictive method. Sections 12.5 through 12.9 provide the specific detail necessary to apply the predictive method steps. Detail regarding the procedure for determining a calibration factor to apply in Step 11 is provided in Part C, Appendix A.1. Detail regarding the EB Method, which is applied in Steps 6, 13, and 15, is provided in Part C, Appendix A.2.

In Step 5 of the predictive method, the roadway within the defined limits is divided into individual sites, which are homogenous roadway segments and intersections. A facility consists of a contiguous set of individual intersections and roadway segments, referred to as "sites." A roadway network consists of a number of contiguous facilities. Predictive models have been developed to estimate crash frequencies separately for roadway segments and intersections. The definitions of roadway segments and intersections presented below are the same as those used in the FHWA *Interactive Highway Safety Design Model* (IHSDM) (4).

Roadway segments begin at the center of an intersection and end at either the center of the next intersection or where there is a change from one homogeneous roadway segment to another homogeneous segment. The roadway segment model estimates the frequency of roadway-segment-related crashes which occur in Region B in Figure 12-2. When a roadway segment begins or ends at an intersection, the length of the roadway segment is measured from the center of the intersection.

Chapter 12 provides predictive models for stop-controlled (three- and four-leg) and signalized (three- and four-leg) intersections. The intersection models estimate the predicted average frequency of crashes that occur within the limits of an intersection (Region A of Figure 12-2) and intersection-related crashes that occur on the intersection legs (Region B in Figure 12-2) within 250 feet of the center of the intersection.

- A All crashes that occur within this region are classified as intersection crashes.
- B Crashes in this region may be segment or intersection related, depending on the characteristics of the crash.

Figure 12-2. Definition of Roadway Segments and Intersections

The segmentation process produces a set of roadway segments of varying length, each of which is homogenous with respect to characteristics such as traffic volumes and key roadway design characteristics and traffic control features. Figure 12-2 shows the segment length, L, for a single homogenous roadway segment occurring between two intersections. However, several homogenous roadway segments can occur between two intersections. A new (unique) homogenous segment begins at the center of each intersection and where there is a change in at least one of the following characteristics of the roadway:

For Arterials with Five or Fewer Lanes

- AADT (vehicles/day)
- Number of through lanes
- Presence of a center TWLTL
- Presence/type of median
- Median width (feet). Measure the median width at successive points along the roadway. Round the measured median width at each point to the nearest 10 ft. If the rounded value exceeds 100 ft, then set it to 100 ft. Begin a new segment if the rounded value for the current point changes from that of the previous point (e.g., from 30 to 20 ft).
- Presence/type of on-street parking
- Roadside fixed object density (fixed objects/mile, only obstacles 4-in or more in diameter that do not have a breakaway design are counted)
- Presence of lighting
- Presence of automated speed enforcement
- Speed category (based on actual traffic speed or posted speed limit)

For Arterials with Six or More Lanes

- AADT (vehicles/day)
- Number of through lanes
- Presence of a center TWLTL
- Presence/type of median
- Median width (feet). Measure the median width at successive points along the roadway. Round the measured median width at each point to the nearest 10 ft. If the rounded value exceeds 90 ft, then set it to 90 ft. Begin a new segment if the rounded value for the current point changes from that of the previous point (e.g., from 30 to 20 ft).
- Lane width (feet). Measure the lane width at successive points along the roadway. Compute an average lane width for each point and round this average to the nearest 0.5 ft. Begin a new segment if the rounded value for the current point changes from that of the previous point (e.g., from 11.5 to 12.0 ft).
- Outside shoulder width (feet). Measure the outside shoulder width at successive points along the roadway. Compute an average shoulder width for each point and round this average to the nearest 1.0 ft. Begin a new segment if the rounded value for the current point changes from that of the previous point (e.g., from 6 to 7 ft).
- Roadside fixed object density (fixed objects/mile, only obstacles 4-in or more in diameter that do not have a breakaway design are counted)

- Presence of automated speed enforcement
- Speed category (based on actual traffic speed or posted speed limit)

For One-way Arterials

- AADT (vehicles/day)
- Number of through lanes
- Lane width (feet). Measure the lane width at successive points along the roadway. Compute an average lane width for each point and round this average to the nearest 0.5 ft. Begin a new segment if the rounded value for the current point changes from that of the previous point (e.g., from 11.5 to 12.0 ft).
- Right shoulder width (feet). Measure the right shoulder width at successive points along the roadway. Compute an average shoulder width for each point and round this average to the nearest 1.0 ft. Begin a new segment if the rounded value for the current point changes from that of the previous point (e.g., from 6 to 7 ft).
- Presence/type of on-street parking
- Roadside fixed object density (fixed objects/mile, only obstacles 4-in or more in diameter that do not have a breakaway design are counted)
- Presence of automated speed enforcement
- Speed category (based on actual traffic speed or posted speed limit)

In addition, each individual intersection is treated as a separate site for which the intersection-related crashes are estimated using the predictive method.

There is no minimum roadway segment length, L, for application of predictive models for roadway segments. When dividing roadway facilities into small homogenous roadway segments, limiting the segment length to a minimum of 0.10 miles will minimize calculation effort and not affect results.

Applying the Empirical Bayes Method

In order to apply the site-specific EB Method, observed crashes are assigned to the individual roadway segments and intersections. Observed crashes that occur between intersections are classified as either intersection-related or roadway-segment related. The methodology for assigning crashes to roadway segments and intersections for use in the site-specific EB Method is presented in Part C, Appendix A.2.3. The EB Method uses a parameter associated with each SPF, known as the overdispersion parameter, k. The overdispersion parameter provides an indication of the statistical reliability of the SPF. The closer the overdispersion parameter is to zero, the more statistically reliable the SPF. In applying the EB Method for urban and suburban arterials with five or fewer lanes, whenever the predicted average crash frequency for a specific roadway segment during the multiyear study period is less than 1/k (the inverse of the overdispersion parameter for the relevant SPF), consideration should be given to combining adjacent roadway segment applies only to the SPFs for urban and suburban arterials with five or fewer lanes which were developed using fixed-value overdispersion parameters. It is not needed in Chapters 10 or 11, or in Chapter 12 for other roadway segment types because the relevant SPFs were developed using length-dependent overdispersion parameters.

12.6 SAFETY PERFORMANCE FUNCTIONS

In Step 9 of the predictive method, the appropriate SPFs are used to predict crash frequencies for specific base conditions. SPFs are regression models for estimating the predicted average crash frequency of individual roadway segments or intersections. Each SPF in the predictive method was developed with observed crash data for a set of similar sites. The SPFs, like all regression models, estimate the value of a dependent variable as a function of a set of

independent variables. In the SPFs developed for the HSM, the dependent variable estimated is the predicted average crash frequency for a roadway segment or intersection under base conditions, and the independent variables are the AADTs of the roadway segment or intersections legs (and, for roadway segments, the length of the roadway segment).

The predicted crash frequencies for base conditions obtained with the SPFs are used in the predictive models in Equation 12-3 through 12-9. A detailed discussion of SPFs and their use in the HSM is presented in Sections 3.5.2 and C.6.3. The SPFs in Chapter 12 are summarized in Table 12-2.

Chapter 12 SPFs for Urban and Suburban Arterials	SPF Components by Collision Type	SPF Equations, Tables, and Figures
Two-way roadway segments with five or fewer lanes	multiple-vehicle nondriveway collisions	Equations 12-12, 12-13, 12-14; Tables 12-3, 12-4; Figure 12-3
	multiple-vehicle driveway-related collisions	Equations 12-15, 12-16, 12-17; Table 12-5; Figures 12-4, 12-5, 12-6, 12-7, 12-8
	single-vehicle crashes	Equations 12-18, 12-19, 12-20; Tables 12-6, 12-7; Figure 12-9
Two-way roadway segments with six or more lanes	total multiple-vehicle collisions (driveway- related and nondriveway)	Equation 12-21; Tables 12-8, 12-9; Figure 12-10
	single-vehicle crashes	Equation 12-23; Tables 12-10, 12-11; Figure 12-11
One-way roadway segments	total multiple-vehicle collisions (driveway- related and nondriveway)	Equation 12-21; Tables 12-12, 12-13; Figure 12-12
	single-vehicle crashes	Equation 12-23; Tables 12-14, 12-15; Figure 12-13
All segments	vehicle-pedestrian collisions	Equation 12-24; Table 12-16
	vehicle-bicycle collisions	Equation 12-25; Table 12-17
Intersections of two-way arterials with five or fewer	multiple-vehicle collisions	Equations 12-26, 12-27, 12-28; Tables 12-20, 12-21; Figures 12-14, 12-15, 12-16, 12-17
lanes	single-vehicle crashes	Equations 12-29, 12-30, 12-31, 12-32; Tables 12-22, 12-23; Figures 12-18, 12-19, 12-20, 12-21
Intersections of two-way arterials with at least one intersecting street having six or more lanes; intersections of one-way arterials	total multiple-vehicle collisions and single- vehicle crashes	Equation 12-33; Tables 12-24, 12-25, 12-26; Figures 12-22, 12-23, 12-24, 12-25, 12-26, 12-27, 12-28, 12-29
All intersections	vehicle-pedestrian collisions	Equations 12-35, 12-36, 12-37; Tables 12-27, 12-28, 12-29
	vehicle-bicycle collisions	Equation 12-38; Table 12-30

Table 12-2. Safety Performance Functions included in Chapter 12

14 CDE 6

....

Some highway agencies may have performed statistically-sound studies to develop their own jurisdiction-specific SPFs derived from local conditions and crash experience. These models may be substituted for models presented in this chapter. Criteria for the development of SPFs for use in the predictive method are addressed in the calibration procedure presented in Part C, Appendix A.

12.6.1. Safety Performance Functions for Urban and Suburban Arterial Roadway Segments

The predictive model for estimating average crash frequency on a particular urban or suburban arterial roadway segment was presented in Equations 12-3 through 12-6. The effect of AADT on crash frequency is incorporated through the SPF, while the effects of geometric design and traffic control features are incorporated through the CMFs. The SPFs

for urban and suburban arterial roadway segments are presented in this section. Urban and suburban arterial roadway segments are defined in Section 12.3.

SPFs and adjustment factors are provided for the 12 types of roadway segments defined in Section 12.3.1. Guidance on the estimation of traffic volumes for roadway segments for use in SPFs is presented in Step 3 of the predictive method describe in Section 12.4. The SPFs for roadway segments on urban and suburban arterials are applicable to the following AADT ranges:

- 2U: 0 to 32,600 vehicles per day
- 3T: 0 to 32,900 vehicles per day
- 4U: 0 to 40,100 vehicles per day
- 4D: 0 to 66,000 vehicles per day
- 5T: 0 to 53,800 vehicles per day
- 6U: 0 to 78,000 vehicles per day
- 6D: 0 to 118,000 vehicles per day
- 7T: 0 to 94,000 vehicles per day
- 8D: 0 to 152,000 vehicles per day
- 20: 0 to 34,000 vehicles per day
- 3O: 0 to 29,000 vehicles per day
- 40: 0 to 29,000 vehicles per day

Application to sites with AADTs substantially outside these ranges may not provide reliable results.

Other types of roadway segments may be found on urban and suburban arterials but are not addressed by the predictive models in Chapter 12.

For collision types other than vehicle-pedestrian and vehicle-bicycle, the SPFs for arterial roadway segments with five or fewer lanes differ from the SPFs for arterial roadway segments with six or more lanes and one-way arterial roadway segments. The SPFs for these two categories of roadway segments are presented separately in Section 12.6.1.1 and 12.6.1.2. Section 12.6.1.3 and 12.6.1.4 provide the SPFs for predicting vehicle-pedestrian and vehicle-bicycle collisions for all arterial roadway segments types.

12.6.1.1. SPFs for Collisions (Other than Vehicle-Pedestrian or Vehicle-Bicycle) on Arterial Roadway Segments with Five or Fewer Lanes

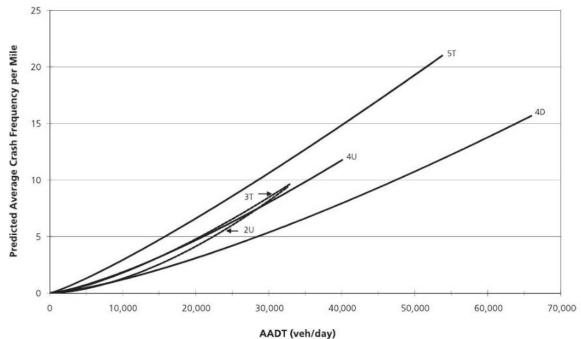
For arterial roadway segments with five or fewer lanes, SPFs are provided for three types of collisions (other than vehicle-pedestrian or vehicle-bicycle): multiple-vehicle nondriveway collisions, multi-vehicle driveway-related collision, and single-vehicle crashes.

Multiple-Vehicle Nondriveway Collisions

The SPF for multiple-vehicle nondriveway collisions on roadway segments is applied using Equation 12-12.

$$N_{spf rs nondwy} = \exp(a + b \times \ln(AADT) + \ln(L))$$

(12-12)


Where:

- L = length of roadway segment (mi); and
- a, b = regression coefficients.

Table 12-3 presents the values of the coefficients a and b used in Equation 12-12 for each roadway type. The overdispersion parameter, k, is also presented in Table 12-3. Figure 12-3 presents the graphical form of the SPF for multiple-vehicle nondriveway collisions on different roadway segment types.

Table 12-3. SPF Coefficients for Multiple-Vehicle Nondriveway Collisions on Roadway Segments with Five or Fewer
Lanes

	Coefficients Used in F		
Roadway Type	Intercept (a)	AADT (b)	Overdispersion Parameter (k)
Total Crashes			
2U	-15.22	1.68	0.84
3T	-12.40	1.41	0.66
4U	-11.63	1.33	1.01
4D	-12.34	1.36	1.32
5T	-9.70	1.17	0.81
FI Crashes			
2U	-16.22	1.66	0.65
3T	-16.45	1.69	0.59
4U	-12.08	1.25	0.99
4D	-12.76	1.28	1.31
5T	-10.47	1.12	0.62
PDO Crashes			
2U	-15.62	1.69	0.87
3T	-11.95	1.33	0.59
4U	-12.53	1.38	1.08
4D	-12.81	1.38	1.34
5T	-9.97	1.17	0.88

AADT (ven/day)

Figure 12-3. Graphical Form of the SPF for Multiple-Vehicle Nondriveway Collisions on Roadway Segments with Five or Fewer Lanes (from Equation 12-12 and Table 12-3)

Equation 12-12 is first applied to determine $N_{spf rs nondwy}$ using the coefficients for total crashes in Table 12-3. $N_{spf rs nondwy}$ is then divided into components by severity level, $N_{spf rs nondwy(FI)}$ for FI crashes and $N_{spf rs nondwy(PDO)}$ for PDO crashes. These preliminary values of $N_{spf rs nondwy(FI)}$ and $N_{spf rs nondwy(PDO)}$, designated as $N'_{spf rs nondwy(FI)}$ and $N'_{spf rs nondwy(PDO)}$ in Equation 12-13, are determined with Equation 12-12 using the coefficients for FI and PDO crashes, respectively, in Table 12-3. The adjustments in Equations 12-13 and 12-14 are then made to assure that $N_{spf rs nondwy(FI)}$ and $N_{spf rs no$

$$N_{spf rs nondwy(FI)} = N_{spf rs nondwy(total)} \left(\frac{N'_{spf rs nondwy(FI)}}{N'_{spf rs nondwy(FI)} + N'_{spf rs nondwy(PDO)}} \right)$$
(12-13)

$$N_{spf rs nondwy(PDO)} = N_{spf rs nondwy(total)} - N_{spf rs nondwy(FI)}$$
(12-14)

The proportions in Table 12-4 are used to separate $N_{spf rs nondwy(FI)}$ and $N_{spf rs nondwy(PDO)}$ into components by manner of collision.

	Proportion of Crashes by Severity Level for Specific Roadway Types										
	2 U		3	3 T		4 U		4D		5T	
Manner of Collision	FI	PDO	FI	PDO	FI	PDO	FI	PDO	FI	PDO	
Rear-end collision	0.730	0.778	0.845	0.842	0.511	0.506	0.832	0.662	0.846	0.651	
Head-on collision	0.068	0.004	0.034	0.020	0.077	0.004	0.020	0.007	0.021	0.004	
Angle collision	0.085	0.079	0.069	0.020	0.181	0.130	0.040	0.036	0.050	0.059	
Sideswipe, same direction	0.015	0.031	0.001	0.078	0.093	0.249	0.050	0.223	0.061	0.248	
Sideswipe, opposite direction	0.073	0.055	0.017	0.020	0.082	0.031	0.010	0.001	0.004	0.009	
Other multiple-vehicle collisions	0.029	0.053	0.034	0.020	0.056	0.080	0.048	0.071	0.018	0.029	

Table 12-4. Distribution of Multiple-Vehicle Nondriveway Collisions by Manner of Collision for Roadway Segments

 with Five or Fewer Lanes

Source: HSIS data for Washington (2002-2006)

Multiple-Vehicle Driveway-Related Collisions

The model presented above for multiple-vehicle collisions addressed only collisions that are not related to driveways. Driveway-related collisions also generally involve multiple vehicles, but are addressed separately because the frequency of driveway-related collisions on a roadway segment depends on the number and type of driveways. Only unsignalized driveways are considered; signalized driveways are analyzed as signalized intersections.

The total number of multiple-vehicle driveway-related collisions within a roadway segment is determined using Equation 12-15.

$$N_{spf rs dwy(total)} = \sum_{\substack{\text{all} \\ \text{driveway} \\ \text{types}}} n_j \times N_j \times \left(\frac{AADT}{15,000}\right)^{(t)}$$
(12-15)

Where:

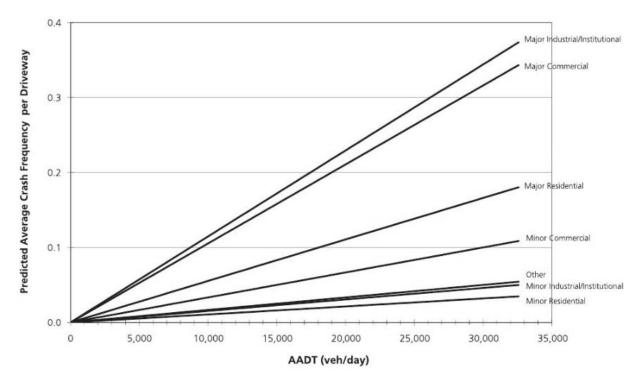
- N_j = number of driveway-related collisions per driveway per year for driveway type *j* from Table 12-5;
- n_j = number of driveways within roadway segment of driveway type *j* including all driveways on both sides of the road; and
- t = coefficient for traffic volume adjustment from Table 12-5.

The number of driveways of a specific type, n_j , is the sum of the number of driveways of that type for both sides of the road combined. The number of driveways is determined separately for each side of the road and then added together.

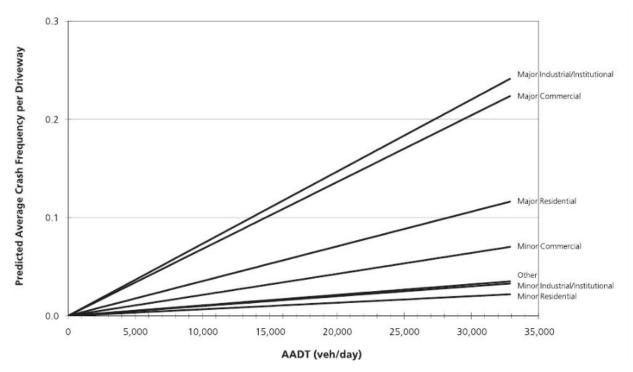
Seven specific driveway types have been considered in modeling. These are:

- Major commercial
- Minor commercial
- Major industrial/institutional
- Minor industrial/institutional
- Major residential
- Minor residential
- Other driveways

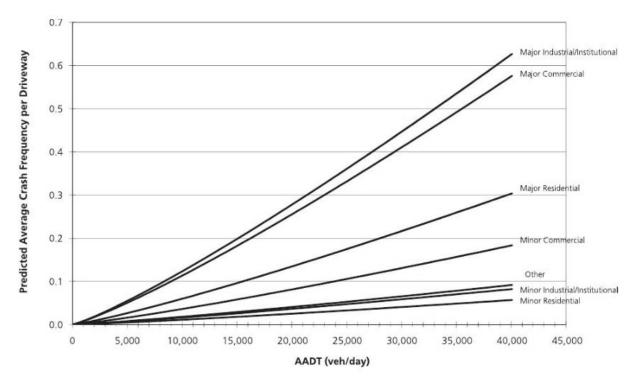
Major driveways are those that serve sites with 50 or more parking spaces. Minor driveways are those that serve sites with less than 50 parking spaces. It is not intended that an exact count of the number of parking spaces be made for each site. Driveways can be readily classified as major or minor from a quick review of aerial photographs that show parking areas or through user judgment based on the character of the establishment served by the driveway. Commercial driveways provide access to establishments that serve retail customers. Residential driveways serve single- and multiple-family dwellings. Industrial/institutional driveways serve factories, warehouses, schools, hospitals, churches, offices, public facilities, and other places of employment. Commercial sites with no restriction on access along an entire property frontage are generally counted as two driveways.


Figure 12-4 through Figure 12-8 present the graphical form of the SPF for driveway-related collisions on roadway types 2U, 3T, 4U, 4D, and 5T, respectively.

	Coefficients for Specific Roadway Types									
Driveway Type (j)	2 U	3 T	4 U	4D	5T					
Number of Driveway-Related Collisions per Dri	veway per Year (N _j)									
Major commercial	0.158	0.102	0.182	0.033	0.165					
Minor commercial	0.050	0.032	0.058	0.011	0.053					
Major industrial/institutional	0.172	0.110	0.198	0.036	0.181					
Minor industrial/institutional	0.023	0.015	0.026	0.005	0.024					
Major residential	0.083	0.053	0.096	0.018	0.087					
Minor residential	0.016	0.010	0.018	0.003	0.016					
Other	0.025	0.016	0.029	0.005	0.027					
Regression Coefficient for AADT (t)										
All driveways	1.000	1.000	1.172	1.106	1.172					
Overdispersion Parameter (k)										
All driveways	0.81	1.10	0.81	1.39	0.10					
Proportion of FI Crashes (fdwy)										
All driveways	0.323	0.243	0.342	0.284	0.269					
Proportion of PDO Crashes										
All driveways	0.677	0.757	0.658	0.716	0.731					


Table 12-5. SPF Coefficients for Multiple-Vehicle Driveway Related Collisions on Roadway Segments with Five or

 Fewer Lanes


Note: Includes only unsignalized driveways; signalized driveways are analyzed as signalized intersections. Major driveways serve 50 or more parking spaces; minor driveways serve less than 50 parking spaces.

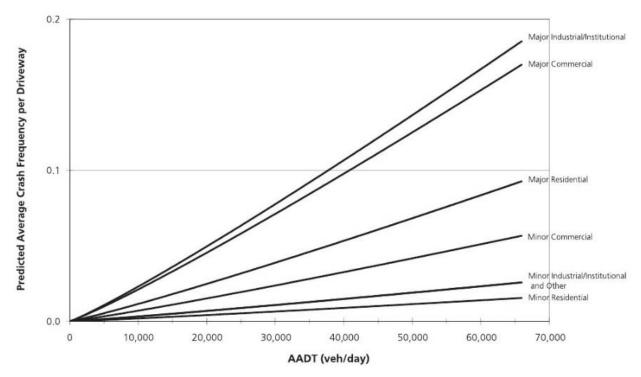

Figure 12-4. Graphical Form of the SPF for Multiple-Vehicle Driveway-Related Collisions on Two-Lane Undivided Arterials Roadway Segments (2U) (from Equation 12-15 and Table 12-5)

Figure 12-5. Graphical Form of the SPF for Multiple-Vehicle Driveway-Related Collisions on Three-Lane Arterial Roadway Segments Including a Center TWLTL (3T) (from Equation 12-15 and Table 12-5)

Figure 12-6. Graphical Form of the SPF for Multiple-Vehicle Driveway-Related Collisions on Four-Lane Undivided Arterial Roadway Segments (4U) (from Equation 12-15 and Table 12-5)

Figure 12-7. Graphical Form of the SPF for Multiple-Vehicle Driveway-Related Collisions on Four-Lane divided Arterial Roadway Segments (4D) (from Equation 12-15 and Table 12-5)

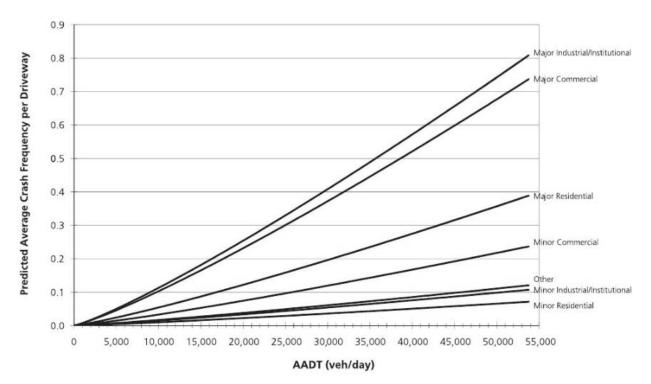


Figure 12-8. Graphical Form of the SPF for Multiple-Vehicle Driveway-Related Collisions on Five-Lane Arterial Roadway Segments Including a Center TWLTLane (5T) (from Equation 12-15 and Table 12-5)

Driveway-related collisions can be separated into components by severity level using Equations 12-16 and 12-17.

$N_{spf rs dwy(FI)} = N_{spf rs dwy(total)} \times f_{dwy}$	(12-16)

$$N_{spf rs \, dwy(PDO)} = N_{spf rs \, dwy(total)} - N_{spf rs \, dwy(FI)}$$
(12-17)

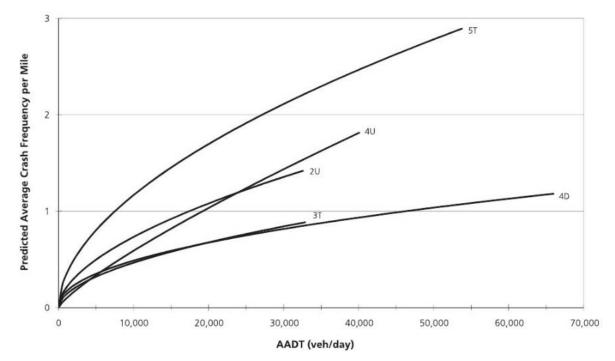
Where:

. .

= proportion of driveway-related collisions that involve fatalities or injuries. fdwy

The values of f_{dwy} are shown in Table 12-5.

Single-Vehicle Crashes


The SPF for single-vehicle crashes on roadway segments is applied using Equation 12-18.

$$N_{spf rs sv} = \exp(a + b \times \ln(AADT) + \ln(L))$$
(12-18)

Table 12-6 presents the values of the coefficients a and b used in Equation 12-18 for each roadway type. The overdispersion parameter, k, is also presented in Table 12-6. Figure 12-9 presents the graphical form of the SPF for single-vehicle crashes on different roadway segment types.

	Coefficients Used	Coefficients Used in Equation 12-18				
	Intercept	AADT	Overdispersion Paramete			
Road Type	(a)	(b)	(k)			
Total Crashes						
2U	-5.47	0.56	0.81			
3T	-5.74	0.54	1.37			
4U	-7.99	0.81	0.91			
4D	-5.05	0.47	0.86			
5T	-4.82	0.54	0.52			
FI Crashes						
2U	-3.96	0.23	0.5			
3T	-6.37	0.47	1.06			
4U	-7.37	0.61	0.54			
4D	-8.71	0.66	0.28			
5T	-4.43	0.35	0.36			
PDO Crashes						
2U	-6.51	0.64	0.87			
3T	-6.29	0.56	1.93			
4U	-8.5	0.84	0.97			
4D	-5.04	0.45	1.06			
5T	-5.83	0.61	0.55			

Table 12-6. SPF Coefficients for Single-Vehicle Crashes on Roadway Segments with Five or Fewer Lanes

Figure 12-9. Graphical Form of the SPF for Single-Vehicle Crashes on Roadway Segments with Five or Fewer Lanes (from Equation 12-18 and Table 12-6)

Equation 12-18 is first applied to determine N_{spf rs sv} using the coefficients for total crashes in Table 12-6. N_{spf rs sv} is then

divided into components by severity level; $N_{spf rs \, sv(FI)}$ for FI crashes and $N_{spf rs \, sv(PDO)}$ for PDO crashes. These preliminary values of $N_{spf rs \, sv(FI)}$ and $N_{spf rs \, sv(PDO)}$, designated as $N'_{spf rs \, sv(FI)}$ and $N'_{spf rs \, sv(PDO)}$ in Equation 12-19, are determined with Equation 12-18 using the coefficients for FI and PDO crashes, respectively, in Table 12-6. The adjustments in Equations 12-19 and 12-20 are then made to assure that $N_{spf rs \, sv(FI)}$ and $N_{spf rs \, sv(FDO)}$ sum to $N_{spf rs \, sv}$.

$$N_{spf rs \, sv(FI)} = N_{spf rs \, sv(total)} \left(\frac{N'_{spf rs \, sv(FI)}}{N'_{spf rs \, sv(FI)} + N'_{spf rs \, sv(PDO)}} \right)$$
(12-19)

$$N_{spf rs sv(PDO)} = N_{spf rs sv(total)} - N_{spf rs sv(FI)}$$
(12-20)

The proportions in Table 12-7 are used to separate N_{spf rs sv(FI)} and N_{spf rs sv(PDO)} into components by manner of collision.

Table 12-7. Distribution of Single-Vehicle Crashes by Manner of Collision for Roadway Segments with Five or Fewer Lanes

	Proportion of Crashes by Severity Level for Specific Roadway Types										
	2	2U 3T		4 U		4D		5T			
Manner of Collision	FI	PDO	FI	PDO	FI	PDO	FI	PDO	FI	PDO	
Collision with animal	0.026	0.066	0.001	0.001	0.001	0.001	0.001	0.063	0.016	0.049	
Collision with fixed object	0.723	0.759	0.688	0.963	0.612	0.809	0.500	0.813	0.398	0.768	
Collision with other object	0.010	0.013	0.001	0.001	0.020	0.029	0.028	0.016	0.005	0.061	
Other single-vehicle crashes	0.241	0.162	0.310	0.035	0.367	0.161	0.471	0.108	0.581	0.122	

Source: HSIS data for Washington (2002-2006)

12.6.1.2. SPFs for Collisions (Other than Vehicle-Pedestrian or Vehicle-Bicycle) on Arterial Roadway Segments with Six or More Lanes

For arterial roadway segments with six or more lanes, SPFs are provided for two types of collisions (other than vehiclepedestrian or vehicle-bicycle): multiple-vehicle collisions, and single-vehicle crashes. In the predictive models for arterial roadway segments with six or more lanes, multiple-vehicle collisions include both nondriveway and drivewayrelated collisions and the safety impacts of driveways are captured through driveway-related CMFs, as described in Section 12.7.1.

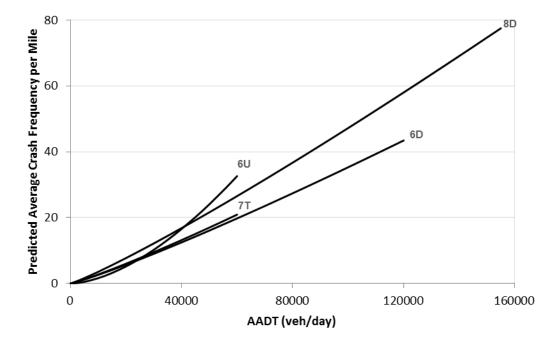
Multiple-Vehicle Collisions

The SPF for multiple-vehicle collisions on roadway segments is applied using Equation 12-21.

$$N_{spf rsmv} = \exp(a + b \times \ln(AADT) + \ln(L))$$
(12-21)

Table 12-8 presents the values of the coefficients a and b used in Equation 12-21 for each roadway type. The value of the overdispersion parameter associated with the SPF is determined as a function of the segment length. This value is computed using Equation 12-22.

$$k = \frac{1}{e^{(c+\ln(L))}}$$
(12-22)


Where:

c = regression coefficient from Table 12-8.

а	b	с
-15.42	1.63	2.87
-11.56	1.24	2.05
-11.44	1.24	1.30
-11.38	1.24	2.49
-15.68	1.70	3.00
-9.21	1.06	1.91
-9.20	1.06	1.08
-8.84	1.06	1.67
	-15.42 -11.56 -11.44 -11.38 -15.68 -9.21 -9.20	-15.42 1.63 -11.56 1.24 -11.44 1.24 -11.38 1.24 -15.68 1.70 -9.21 1.06 -9.20 1.06

Table 12-8. SPF Coefficients for Multiple-Vehicle Collisions on Roadway Segments with Six or More Lanes (for use in Equations 12-21 and 12-22)

Figure 12-10 presents the graphical form of the SPF for multiple-vehicle collisions on different roadway segment types with six or more lanes.

Figure 12-10. Graphical Form of the SPF for Multiple-Vehicle Collisions on Roadway Segments with Six or More Lanes (from Equation 12-21 and Table 12-8)

The proportions in Table 12-9 are used to separate $N_{spf rs mv(FI)}$ and $N_{spf rs mv(PDO)}$ into components by manner of collision for roadway segments with six or more lanes.

	Proportion of Crashes by Severity Level for Specific Roadway Types									
	6 U		6D		7 T		8D			
Manner of Collision	FI	PDO	FI	PDO	FI	PDO	FI	PDO		
Rear-end collision	0.752	0.586	0.769	0.591	0.694	0.588	0.746	0.647		
Head-on collision	0.037	0.008	0.012	0.012	0.034	0.012	0.006	0.000		
Angle collision	0.064	0.052	0.091	0.081	0.148	0.092	0.147	0.093		
Sideswipe, same direction	0.083	0.302	0.087	0.262	0.072	0.255	0.073	0.236		
Sideswipe, opposite direction	0.028	0.005	0.011	0.020	0.020	0.024	0.011	0.012		
Other multiple-vehicle collisions	0.037	0.046	0.030	0.033	0.031	0.029	0.017	0.012		

Table 12-9. Distribution of Multiple-Vehicle Collisions by Manner of Collision for Roadway Segments with Six or

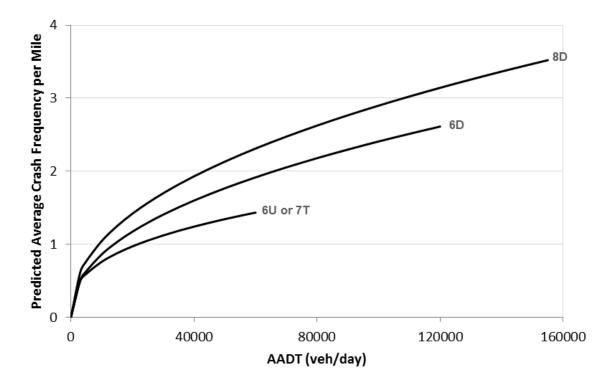
 More Lanes

Source: HSIS data for California (2006-2010)

Single-Vehicle Crashes

The SPF for single-vehicle crashes on roadway segments with six or more lanes are applied using Equation 12-23.

$$N_{spf rs sv} = \exp(a + b \times \ln(AADT) + \ln(L))$$


Table 12-10 presents the values of the coefficients a and b used in Equation 12-23 for each roadway type. The value of the overdispersion parameter associated with the SPF is determined as a function of the segment length using Equation 12-22 and coefficient c determined from Table 12-10.

Roadway Type	а	b	с
FI Crashes			
6U	-4.54	0.37	3.08
6D	-5.26	0.46	1.50
7T	-4.54	0.37	3.08
8D	-5.36	0.46	2.01
PDO Crashes			
6U	-3.98	0.34	1.97
6D	-4.71	0.43	2.00
7T	-3.98	0.34	1.97
8D	-4.34	0.43	1.84

 Table 12-10. SPF Coefficients for Single-Vehicle Crashes on Roadway Segments with Six or More Lanes and One-Way Roadway Segments (for use in Equations 12-23 and 12-22)

Figure 12-11 presents the graphical form of the SPF for single-vehicle crashes on different roadway segment types with six or more lanes.

(12-23)

Figure 12-11. Graphical Form of the SPF for Single-Vehicle Crashes on Roadway Segments with Six or More Lanes (from Equation 12-23 and Table 12-10)

The proportions in Table 12-11 are used to separate $N_{spf rs \ sv(FI)}$ and $N_{spf rs \ sv(PDO)}$ into components by manner of collision for roadway segments with six or more lanes.

Table 12-11. Distribution of Single-Vehicle Crashes by Manner of Collision for Roadway Segments with Six or More

 Lanes

	Proportion of Crashes by Severity Level for Specific Roadway Types									
	6 U		6D		7 T		8D			
Manner of Collision	FI	PDO	FI	PDO	FI	PDO	FI	PDO		
Collision with fixed object – left ^a	0.100	0.174	0.296	0.353	0.158	0.248	0.167	0.273		
Collision with fixed object – right $^{\rm b}$	0.350	0.413	0.332	0.397	0.495	0.481	0.611	0.591		
Collision with other object	0.050	0.130	0.032	0.073	0.011	0.037	0.000	0.045		
Other single-vehicle crashes	0.500	0.283	0.339	0.177	0.337	0.234	0.222	0.091		

^aWhere the vehicle collides with a fixed object to the left of its travel direction

^b Where the vehicle collides with a fixed object to the right of its travel direction

Source: HSIS data for California (2006-2010)

12.6.1.3. SPFs for Collisions (Other than Vehicle-Pedestrian or Vehicle-Bicycle) on One-Way Arterial Roadway Segments

For one-way arterial roadway segments, SPFs are provided for two types of collisions (other than vehicle-pedestrian or vehicle-bicycle): multiple-vehicle collisions, and single-vehicle crashes. In the predictive models one-way arterial roadway segments, multiple-vehicle collisions include both nondriveway and driveway-related collisions and the safety impacts of driveways are captured through driveway-related CMFs, as described in Section 12.7.1.

Multiple-Vehicle Collisions

The SPF for multiple-vehicle collisions on roadway segments is applied using Equation 12-21. Table 12-12 presents the values of the coefficients a and b used in Equation 12-21 for each roadway type. The value of the overdispersion

parameter associated with the SPF is determined as a function of the segment length. This value is computed using Equation 12-22.

Where:

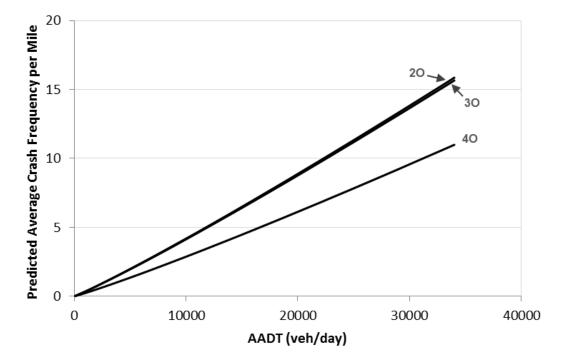

c = regression coefficient from Table 12-8.

Table 12-12. SPF Coefficients for Multiple-Vehicle Collisions on Roadway Segments with One-Way Roadway

 Segments (for use in Equations 12-21 and 12-22)

Roadway Type	а	b	с
FI Crashes			
20	-11.48	1.26	2.12
30	-11.49	1.26	2.57
40	-11.74	1.26	2.46
PDO Crashes			
20	-8.26	1.02	2.46
30	-8.27	1.02	2.45
40	-8.68	1.02	2.52

Figure 12-12 presents the graphical form of the SPF for different one-way roadway segment types.

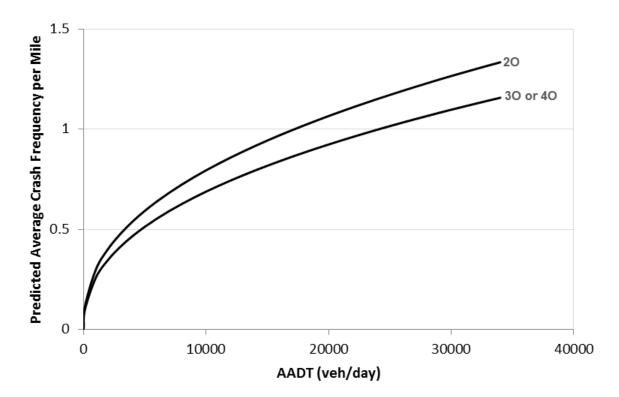
Figure 12-12. Graphical Form of the SPF for Multiple-Vehicle Collisions on One-Way Roadway Segments (from Equation 12-21 and Table 12-12)

The proportions in Table 12-13 are used to separate $N_{spf rs mv(FI)}$ and $N_{spf rs mv(PDO)}$ into components by manner of collision for one-way roadway segments.

	Р	roportion of Cra	shes by Severity	Level for Specifi	c Roadway Type	es
_	2	0	3	0	4	0
Manner of Collision	FI	PDO	FI	PDO	FI	PDO
Rear-end collision	0.617	0.445	0.671	0.435	0.714	0.400
Head-on collision	0.021	0.017	0.013	0.013	0.000	0.067
Angle collision	0.128	0.076	0.133	0.115	0.000	0.000
Sideswipe, same direction	0.170	0.336	0.133	0.384	0.143	0.467
Sideswipe, opposite direction	0.043	0.042	0.013	0.017	0.000	0.000
Other multiple-vehicle collisions	0.021	0.084	0.038	0.036	0.143	0.067

 Table 12-13. Distribution of Multiple-Vehicle Collisions by Manner of Collision for One-Way Roadway Segments

Source: HSIS data for California (2006-2010)


Single-Vehicle Crashes

The SPF for single-vehicle crashes on roadway segments with six or more lanes and one-way roadway segments are applied using Equation 12-23. Table 12-14 presents the values of the coefficients a and b used in Equation 12-23 for each roadway type. The value of the overdispersion parameter associated with the SPF is determined as a function of the segment length using Equation 12-22 and coefficient c determined from Table 12-10.

Table 12-14. SPF Coefficients for Single-Vehicle Crashes on Roadway Segments with One-Way Roadway Segments	
(for use in Equations 12-23 and 12-22)	

Roadway Type	а	b	с
FI Crashes			
20	-5.32	0.42	1.19
30	-4.93	0.42	1.94
40	-4.93	0.42	1.94
PDO Crashes			
20	-4.71	0.43	2.12
30	-4.72	0.43	1.98
40	-4.72	0.43	1.98

Figure 12-13 presents the graphical form of the SPF for single-vehicle crashes on different one-way roadway segment types.

Figure 12-13. Graphical Form of the SPF for Single-Vehicle Crashes on One-Way Roadway Segments (from Equation 12-23 and Table 12-10)

The proportions in Table 12-13 are used to separate $N_{spf rs \ sv(FI)}$ and $N_{spf rs \ sv(PDO)}$ into components by manner of collision for one-way roadway segments.

	Р	roportion of Cra	shes by Severity	Level for Specifi	c Roadway Type	es
	2	0	3	0	4	0
Manner of Collision	FI	PDO	FI	PDO	FI	PDO
Collision with animal	0.400	0.261	0.182	0.489	0.286	0.167
Collision with fixed object	0.100	0.435	0.182	0.289	0.429	0.667
Collision with other object	0.000	0.130	0.091	0.044	0.000	0.000
Other single-vehicle crashes	0.500	0.174	0.545	0.178	0.286	0.167

Table 12-15. Distribution of Single-Vehicle Crashes by	Manner of Collision for One-Way Roadway Segments

Source: HSIS data for California (2006-2010)

12.6.1.4. SPFs for Vehicle-Pedestrian Collisions on Arterial Roadway Segments

The number of vehicle-pedestrian collisions per year for a roadway segment is estimated using Equation 12-24.

$$N_{pedr} = N_{br} \times f_{pedr}$$

Where:

 f_{pedr} = pedestrian crash adjustment factor.

The value of N_{br} in Equation 12-24 is determined using Equation 12-4.

(12-24)

Table 12-16 presents the values of f_{pedr} for use in Equation 12-24. All vehicle-pedestrian collisions are considered to be FI crashes. The values of f_{pedr} are likely to depend on the climate and the walking environment in particular states or communities. HSM users are encouraged to replace the values in Table 12-16 with suitable values for their own state or community through the calibration process (see Part C, Appendix A).

	Pedestrian Crash Adjustment Factor (fpedr)			
Road Type	Posted Speed 30 mph or Lower	Posted Speed Greater than 30 mph		
2U	0.036	0.005		
3T	0.041	0.013		
4U	0.022	0.009		
4D	0.067	0.019		
5T	0.030	0.023		
6U	0.018	0.013		
6D	0.029	0.015		
7T	0.034	0.014		
8D		0.023		
20	0.017	0.018		
30	0.024	0.017		
40	0.021	0.030		

Table 12-16. Pedes	strian Crash Ac	ljustment Factor	for Roadway	Segments

Note: These factors apply to the methodology for predicting total crashes (all severity levels combined). All pedestrian collisions resulting from this adjustment factor are treated as FI crashes and none as PDO crashes.

Source: HSIS data from Washington (2002–2006) for roadway segments with five or fewer lanes; HSIS data from California and Illinois (2006–2010) and state data from Texas (2008-2012) for roadway segments with six or more lanes; HSIS data from California and Illinois (2006–2010) and state data from Texas (2008-2012) and Oregon (2006–2010) for one-way roadway segments.

12.6.1.5. SPFs for Vehicle-Bicycle Collisions on Arterial Roadway Segments

The number of vehicle-bicycle collisions per year for a roadway segment is estimated using Equation 12-25.

 $N_{biker} = N_{br} \times f_{biker}$

Where:

 f_{biker} = bicycle crash adjustment factor.

The value of N_{br} in Equation 12-25 is determined using Equation 12-4.

Table 12-17 presents the values of f_{biker} for use in Equation 12-25. All vehicle-bicycle collisions are considered to be FI crashes. The values of f_{biker} are likely to depend on the climate and bicycling environment in particular states or communities. HSM users are encouraged to replace the values in Table 12-17 with suitable values for their own state or community through the calibration process (see Appendix A to Part C).

(12-25)

	djustment Factor (f _{biker})	
Road Type	Posted Speed 30 mph or Lower	Posted Speed Greater than 30 mph
2U	0.018	0.004
3T	0.027	0.007
4U	0.011	0.002
4D	0.013	0.005
5T	0.050	0.012
6U	0.013	0.007
6D	0.007	0.008
7T	0.025	0.001
8D		0.014
20	0.011	0.016
30	0.011	0.012
40	0.021	0.007

Table 12-17. Bicycle Crash Adjustment Factors for Roadway Segu
--

Note: These factors apply to the methodology for predicting total crashes (all severity levels combined). All bicycle collisions resulting from this adjustment factor are treated as FI crashes and none as PDO crashes.

Source: HSIS data from Washington (2002–2006) for roadway segments with five or fewer lanes; HSIS data from California and Illinois (2006–2010) and state data from Texas (2008-2012) for roadway segments with six or more lanes; HSIS data from California and Illinois (2006–2010) and state data from Texas (2008-2012) and Oregon (2006–2010) for one-way roadway segments.

12.6.2 Safety Performance Functions for Urban and Suburban Arterial Intersections

The predictive model for estimating average crash frequency at a particular arterial intersection was presented in Equation 12-7 through 12-9. The structure of the predictive models for intersections is similar to the predictive models for roadway segments. The SPFs for urban and suburban arterial intersections are presented in this section. Urban and suburban arterial intersections are defined in Section 12.3.

The effect of traffic volume on predicted crash frequency for intersections is incorporated through SPFs, while the effects of geometric and traffic control features are incorporated through CMFs. Each of the SPFs for intersections incorporates separate effect for the AADTs on the major- and minor-road legs, respectively.

Intersections are divided into four categories based on the two-way or one-way traffic flow and the number of lanes on the intersecting roads. These are:

- 2×2 with five or fewer lanes—intersections of two arterials with two-way traffic and five or fewer through lanes at the intersection.
- 2×2 with six or more lanes—intersections of two arterials with two-way traffic where at least one intersecting road has six or more through lanes at the intersection.
- *1*×2—intersections of an arterial with one-way traffic and an arterial with two-way traffic
- *1×1*—intersections of two arterials with two-way traffic

In each category of intersections listed above, SPFs and adjustment factors have been developed for four types of intersections. These are:

- Three-leg intersections with stop control on minor-road approach (3ST)
- Three-leg signalized intersections (3SG)

- Four-leg intersections with stop control on minor-road approaches (4ST)
- Four-leg signalized intersections (4SG)

Other types of intersection may be found on urban and suburban arterials but are not addressed by the Chapter 12 SPFs.

The SPFs for each of the intersection types identified above predict average crash frequency per year for all crashes that occur within the limits of the intersection and intersection-related crashes that occur on the intersection legs.

Guidance on the estimation of traffic volumes for the major and minor road legs for use in the SPFs is presented in Step 3. For 2×2 and 1×1 intersections, the major and minor roads are defined as the road with the higher and lower AADT, respectively. For 1×2 intersections, however, the one-way road is designated as major road and the two-way road as minor road regardless of the AADTs. The AADT(s) used in the SPF are the AADT(s) for the selected year of evaluation period. The SPFs for intersections are applicable to the range of AADTs specified in Table 12-18.

Intersection Type	Range of AADT _{maj} (vehicles per day)	Range of AADT _{min} (vehicles per day)
2×2 with five or fewer lanes		
3ST	0-45,700	0-9,300
4ST	0-46,800	0-5,900
3SG	0 - 58,100	0 - 16,400
4SG	0 - 67,700	0-33,400
2×2 with six or more lanes		
3ST	0-66,800	0-8,600
4ST	0 - 54,600	0-4,600
3SG	0 - 94,000	0 - 31,000
4SG	0 - 137,600	0 - 68,400
1×2		
3ST	0 - 42,700	0 - 13,400
4ST	0 - 23,400	0 - 19,200
38G	0-43,800	0-58,800
4SG	0 - 77,000	0-98,900
1×1		
3ST	0 - 16,900	0 - 11,100
4ST	0-11,000	0-6,800
3SG	0 - 20,100	0 - 7,500
4SG	0 - 24,300	0 - 16,900

Table 12-18. Range of AADT for Application of SPFs for Intersections

The SPF for vehicle-pedestrian collisions at signalized intersections is applicable to the range of AADTs and pedestrian volumes specified in Table 12-19.

Intersection Type	Range of AADT _{maj} (Vehicles per Day)	Range of AADT _{min} (Vehicles per Day)	Range of PedVol ^a (Pedestrian per Day)
3SG	0 - 74,300	0 - 51,500	0 - 34,200
4SG	0 - 80,200	0-49,100	0 - 12,600

Table 12-19. Range of AADT and Pedestrian Volume for Application of SPFs for Vehicle-Pedestrian Collisions at

 Signalized Intersections

^a PedVol = daily pedestrian volume crossing all intersection legs

Application to sites with AADTs substantially outside these ranges may not provide reliable results.

For collision types other than vehicle-pedestrian and vehicle-bicycle, the SPFs for 2×2 intersections with five or fewer lanes differ from the SPFs for 2×2 intersections with six or more lanes and one-way arterial intersections (1×2 or 1×1). The SPFs for these two categories of intersections are presented separately in Section 12.6.2.1 and 12.6.2.2. Section 12.6.2.3 and 12.6.2.4 provide the SPFs for predicting vehicle-pedestrian and vehicle-bicycle collisions for all intersection types.

12.6.2.1. SPFs for Collisions (Other than Vehicle-Pedestrian or Vehicle-Bicycle) on Intersections of Two-Way Arterials with Five or Fewer Lanes

For intersections of two-way arterials with five or fewer lanes, SPFs are provided for two types of collisions (other than vehicle-pedestrian or vehicle-bicycle): multiple-vehicle collisions, and single-vehicle crashes.

Multiple-Vehicle Collisions

The SPF for multiple-vehicle intersection-related collisions is applied using Equation 12-26.

$$N_{spf int mv} = \exp(a + b \times \ln(AADT_{maj}) + c \times \ln(AADT_{min}))$$
(12-26)

Where:

 $AADT_{maj}$ = average daily traffic volume (vehicles/day) for major road (both directions of travel combined);

AADT_{min} = average daily traffic volume (vehicles/day) for minor road (both directions of travel combined); and

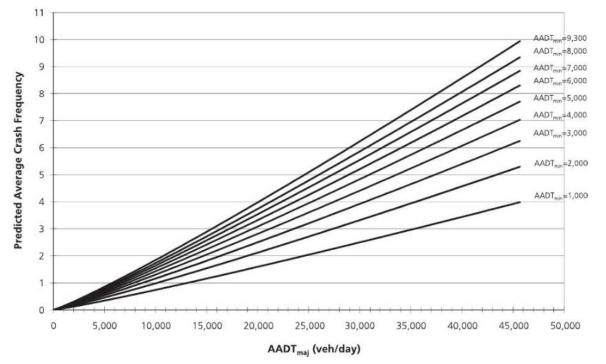
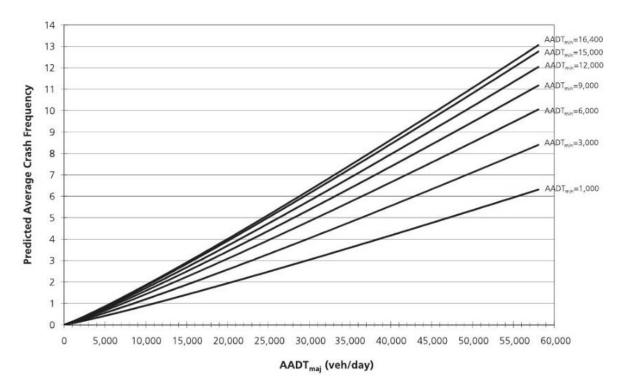
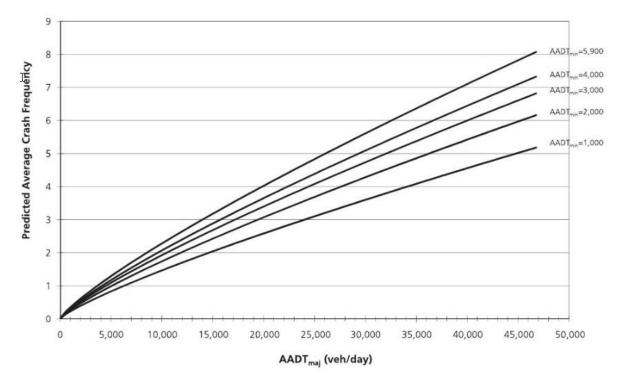

a, b, c = regression coefficients.

Table 12-20 presents the values of the coefficients a, b, and c used in Equation 12-26 for each intersection type. The overdispersion parameter, k, is also presented in Table 12-20.


Figure 12-14 through Figure 12-17 present the graphical form of the SPF for intersection-related multiple-vehicle collisions at 3ST, SG, 4ST, and 4SG intersections of two-way arterials with five or fewer lanes, respectively.

	Coeffic			
	Intercept	AADT <i>maj</i>	AADT _{min}	Overdispersion Parameter
Intersection Type	(a)	(b)	(c)	(k)
Total Crashes				
3ST	-13.36	1.11	0.41	0.80
38G	-12.13	1.11	0.26	0.33
4ST	-8.90	0.82	0.25	0.40
4SG	-10.99	1.07	0.23	0.39
FI Crashes				
3ST	-14.01	1.16	0.30	0.69
3SG	-11.58	1.02	0.17	0.30
4ST	-11.13	0.93	0.28	0.48
4SG	-13.14	1.18	0.22	0.33
PDO Crashes				
3ST	-15.38	1.2	0.51	0.77
38G	-13.24	1.14	0.30	0.36
4ST	-8.74	0.77	0.23	0.40
4SG	-11.02	1.02	0.24	0.44


Table 12-20. SPF Coefficients for Multiple-Vehicle Collisions at 2×2 Intersections with Five or Fewer Lanes

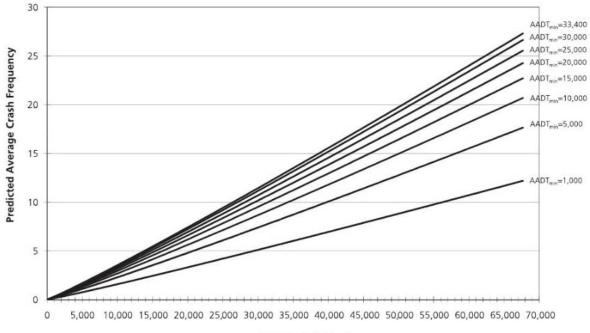

Figure 12-14. Graphical Form of the SPF for Intersection-Related Multiple-Vehicle Collisions at 3ST Intersections of Two-Way Arterials with Five or Fewer Lanes (from Equation 12-26 and Table 12-20)

Figure 12-15. Graphical Form of the SPF for Intersection-Related Multiple-Vehicle Collisions at 3SG Intersections of Two-Way Arterials with Five or Fewer Lanes (from Equation 12-26 and Table 12-20)

Figure 12-16. Graphical Form of the SPF for Multiple-Vehicle Collisions at 4ST Intersections of Two-Way Arterials with Five or Fewer Lanes (from Equation 12-26 and Table 12-20)

AADT_{mai} (veh/day)

Figure 12-17. Graphical Form of the SPF for Intersection-Related Multiple-Vehicle Collisions at 4SG Intersections of Two-Way Arterials with Five or Fewer Lanes (from Equation 12-26 and Table 12-20)

Equation 12-26 is first applied to determine $N_{spfint mv}$ using the coefficients for total crashes in Table 12-20. $N_{spfint mv}$ is then divided into components by crash severity level, $N_{spfint mv(FI)}$ for FI crashes and $N_{spfint mv(PDO)}$ for PDO crashes. These preliminary values of $N_{spfint mv(FI)}$ and $N_{spfint mv(PDO)}$, designated as $N'_{spfint mv(FI)}$ and $N'_{spfint mv(PDO)}$ in Equation 12-27, are determined with Equation 12-26 using the coefficients for FI and PDO crashes, respectively, in Table 12-20. The adjustments in Equations 12-27 and 12-28 are then made to assure that $N_{spfint mv(FI)}$ and $N_{spfint mv(PDO)}$ sum to $N_{spfint mv}$.

$$N_{spf int mv(FI)} = N_{spf int mv(total)} \left(\frac{N'_{spf int mv(FI)}}{N'_{spf int mv(FI)} + N'_{spf int mv(PDO)}} \right)$$
(12-27)

$$N_{spf int mv(PDO)} = N_{spf int mv(total)} - N_{spf int mv(FI)}$$
(12-28)

The proportions in Table 12-21 are used to separate $N_{spf int mv(FI)}$ and $N_{spf int mv(PDO)}$ into components by manner of collision.

Table 12-21. Distribution of Multiple-Vehicle Collisions by Manner of Collision for 2×2 Intersections with Five or Fewer Lanes

	Proportion of Crashes by Severity Level for Specific Roadway Types								
	3	ST	3	SG	4	ST	48	SG	
Manner of Collision	FI	PDO	FI	PDO	FI	PDO	FI	PDO	
Rear-end collision	0.421	0.440	0.549	0.546	0.338	0.374	0.450	0.483	
Head-on collision	0.045	0.023	0.038	0.020	0.041	0.030	0.049	0.030	
Angle collision	0.343	0.262	0.280	0.204	0.440	0.335	0.347	0.244	
Sideswipe collision	0.126	0.040	0.076	0.032	0.121	0.044	0.099	0.032	
Other multiple-vehicle collisions	0.065	0.235	0.057	0.198	0.060	0.217	0.055	0.211	

Source: HSIS data for California (2002-2006)

Single-Vehicle Crashes

The SPF for single-vehicle intersection-related crashes is applied using Equation 12-29.

$$N_{spf int sv} = \exp(a + b \times \ln(AADT_{mai}) + c \times \ln(AADT_{min}))$$
(12-29)

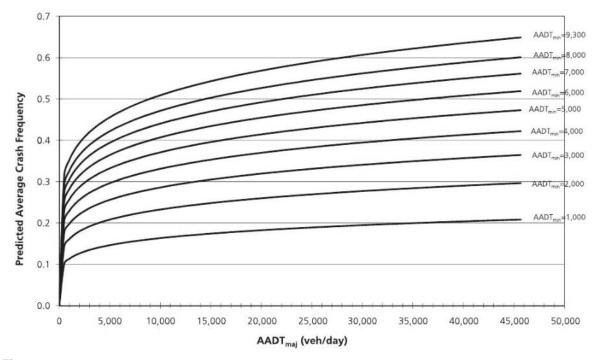

Table 12-22 presents the values of the coefficients a, b, and c used in Equation 12-29 for each intersection type. The overdispersion parameter, k, is also presented in Table 12-22.

Figure 12-18 through Figure 12-21 present the graphical form of the SPF for intersection-related single-vehicle collisions at 3ST, SG, 4ST, and 4SG intersections of two-way arterials with five or fewer lanes, respectively.

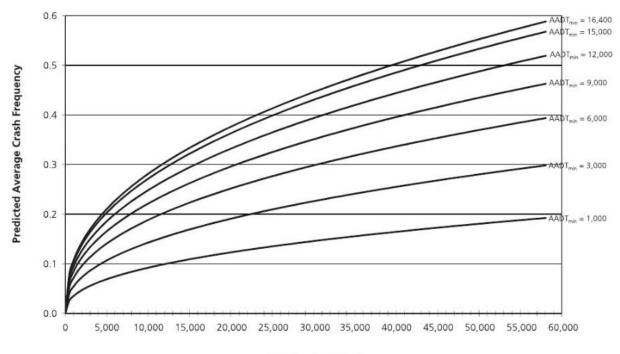

	Coeffic			
	Intercept	AADT <i>maj</i>	AADT _{min}	Overdispersion Parameter
Intersection Type	(a)	(b)	(c)	(k)
Total Crashes				
3ST	-6.81	0.16	0.51	1.14
3SG	-9.02	0.42	0.40	0.36
4ST	-5.33	0.33	0.12	0.65
4SG	-10.21	0.68	0.27	0.36
FI Crashes				
3ST				
3SG	-9.75	0.27	0.51	0.24
4ST				
4SG	-9.25	0.43	0.29	0.09
PDO Crashes				
3ST	-8.36	0.25	0.55	0.29
3SG	-9.08	0.45	0.33	0.53
4ST	-7.04	0.36	0.25	0.54
4SG	-11.34	0.78	0.25	0.44

 Table 12-22. SPF Coefficients for Single-Vehicle Crashes at 2×2 Intersections with Five or Fewer Lanes

Note: Where no models are available, Equation 12-32 is used.

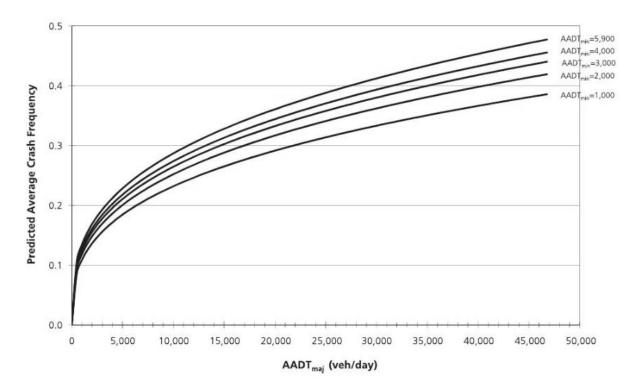
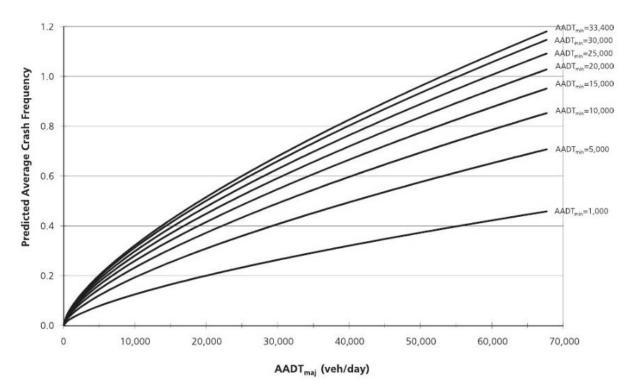


Figure 12-18. Graphical Form of the SPF for Intersection-Related Single-Vehicle Crashes at 3ST Intersections of Two-Way Arterials with Five or Fewer Lanes (from Equation 12-29 and Table 12-22)



AADT_{maj} (veh/day)

Figure 12-19. Graphical Form of the SPF for Intersection-Related Single-Vehicle Crashes at 3SG Intersections of Two-Way Arterials with Five or Fewer Lanes (from Equation 12-29 and Table 12-22)

Figure 12-20. Graphical Form of the SPF for Intersection-Related Single-Vehicle Crashes at 4ST Intersections of Two-Way Arterials with Five or Fewer Lanes (from Equation 12-29 and Table 12-22)

Figure 12-21. Graphical Form of the SPF for Intersection-Related Single-Vehicle Crashes at 4SG Intersections of Two-Way Arterials with Five or Fewer Lanes (from Equation 12-29 and Table 12-22)

(12-31)

(12-32)

Equation 12-29 is first applied to determine $N_{spf int sv}$ using the coefficients for total crashes in Table 12-22. $N_{spf int sv}$ is then divided into components by crash severity level, $N_{spf int sv(FI)}$ for FI crashes and $N_{spf int sv(PDO)}$ for PDO crashes. These preliminary values of $N_{spf int sv(FI)}$ and $N_{spf int sv(PDO)}$, designated as $N'_{spf int sv(FI)}$ and $N'_{spf int sv(PDO)}$ in Equation 12-30, are determined with Equation 12-29 using the coefficients for FI and PDO crashes, respectively, in Table 12-22. The adjustments in Equations 12-30 and 12-31 are then made to assure that $N_{spf int sv(FI)}$ and $N_{spf int sv(PDO)}$ sum to $N_{spf int sv}$.

$$N_{spfint\,sv(FI)} = N_{spf\,int\,sv(total)} \left(\frac{N'_{spf\,int\,sv(FI)}}{N'_{spf\,int\,sv(FI)} + N'_{spf\,int\,sv(PDO)}} \right)$$
(12-30)

 $N_{spf int sv(PDO)} = N_{spf int sv(total)} - N_{spf int sv(FI)}$

The proportions in Table 12-23 are used to separate $N_{spf int sv(FI)}$ and $N_{spf int sv(PDO)}$ into components by crash type.

Table 12-23. Distribution of Single-Vehicle Crashes by Manner of Collision for 2×2 Intersections with Five or Fewer Lanes

	Proportion of Crashes by Severity Level for Specific Intersection Types							
	3	ST	38	SG	48	ST	48	SG
Manner of Collision	FI	PDO	FI	PDO	FI	PDO	FI	PDO
Collision with parked vehicle	0.001	0.003	0.001	0.001	0.001	0.001	0.001	0.001
Collision with animal	0.003	0.018	0.001	0.003	0.001	0.026	0.002	0.002
Collision with fixed object	0.762	0.834	0.653	0.895	0.679	0.847	0.744	0.870
Collision with other object	0.090	0.092	0.091	0.069	0.089	0.070	0.072	0.070
Other single-vehicle collisions	0.039	0.023	0.045	0.018	0.051	0.007	0.040	0.023
Noncollision crashes	0.105	0.030	0.209	0.014	0.179	0.049	0.141	0.034

Source: HSIS data for California (2002-2006)

Since there are no models for FI crashes at 3ST and 4ST intersections in Table 12-22, Equation 12-30 is replaced with Equation 12-32 in these cases.

$$N_{spf int sv(FI)} = N_{spf int sv(total)} \times f_{bisv}$$

Where:

 f_{bisv} = proportion of FI crashes for combined sites.

The default values of f_{bisv} in Equation 12-32 is 0.31 for 3ST and 0.28 for 4ST intersections. It is recommended that these default values be updated based on locally available data.

12.6.2.2. SPFs for Collisions (Other than Vehicle-Pedestrian or Vehicle-Bicycle) on Intersections of Two-Way Arterials with Six or More Lanes and Intersections of One-Way Arterials

For intersections of two-way arterials with six or more lanes and intersections of one-way arterials, a single SPF is used to predict multiple-vehicle collisions and single-vehicle crashes (i.e., all crashes other than vehicle-pedestrian and vehicle-bicycle).

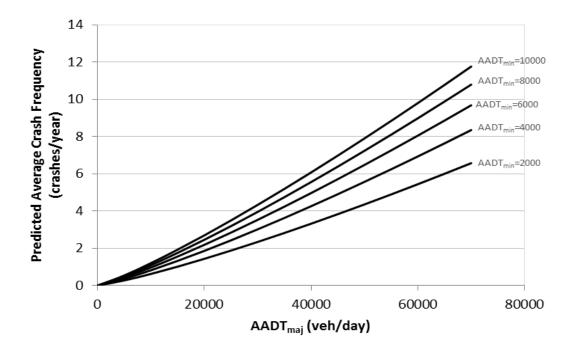
The SPF for multiple-vehicle and single-vehicle intersection-related collisions is applied using Equation 12-33.

$$N_{spf int mv+sv} = \exp(a + b \times \ln(AADT_{mai}) + c \times \ln(AADT_{min}))$$
(12-33)

Table 12-24 presents the values of the coefficients a, b, and c used in Equation 12-33 for each intersection type. The overdispersion parameter, k, is also presented in Table 12-24. The value of the overdispersion parameter associated with the SPF is determined using Equation 12-34. For special cases where only one leg of a 4-leg intersection is

characterized as one-way, it is suggested to apply the models for 1×2 and 2×2 (six or more lanes) and compute the average.

$$k = \frac{1}{d} \tag{12-34}$$


Where:

d = regression coefficient from Table 12-24.

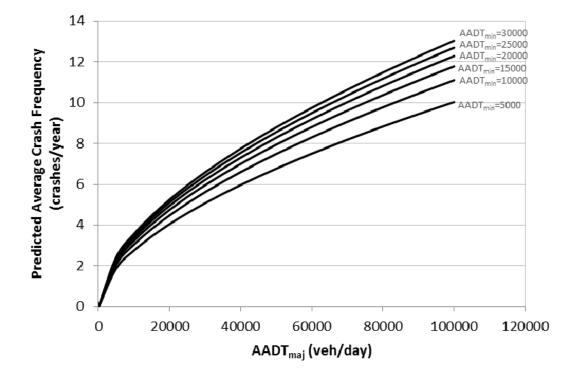
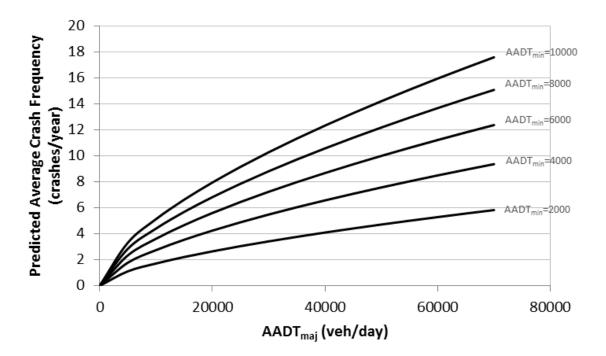

Figure 12-22 through Figure 12-25 present the graphical form of the SPF for intersection-related multiple-vehicle and single-vehicle collisions at 3ST, SG, 4ST, and 4SG intersections of two-way arterials with six or more lanes, respectively.

Table 12-24. SPF Coefficients for Multiple-Vehicle and Single-Vehicle Collisions at 2×2 Intersections with Six or	
More Lanes, 1×2, and 1×1 intersections	


		Coefficients Used in Equation 12-33 and 12-34				
Intersection Type	Intersection Category	a	b	c	d	
FI Crashes						
	1×1	-9.22	0.65	0.11	0.50	
3ST	1×2	-9.12	0.65	0.11	0.50	
	2×2 with 6 or more lanes	-15.03	1.09	0.53	1.54	
	1×1	-11.31	0.59	0.56	1.05	
3SG	1×2	-11.21	0.59	0.56	1.05	
	2×2 with 6 or more lanes	-7.11	0.65	0.16	1.93	
	1×1	-10.93	0.67	0.41	1.88	
4ST	1×2	-10.83	0.67	0.41	1.88	
	2×2 with 6 or more lanes	-10.08	0.58	0.60	1.67	
	1×1	-5.57	0.18	0.37	0.75	
4SG	1×2	-5.47	0.18	0.37	0.75	
	2×2 with 6 or more lanes	-4.63	0.36	0.27	1.77	
PDO Crashes						
	1×1	-17.99	1.53	0.31	0.97	
3ST	1×2	-17.60	1.53	0.31	0.97	
	2×2 with 6 or more lanes	-14.97	1.35	0.15	1.34	
	1×1	-7.46	0.49	0.35	1.11	
3SG	1×2	-7.07	0.49	0.35	1.11	
	2×2 with 6 or more lanes	-5.07	0.47	0.14	1.00	
	1×1	-12.46	0.86	0.51	1.04	
4ST	1×2	-12.06	0.86	0.51	1.04	
	2×2 with 6 or more lanes	-12.01	0.67	0.75	0.88	
	1×1	-6.31	0.38	0.36	0.50	
4SG	1×2	-5.92	0.38	0.36	0.50	
	2×2 with 6 or more lanes	-3.77	0.27	0.27	1.01	

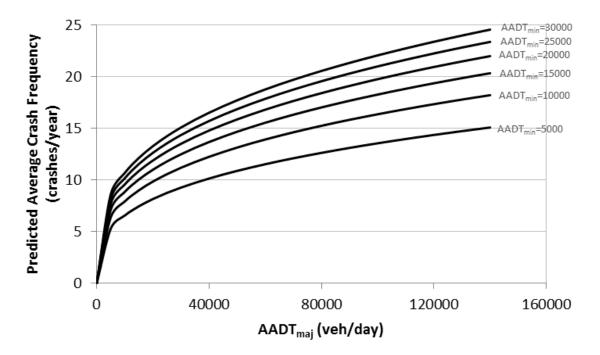
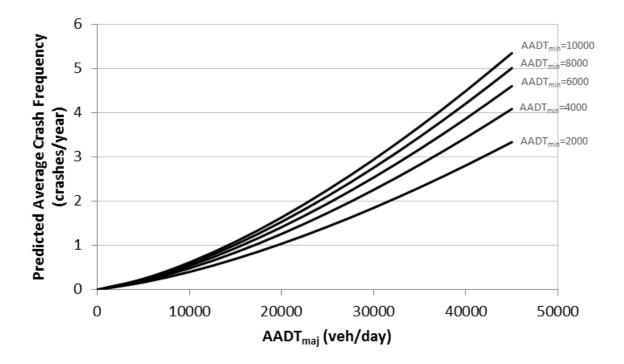

Figure 12-22. Graphical form of the SPF for Intersection-Related Multiple-Vehicle and Single-Vehicle Crashes at 3ST Intersections of Two-Way Arterials with Six or More Lanes (from Equation 12-33 and Table 12-24)

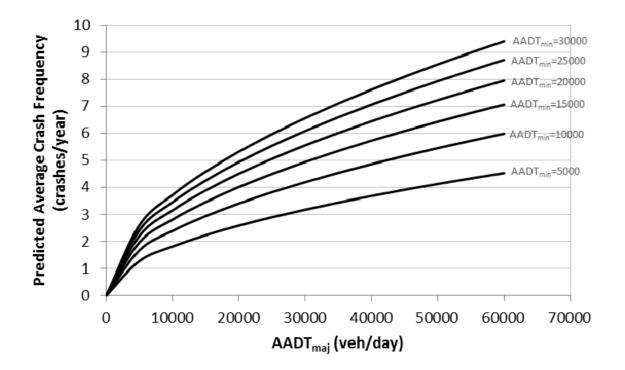
Figure 12-23. Graphical Form of the SPF for Intersection-Related Multiple-Vehicle and Single-Vehicle Crashes at 3SG Intersections of Two-Way Arterials with Six or More Lanes (from Equation 12-33 and Table 12-24)

Figure 12-24. Graphical Form of the SPF for Intersection-Related Multiple-Vehicle and Single-Vehicle Crashes at 4ST Intersections of Two-Way Arterials with Six or More Lanes (from Equation 12-33 and Table 12-24)

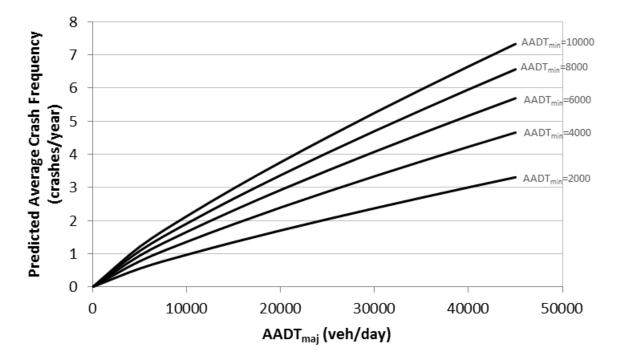
Figure 12-25. Graphical Form of the SPF for Intersection-Related Multiple-Vehicle and Single-Vehicle Crashes at 4SG Intersections of Two-Way Arterials with Six or More Lanes (from Equation 12-33 and Table 12-24)


The proportions in Table 12-25 are used to separate $N_{bi(FI)}$ and $N_{bi(PDO)}$ into components by manner of collision for 2×2 intersections with six or more lanes.

	Proportion of Crashes by Severity Level for Specific Intersection Types								
	38	ST	38	SG	49	ST	48	SG	
Manner of Collision	FI	PDO	FI	PDO	FI	PDO	FI	PDO	
Rear-end collision	0.094	0.154	0.120	0.189	0.079	0.098	0.083	0.148	
Head-on collision	0.043	0.023	0.056	0.034	0.030	0.012	0.093	0.046	
Angle collision	0.764	0.629	0.676	0.554	0.806	0.707	0.746	0.552	
Sideswipe	0.052	0.120	0.063	0.149	0.055	0.122	0.038	0.171	
Other multiple-vehicle	0.021	0.012	0.028	0.000	0.024	0.024	0.029	0.022	
Single-vehicle crashes	0.026	0.062	0.056	0.074	0.006	0.037	0.012	0.061	


Table 12-25. Distribution of Multiple-Vehicle and Single-Vehicle Crashes by Manner of Collision for 2×2 Intersections with Six or More Lanes

Source: HSIS data for California (2006-2010)


Figure 12-26 through Figure 12-29 present the graphical form of the SPF for intersection-related multiple-vehicle and single-vehicle collisions at 1×2 Intersections of 3ST, SG, 4ST, and 4SG type, respectively.

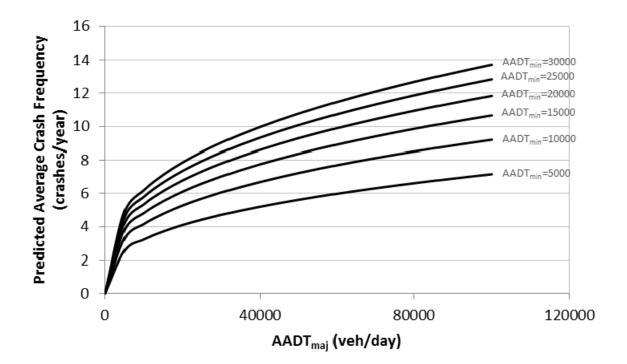

Figure 12-26. Graphical form of the SPF for Intersection-Related Multiple-Vehicle and Single-Vehicle Crashes at 1×2 3ST Intersections (from Equation 12-33 and Table 12-24)

Figure 12-27. Graphical Form of the SPF for Intersection-Related Multiple-Vehicle and Single-Vehicle Crashes at 1×2 3SG Intersections (from Equation 12-33 and Table 12-24)

Figure 12-28. Graphical form of the SPF for Intersection-Related Multiple-Vehicle and Single-Vehicle Crashes at 1×2 4ST Intersections (from Equation 12-33 and Table 12-24)

Figure 12-29. Graphical Form of the SPF for Intersection-Related Multiple-Vehicle and Single-Vehicle Crashes at 1×2 4SG Intersections (from Equation 12-33 and Table 12-24)

The proportions in Table 12-26 are used to separate $N_{bi(FI)}$ and $N_{bi(PDO)}$ into components by manner of collision for 1×2 and 1×1 intersections.

	Proportion of Crashes by Severity Level for Specific Intersection Types								
	38	ST	38	G	48	ST	48	6G	
Manner of Collision	FI	PDO	FI	PDO	FI	PDO	FI	PDO	
Rear-end collision	0.100	0.100	0.111	0.143	0.047	0.065	0.030	0.059	
Head-on collision	0.000	0.000	0.000	0.000	0.028	0.020	0.039	0.030	
Angle collision	0.300	0.250	0.889	0.571	0.822	0.706	0.837	0.733	
Sideswipe	0.400	0.350	0.000	0.214	0.075	0.157	0.059	0.145	
Other multiple-vehicle	0.100	0.050	0.000	0.071	0.009	0.013	0.030	0.012	
Single-vehicle crashes	0.100	0.250	0.000	0.000	0.019	0.039	0.006	0.021	

Table 12-26. Distribution of Multiple-Vehicle and Single-Vehicle Crashes by Manner of Collision for 1×2 or 1×1 Intersections

Source: HSIS data for California (2006-2010)

12.6.2.3. SPFs for Vehicle-Pedestrian Collisions on Arterial Intersections

Separate SPFs are provided for estimation of the number of vehicle-pedestrian collisions at signalized and unsignalized intersections.

SPFs for Signalized Intersections

The number of vehicle-pedestrian collisions per year at a signalized intersection is estimated with a SPF and a set of CMFs that apply specifically to vehicle-pedestrian collisions. The model for estimating vehicle-pedestrian collisions at signalized intersections is presented by Equation 12-35.

$$N_{pedi} = N_{pedbase} \times (CMF_{1p} \times CMF_{2p} \times CMF_{3p})$$
(12-35)

Where:

 $N_{pedbase}$ = predicted average crash frequency of vehicle-pedestrian collisions per year at an individual signalized intersection for base conditions; and

 CMF_{1p} ... CMF_{3p} = crash modification factors for vehicle-pedestrian collisions at signalized intersections.

The SPF for vehicle-pedestrian collisions at signalized intersections is presented in Equation 12-36.

$$N_{pedbase} = \exp\left(a + b \times \ln(AADT_{total}) + c \times \ln\left(\frac{AADT_{low}}{AADT_{high}}\right) + d \times \ln(PedVol) + e \times n_{laness}\right)$$
(12-36)

Where:

AADT _{high}	= average daily traffic volumes (vehicles per day) of the intersecting road with the greater AADT
AADT _{low}	= sum of the average daily traffic volumes (vehicles per day) of the intersecting road with the lower AADT
AADT _{total}	 sum of the average daily traffic volumes (vehicles per day) for the two intersecting roads (=AADT_{high} + AADT_{low});
PedVol	= sum of daily pedestrian volumes (pedestrians/day) crossing all intersection legs;
<i>n_{lanesx}</i>	= maximum number of traffic lanes crossed by a pedestrian in any crossing maneuver at the intersection considering the presence of refuge islands; and
a, b, c, d, e	= regression coefficients.

For 2×2 and 1×1 intersections, $AADT_{high}$ and $AADT_{low}$ always correspond to $AADT_{maj}$ and $AADT_{min}$, respectively. For 1×2 intersections, however, if the major (i.e., one-way) road has lower AADT than the minor (two-way) road, $AADT_{high}$ will correspond to $AADT_{min}$ and $AADT_{low}$ to $AADT_{maj}$. Only pedestrian crossing maneuvers immediately adjacent to the intersection (e.g., at a marked crosswalk or along the extended path of any sidewalk present) are considered in determining the pedestrian volumes.

Table 12-27 presents the values of the coefficients a, b, c, d, and e used in Equation 12-36. These coefficients are intended for estimating total vehicle-pedestrian collisions. All vehicle-pedestrian collisions are considered to be FI crashes.

The application of Equation 12-36 requires data on the total daily pedestrian volumes crossing the intersection legs. Reliable estimates will be obtained when the value of PedVol in Equation 12-36 is based on actual pedestrian volume counts. Where pedestrian volume counts are not available, they may be estimated using Table 12-28. Replacing the values in Table 12-28 with locally derived values is encouraged.

The value of n_{lanesx} in Equation 12-36 represents the maximum number of traffic lanes that a pedestrian must cross in any crossing maneuver at the intersection. Both through and turning lanes that are crossed by a pedestrian along the crossing path are considered. If the crossing path is broken by an island that provides a suitable refuge for the pedestrian so that the crossing may be accomplished in two (or more) stages, then the number of lanes crossed in each stage is considered separately. To be considered as a suitable refuge, an island must be raised or depressed; a flush or painted island is not treated as a refuge for purposes of determining the values of n_{lanesx} .

		Overdispersion				
	Intercept	AADT _{total}	AADT _{low} /AADT _{high}	PedVol	nlanesx	Parameter
Intersection Type Total crashes	(a)	(b)	(c)	(d)	(e)	(k)
3SG	-6.60	0.05	0.24	0.41	0.09	0.52
4SG	-9.53	0.40	0.26	0.45	0.04	0.24

Table 12-28. Estimates of Daily Pedestrian Volume Crossing All Intersection Legs Based on General Level of Pedestrian Activity

	Estimate of PedVol (pedestrians/day) for Use in Equation 12-36					
General Level of Pedestrian Activity	3SG Intersections	4SG Intersections				
High	1,700	3,200				
Medium-high	750	1,500				
Medium	400	700				
Medium-low	120	240				
Low	20	50				

SPFs for Stop-Controlled Intersections

The number of vehicle-pedestrian collisions per year for a stop-controlled intersection is estimated using Equation 12-37.

$$N_{pedi} = N_{bi} \times f_{pedi} \tag{12-37}$$

Where:

 f_{pedi} = pedestrian crash adjustment factor.

The value of N_{bi} in Equation 12-37 is determined using Equation 12-8.

Table 12-29 presents the values of f_{pedi} for use in Equation 12-37. All vehicle-pedestrian collisions are considered to be FI crashes. The values of f_{pedi} are likely to depend on the climate and walking environment in particular states or communities. HSM users are encouraged to replace the values in Table 12-29 with suitable values for their own state or community through the calibration process (see Part C, Appendix A).

 Table 12-29.
 Pedestrian Crash Adjustment Factors for Stop-Controlled Intersections

Intersection Category	Intersection Type	Pedestrian Crash Adjustment Factor (fpedi)
2×2 with five or fewer lanes	3ST	0.021
	4ST	0.022
2×2 with six or more lanes	3ST	0.051
	4ST	0.049
1×2 or 1×1	3ST	0.015
	4ST	0.020

Note: These factors apply to the methodology for predicting total crashes (all severity levels combined). All pedestrian collisions resulting from this adjustment factor are treated as FI crashes and none as PDO crashes.

Source: HSIS data from California (2002-2006) for 2x2 intersections with five or fewer lanes; HSIS data from California and Illinois (2006-2010) and state data from Texas (2008-2012) and Michigan (2008-2012) for other intersection categories.

12.6.2.4. SPFs for Vehicle-Bicycle Collisions on Arterial Intersections

The number of vehicle-bicycle collisions per year for an intersection is estimated using Equation 12-38.

$$N_{bikei} = N_{bi} \times f_{bikei}$$

Where:

 f_{bikei} = bicycle crash adjustment factor.

The value of N_{bi} in Equation 12-38 is determined using Equation 12-8.

Table 12-30 Biovele Crash Adjustment Factors for Intersections

Table 12-30 presents the values for f_{bikei} for use in Equation 12-38. All vehicle-bicycle collisions are considered to be FI crashes. The values of f_{bikei} are likely to depend on the climate and bicycling environment in particular states or communities. HSM users are encourages to replaces the values in Table 12-30 with suitable values for their own state or community through the calibration process (see Part C, Appendix A).

Intersection Category	Intersection Type	Bicycle Crash Adjustment Factor (fbikei)
2×2 with five or fewer lanes	3ST	0.016
	3SG	0.011
	4ST	0.018
	4SG	0.015
2×2 with six or more lanes	3ST	0.048
	3SG	0.029
	4ST	0.039
	4SG	0.019
	3ST	0.018
	3SG	0.016
1×2 or 1×1	4ST	0.022
	4SG	0.012

Note: These factors apply to the methodology for predicting total crashes (all severity levels combined). All bicycle collisions resulting from this adjustment factor are treated as FI crashes and none as PDO crashes.

Source: HSIS data from California (2002-2006) for 2×2 intersections with five or fewer lanes; HSIS data from California and Illinois (2006-2010) and state data from Texas (2008-2012) and Michigan (2008-2012) for other intersection categories.

12.7. CRASH MODIFICATION FACTORS

In Step 10 of the predictive method outlined in Section 12.4, crash modification factors are applied to the SPFs selected in Step 9. The SPFs provided in Chapter 12 were presented in Section 12.6. A general overview of CMFs is presented in Section 3.5.3. The Part C—Introduction and Applications Guidance provides further discussion on the relationship of CMFs to the predictive method. This section provides details of the specific CMFs applicable to the SPFs presented in Section 12.6.

CMFs are used to adjust the SPF estimate of predicted average crash frequency for the effect of individual geometric design and traffic control features, as shown in the general predictive model for Chapter 12 shown in Equations 12-1 and 12-2. The CMF for the SPF base condition of each geometric design or traffic control feature has a value of 1.00. Any feature associated with higher crash frequency than the base condition has a CMF with a value greater than 1.00; any feature associated with lower crash frequency than the base condition has a CMF with a value less than 1.00.

The CMFs used in Chapter 12 are consistent with the CMFs in Part D, although they have, in some cases, been expressed in a different form to be applicable to the base conditions of the SPFs. The CMFs presented in Chapter 12 and the specific SPFs which they apply to are summarized in Table 12-31. As Table 12-31 indicates, each CMF may be applicable to certain categories of roadway segments or intersections.

(12-38)

Applicable SPF	CMF	CMF Description	Applicable site type(s)	CMF Equations and Tables
	CMF _{1r}	On-Street Parking	Two-way segments with 5- lanes ^a & One-way segments	Equation 12-39, Table 12-32
	CMF _{2r}	Roadside Fixed Objects	All roadway segments	Equations 12-40, 12-41, Table 12-33, Table 12-34
	CMF _{3r}	Median Width	All two-way segments	Table 12-35
	CMF _{4r}	Lighting	Two-way segments with 5- lanes	Equation 12-42, Table 12-36
	CMF _{5r}	Automated Speed Enforcement	All roadway segments	See text
Roadway	CMF ₆ r	Lane Width	Two-way segments with 6+ lanes ^b	Equation 12-43
Segments	CMF _{7r}	Outside Shoulder Width	Two-way segments with 6+ lanes	Equation 12-44
	CMF _{8r}	Highway-Rail Grade Crossings	Two-way segments with 6+ lanes	Equation 12-45
	CMF9r	Median Barriers	Two-way segments with 6+ lanes	Equation 12-46, Table 12-37
	CMF10r	Major Industrial Driveways	Two-way segments with 6+ lanes	Equation 12-47
	CMF11r	Major Commercial Driveways	Two-way segments with 6+ lanes & One-way segments	Equation 12-48, Table 12-38
	CMF _{12r}	Minor Driveways	Two-way segments with 6+ lanes & One-way segments	Equation 12-49, Table 12-39
	CMF _{13r}	Right Shoulder Width	One-way segments	Equation 12-50
	CMF _{1i}	Intersection Left-Turn Lanes	2×2 intersections with 5- lanes ^c	Table 12-40
	CMF_{2i}	Intersection Left-Turn Signal Phasing	All 2×2 intersections	Table 12-41
	CMF _{3i}	Intersection Right-Turn Lanes	2×2 intersections with 5- lanes	Table 12-42
Multiple- Vehicle	CMF_{4i}	Right-Turn-on-Red	All intersections	Equation 12-51
Collisions and Single-Vehicle	CMF5i	Lighting	All intersections	Equation 12-52, Table 12-43
Crashes at Intersections	CMF _{6i}	Red-Light Cameras	All intersections	Equations 12-53, 12-54, 12- 55, 12-56, 12-57
	CMF _{7i}	Number of Lanes	2×2 intersections with 6+ lanes & 1×2 and 1×1 intersections	Equations 12-58, 12-59, 12-60, Table 12-44
	CMF _{8i}	Intersection Right-Turn Channelization	2×2 intersections with $6+$ lanes ^d	Equation 12-61
	CMF _{9i}	U-Turn Prohibition	2×2 intersections with 6+ lanes	Equation 12-62
Vehicle- Pedestrian	CMF_{1p}	Bus Stops	All intersections	Table 12-45
Collisions at	CMF_{2p}	Schools	All intersections	Table 12-46
Signalized Intersections	CMF_{3p}	Alcohol Sales Establishments	All intersections	Table 12-47

 Table 12-31.
 Summary of CMFs in Chapter 12 and the Corresponding SPFs

^a five or fewer lanes

 $^{\scriptscriptstyle b} \, \text{six}$ or more lanes

° intersections of two-way arterials where both intersecting arterials have five or less through lanes

^d intersections of two-way arterials where at least one of the intersecting arterials has six or more lanes

12.7.1. Crash Modification Factors for Roadway Segments

The effects of individual geometric design and traffic control features of urban and suburban arterial roadway segments are represented in the predictive models by CMFs. These CMFs are determined in Step 10 of the predictive method and used in Equation 12-4 to adjust the SPF for urban and suburban arterial roadway segments to account for differences between the base condition and the local site conditions.

CMF₁-On-Street Parking

For roadway segments with five or fewer lanes, the CMF for on-street parking, where present, is based on research by Bonneson (1). For one-way roadway segments, the CMF is based on research by Lord et al. (11). This CMF does not apply to arterials with six or more lanes. The base condition for this CMF is the absence of on-street parking on the roadway segment. The CMF for on-street parking is determined using Equation 12-39.

$$CMF_{1r} = 1 + p_{pk} \times (f_{pk} - 1.0)$$
 (12-39)

Where:

 CMF_{Ir} = crash modification factor for the effect of on-street parking;

 f_{pk} = factor from Table 12-32;

 p_{pk} = proportion of curb length with on-street parking = (0.5 L_{pk}/L);

 L_{pk} = sum of curb length with on-street parking for both sides of the road combined (miles); and

L = length of roadway segment (miles).

The CMF for on-street parking applies to all collision types other than vehicle-pedestrian and vehicle-bicycle.

The sum of curb length with on-street parking (L_{pk}) can be determined from field measurements or video log review to verify parking regulations. Estimates can be made by deducting from twice the roadway segment length allowances for intersection widths, crosswalks, and driveway widths.

	Type of Parking and Land Use			
	Parallel Parking		Angle Parking	
Roadway Segment Type	Residential/Other	Commercial or Industrial/Institution	Residential/Other	Commercial or Industrial/Institutiona
2U	1.465	2.074	3.428	4.853
3T	1.465	2.074	3.428	4.853
4U	1.100	1.709	2.574	3.999
4D	1.100	1.709	2.574	3.999
5T	1.100	1.709	2.574	3.999
20	1.112			4.364
30	1.359		4.364	
40	1.359			4.364

Table 12-32. Values of f_{pk} Used in Determining the CMF for On-Street Parking

CMF_{2r}—Roadside Fixed Objects

The CMF for roadside fixed objects is applicable to all roadway segment types. However, when applied to roadway segments with six or more lanes and one-way roadway segments, this CMF has a different form and application than when applied to roadway segments with five or fewer lanes, as described below. For all roadway segment types, the base condition for this CMF is the absence of roadside fixed objects on the roadway segment.

For roadway segments with five or fewer lanes, the CMF for roadside fixed objects has been adapted from the work of Zeeger and Cynecki (16) on predicting utility pole crashes and is determined using Equation 12-40.

$$CMF_{2r} = f_{offset} \times D_{fo} \times p_{fo} + (1.0 - p_{fo})$$
 (12-40)

 CMF_{2r} = crash modification factor for the effect of roadside fixed objects;

 f_{offset} = fixed-object offset factor from Table 12-33;

 D_{fo} = fixed-object density (fixed objects/mi) for both sides of the road combined; and

 p_{fo} = fixed-object collisions as a proportion of total crashes from Table 12-34.

For roadway segments with five or fewer lanes, the CMF for roadside fixed objects applies to all collision types other than vehicle-pedestrian and vehicle-bicycle.

For roadway segments with six or more lanes and one-way roadway segments, the CMF is based on research by Lord et al. (11) and determined using Equation 12-41.

$$CMF_{2r} = f_{offset} \times D_{fo} \times 0.01 + 1.0$$
 (12-41)

The value of f_{offset} is determined from Table 12-33. For roadway segments with six or more lanes, the CMF for roadside fixed objects applies only to single-vehicle crashes.

For all roadway segment types, if the computed value of CMF_{2r} is less than 1.00, it is set equal to 1.00. This can only occur for very low fixed object densities. In estimating the density of fixed objects (D_{fo}), only point objects that are 4 inches or more in diameter and do not have breakaway design are considered. Point objects that are within 70 ft of one another longitudinally along the road are counted as a single object. Continuous objects that are not behind point objects are counted as one point object for each 70 ft of length. The offset distance (O_{fo}) shown in Table 12-33 is an estimate of the average distance from the edge of the traveled way to roadside objects over an extended roadway segment. If the average offset to fixed objects exceeds 30 ft, use the value of offset for 30 ft. Only fixed objects on the roadside on the right side of the roadway in each direction of travel are considered; fixed objects in the roadway median on divided arterials are not considered.

	Fixed-Object Offset Factor (foffset)			
Offset to Fixed Objects (O _{fo}) (ft)	Two-Way Roadway Segments		One-Way Roadway	
	Five or Fewer Lanes	Six or More Lanes	Segments	
2	0.232	0.770	0.829	
5	0.133	0.519	0.626	
10	0.087	0.270	0.391	
15	0.068	0.140	0.245	
20	0.057	0.073	0.153	
25	0.049	0.038	0.096	
30	0.044	0.020	0.060	

Table 12-33. Fixe	d-Object Offset Factor
-------------------	------------------------

Table 12-34. Proportion of Fixed-Object Collisions for Roadway Segments with Five or Fewer Lanes

Roadway Segment Type	Proportion of Fixed-Object Collisions (pfo)
2U	0.059
3T	0.034
4U	0.037
4D	0.036
5T	0.016

Note: replacement of the proportions in this table with locally derived values is encouraged.

CMF₃,—Median Width

The CMF for median width on divided roadway segments of urban and suburban arterials is presented in Table 12-35. For 4D roadway segments, the CMF is based on the work of Harkey et al. (6). For 6D and 8D roadway segments, the CMF is based on the work of Lord et al. (11). The base condition for this CMF is a median width of 15ft. The CMF applies to all collision types other than vehicle-pedestrian and vehicle-bicycle, and represents the effect of median width in reducing cross-median collisions. The CMF for 4D roadway segments in Table 12-35 has been adapted from the CMF in Table 13-12 based on the estimate by Harkey et al. (6) that cross-median collisions represent 12.0 percent of crashes on divided arterials and the assumption that nonintersection collision types other than cross-median collisions are not affected by median width.

This CMF applies only to traversable medians without traffic barriers; it is not applicable to medians serving as TWLTLs (a CMF for TWLTLs is provided in Chapter 16). The effect of traffic barriers on safety would be expected to be a function of barrier type and offset, rather than the median width; however, the effects of these factors on safety have not been quantified for roadway segments with five or fewer lanes. Until better information is available, a CMF value of 1.00 is used for medians with traffic barriers for arterials with five or fewer lanes. For arterials with six or more lanes, CMF_{9r} accounts for the effect of median barrier on multiple-vehicle collisions and single-vehicle crashes.

The value of the CMF for median width is 1.00 for undivided facilities.

Table 12-35. CMFs for Median Widths on Divided Roadway Segments without a Median Barrier (CMF_{3r})

	C	CMF _{3r}
Median Width (ft)	4D	6D or 8D
10	1.01	1.03
15	1.00	1.00
20	0.99	0.97
30	0.98	0.92
40	0.97	0.87
50	0.96	0.82
60	0.95	0.77
70	0.94	0.73
80	0.93	0.69
90	0.93	0.65
100	0.92	0.62

CMF₄,—Lighting

The CMF for lighting is applicable only to roadway segments with five or fewer lanes. The base condition for lighting is the absence of roadway segment lighting. The CMF for lighted roadway segments is determined, based on the work of Elvik and Vaa (3), using Equation 12-42.

$$CMF_{4r} = 1.0 - (p_{nr} \times (1.0 - 0.72 \times p_{inr} - 0.83 \times p_{pnr}))$$
(12-42)

Where:

 CMF_{4r} = crash modification factor for the effect of roadway segment lighting;

 p_{inr} = proportion of total nighttime crashes for unlighted roadway segments that involve a fatality or injury;

- p_{pnr} = proportion of total nighttime crashes for unlighted roadway segments that involve property damage only; and
- p_{nr} = proportion of total crashes for unlighted roadway segments that occur at night.

This CMF applies to all collision types other than vehicle-pedestrian and vehicle-bicycle. Table 12-36 presents default values for the nighttime crash proportions p_{nr} , p_{inr} , and p_{pnr} . Replacement of the estimates in Table 12-36 with locally derived values is encouraged. If lighting installation increases the density of roadside fixed objects, the value of CMF_{2r} is adjusted accordingly.

	Proportion of Total Nighttime Crashes by Severity Level		Proportion of Crashes that Occur a Night	
Roadway Segment Type	FI pinr	PDO ppnr	p _{nr}	
2U	0.424	0.576	0.316	
3T	0.429	0.571	0.304	
4U	0.517	0.483	0.365	
4D	0.364	0.636	0.410	
5T	0.432	0.568	0.274	

Table 12-36. Nighttime Ci	rash Proportions for	r Unlighted Roadwa	y Segments
---------------------------	----------------------	--------------------	------------

CMF_{5r}—Automated Speed Enforcement

The CMF for automated speed enforcement applies to all roadway segment types and all collision types (other than vehicle-pedestrian and vehicle-bicycle). Automated speed enforcement systems use video or photographic identification in conjunction with radar or lasers to detect speeding drivers. These systems automatically record vehicle identification information without the need for police officers at the scene. The base condition for automated speed enforcement is that it is absent. Chapter 17 presents a CMF of 0.83 for the reduction of all types of FI crashes from implementation of automated speed enforcement. This CMF is assumed to apply to roadway segments between intersections with fixed camera sites where the camera is always present or where drivers have no way of knowing whether the camera is present or not. No information is available on the effect of automated speed enforcement on noninjury crashes. With the conservative assumption that automated speed enforcement has no effect on noninjury crashes, the value of the CMF for automated speed enforcement would be 0.95.

CMF₆-Lane Width

The CMF for lane width is applicable only to two-way arterials with six or more lanes. The CMF is based on research by Lord et al. (11) and applies to all collision types (other than vehicle-pedestrian and vehicle-bicycle). The base condition for lane width is 12 ft. Where the lane width varies between the two directions of travel on a roadway segment, the average lane width is computed and used to determine the CMF. The CMF for lane width is determined using Equation 12-43.

$$CMF_{6r} = e^{-0.0219(W_l - 12)}$$

Where:

 CMF_{6r} = crash modification factor for the effect of lane width; and

 W_l = lane width (ft).

CMF7r—Outside Shoulder Width

The CMF for outside shoulder width is applicable only to two-way arterials with six or more lanes. Outside shoulder width refers to the width of the right shoulders in each direction of travel on a two-way arterial. The CMF is based on research by Lord et al. (11) and applies to all collision types (other than vehicle-pedestrian and vehicle-bicycle). The base condition for outside shoulder width is 1.5 ft. Where the right shoulder width varies between the two directions of travel on a roadway segment, the average shoulder width is computed and used to determine the CMF. The CMF for outside shoulder width is determined using Equation 12-44.

$$CMF_{7r} = e^{-0.0285(W_{os} - 1.5)}$$

(12-44)

(12-43)

 CMF_{7r} = crash modification factor for the effect of outside shoulder width; and

= outside shoulder width (ft). Wos

CMF_{8r}—Highway-Rail Grade Crossings

The CMF for highway-rail grade crossings is applicable only to roadway segment with six or more lanes. The CMF captures the safety impact of highway-rail grade crossings within a roadway segment. This CMF is based on research by Lord et al. (11) and applies to all collision types (other than vehicle-pedestrian and vehicle-bicycle). The base condition is no highway-rail grade crossings within a roadway segment. The CMF for highway-rail grade crossings is determined using Equation 12-45.

$$CMF_{8r} = e^{\left(0.0388 \times \frac{n_{hrx}}{L}\right)}$$
(12-45)

Where:

 CMF_{8r} = crash modification factor for the effect of highway-rail grade crossings; and

= number of highway-rail grade crossings within the roadway segment. n_{hrx}

CMF₉-Median Barriers

The CMF for median barriers is based on research by Lord et al. (11) and is applicable only to cable barriers, concrete barriers, and guardrails on roadway segments with six or more lanes. The base condition is a median with no barrier. The CMF for median barriers is determined using Equation 12-46.

$$CMF_{9r} = e^{(a \times I_{bar})}$$
(12-46)

Where:

 CMF_{9r} = crash modification factor for the effect of median barriers; and

= indicator variable representing the presence of median barrier (=1 if barrier is present; 0 otherwise). Ibar

The regression coefficient for Equation 12-46 is provided in Table 12-37. The CMF for median barrier applies to both multiple-vehicle and single-vehicle crashes but, unlike other CMFs in Chapter 12, it takes different values when applied to multiple-vehicle and single-vehicle crashes. As the coefficient values in Table 12-37 suggest, presence of median barriers is expected to reduce the average crash frequency of multiple-vehicle collisions while increasing the average crash frequency of single-vehicle crashes.

Table 12-37. Coefficient	for Median B	Barrier CMF
--------------------------	--------------	-------------

Collision Type	Regression Coefficient (a)
Multiple-vehicle	-0.5106
Single-vehicle	0.6766

CMF₁₀-Major Industrial Driveways

The CMF for major industrial driveways is applicable only to roadway segments with six or more lanes. This CMF is based on research by Lord et al. (11) and only applies to multiple-vehicle collisions. The base condition is one major industrial driveway per mile. The CMF for major industrial driveways is determined using Equation 12-47.

$$CMF_{10r} = e^{0.0107 \left(\frac{n_{id}}{L} - 1\right)}$$
(12-47)

 CMF_{10r} = crash modification factor for the effect of major industrial driveways; and

 n_{id} = number of major industrial driveways within the roadway segment.

CMF₁₁-Major Commercial Driveways

The CMF for major commercial driveways is applicable only to roadway segments with six or more lanes and one-way roadway segments. This CMF is based on research by Lord et al. (11) and only applies to multiple-vehicle collisions. The base condition is two major commercial driveways per mile. The CMF for major industrial driveways is determined using Equation 12-48.

$$CMF_{11r} = e^{a\left(\frac{n_{cd}}{L}-2\right)}$$
 (12-48)

Where:

 CMF_{IIr} = crash modification factor for the effect of major commercial driveways; and

 n_{cd} = number of major commercial driveways within the roadway segment.

The regression coefficient for Equation 12-48 is provided in Table 12-38.

Table 12-38. Coefficient for Major Commercial Driveway CM	F
---	---

Roadway Segment Type	Regression Coefficient (<i>a</i>)
Two-way with six or more lanes	0.0350
One-way	0.0177

CMF₁₂-Minor Driveways

The CMF for minor driveways is applicable only to roadway segments with six or more lanes and one-way roadway segments. This CMF is based on research by Lord et al. (11) and only applies to multiple-vehicle collisions. The base condition is 10 minor driveways per mile. The CMF for major industrial driveways is determined using Equation 12-49.

$$CMF_{12r} = e^{a \left(\frac{n_{mad}}{L} - 10\right)}$$
 (12-49)

Where:

 CMF_{12r} = crash modification factor for the effect of minor driveways; and

 n_{mnd} = number of minor driveways within the roadway segment.

The regression coefficient for Equation 12-49 is provided in Table 12-39.

Table 12-39. Coeff	icient for Minor	r Drivewavs CMF
--------------------	------------------	-----------------

Roadway Segment Type	Regression Coefficient (<i>a</i>)
Two-way with six or more lanes	0.0054
One-way	0.0046

CMF_{13r}—Right Shoulder Width

The CMF for right shoulder width is applicable only to one-way roadway segments. The base condition for right shoulder width is 4 ft. The CMF is based on research by Lord et al. (11) and applies to all collision types (other than vehicle-pedestrian and vehicle-bicycle). The CMF for right shoulder width is determined using Equation 12-50.

$$CMF_{13r} = e^{-0.0201(W_{rs}-4)}$$

Where:

 CMF_{13r} = crash modification factor for the effect of right shoulder width; and

 W_{rs} = right shoulder width (ft).

12.7.2. Crash Modification Factors for Intersections

The effects of individual geometric design and traffic control features of intersections are represented in the predictive models by CMFs. CMF_{1i} through CMF_{9i} are applied to multiple-vehicle collisions and single-vehicle crashes at intersections, but not to vehicle-pedestrian and vehicle-bicycle collisions.

CMF_{1i}—Intersection Left-Turn Lanes

The CMF for intersection left-turn lanes is applicable only to 2×2 intersections with five or fewer lanes. The base condition for this CMF is the absence of left-turn lanes on the intersection approaches. The CMFs for presence of left-turn lanes are presented in Table 12-40. These CMFs apply to installation of left-turn lanes on any approach to a signalized intersection, but only on uncontrolled major-road approaches to stop-controlled intersections. The CMFs for installation of a left-turn lanes on multiple approaches to a power equal to the corresponding CMF for installation of a left-turn lane on one approach raised to a power equal to the number of approaches with left-turn lanes. There is no indication of any change in crash frequency for providing a left-turn lane on an approach controlled by a stop sign, so the presence of a left-turn lane on a stop-controlled approach is not considering applying Table 12-40. The CMFs for installation of left-turn lanes are based on research by Harwood et al. (7). A CMF of 1.00 is always used when no left-turn lanes are present.

		Number of Approaches with Left-turn Lanes ^a			
Intersection Type	Intersection Traffic Control	One Approach	Two Approaches	Three Approaches	Four Approaches
Three-leg	Minor-road stop control ^b	0.67	0.45		
	Traffic signal	0.93	0.86	0.80	
Four-leg intersection	Minor-road stop control ^b	0.73	0.53		
	Traffic signal	0.90	0.81	0.73	0.66

^a Stop-controlled approaches are not considered in determining the number of approaches with left-turn lanes.

^b Stop signs present on minor-road approaches only.

CMF_{2i}—Intersection Left-Turn Signal Phasing

For 2×2 intersections with five or fewer lanes, the CMF for intersection left-turn signal phasing is based on the results of work by Hauer (10), as modified in a study by Lyon et al. (12). For 2×2 intersections with six or more lanes, the CMF is based on the work by Lord et al. (11). The CMF for left-turn signal phasing is not applicable to intersections of one-way arterials (1×2 or 1×1). Types of left-turn signal phasing considered include permissive, protected, protected/permissive, and permissive/protected. Protected/permissive operation is also referred to as a leading left-turn signal phase; permissive/protected operation is also referred to as a lagging left-turn signal phase. The CMF values are presented in Table 12-41. The base condition for this CMF is permissive left-turn signal phasing. This CMF applies to all intersection crash types (other than vehicle-pedestrian and vehicle-bicycle) and is applicable only to signalized intersections. A CMF value of 1.00 is always used for unsignalized intersections.

(12-50)

(12-51)

If several approaches to a signalized intersection have left-turn phasing, the values of CMF_{2i} for each approach are multiplied together.

Table 12-41. Crash Modification Factor (CMF _{2i}) for Type of Left-Turn	Signal Phasing

	\mathbf{CMF}_{2i}		
Type of Left-Turn Signal Phasing	2×2 (Five or Fewer Lanes)	2×2 (Six or More Lanes)	
Permissive	1.00	1.00	
Protected/permissive or permissive/protected	0.99	1.00	
Protected	0.94	0.86	

Note: Use $CMF_{2i} = 1.00$ for all unsignalized intersections. If several approaches to a signalized intersection have left-turn phasing, the values of CMF_{2i} for each approach are multiplied together.

CMF_{3i}—Intersection Right-Turn Lanes

The CMF for intersection right-turn lanes is applicable only to 2×2 intersections with five or fewer lanes. The base condition for this CMF is the absence of right-turn lanes on the intersection approaches. The CMFs for presence of right-turn lanes based on research by Harwood et al. (7) are presented in Table 12-42. These CMFs apply to installation of right-turn lanes on any approaches to a signalized intersection, but only on uncontrolled major-road approaches to stop-controlled intersections. The CMFs for installation of right-turn lanes on multiple approaches to an intersection are equal to the corresponding CMF for installation of a right-turn lane on one approach raised to a power equal to the number of approaches with right-turn lanes. There is no indication of any change in crash frequency for providing a right-turn lane on an approach controlled by a stop sign, so the presence of a right-turn lane on a stop-controlled approach is not considering in applying Table 12-42.

The CMFs in Table 12-42 apply to all intersection crash types (other than vehicle-pedestrian and vehicle-bicycle). A CMF value of 1.00 is always used when no right-turn lanes are present. This CMF applies only to right-turn lanes that are identified by marking or signing. The CMF is not applicable to long tapers, flares, or paved shoulders that may be used informally by right-turn traffic.

		Number of Approaches with Right-Turn Lanes ^a			
Intersection Type	Type of Traffic Control	One Approach	Two Approaches	Three Approaches	Four Approaches
Three-leg intersection	Minor-road stop control ^b	0.86	0.74		_
	Traffic signal	0.96	0.92		—
Four-leg intersection	Minor-road stop control ^b	0.86	0.74		_
	Traffic signal	0.96	0.92	0.88	0.85

Table 12-42. Crash Modification Factor (CMF_{3i}) for Installation of Right-Turn Lanes on Intersection Approaches

^a Stop-controlled approaches are not considered in determining the number of approaches with left-turn lanes.

^b Stop signs present on minor-road approaches only.

CMF4i-Right-Turn-on-Red

The CMF for prohibiting right-turn-on-red on one or more approaches to a signalized intersection has been derived from a study by Clark (2) and from the CMFs for right-turn-on-red operation shown in Chapter 14. The base condition for this CMF is permitting a right-turn-on-red from all approaches to a signalized intersection. The CMF for right-turn-on-red is determined using Equation 12-51.

$$CMF_{4i} = 0.98^{(n_{prohib})}$$

Where:

 CMF_{4i} = crash modification factor for the effect of prohibiting right turns on red; and

 n_{prohib} = number of signalized intersection approaches for which right-turn-on-red is prohibited.

This CMF applies to all intersection crash types (other than vehicle-pedestrian and vehicle-bicycle) and is applicable only to signalized intersections (of any category). A CMF value of 1.00 is used for unsignalized intersections.

CMF_{5i}—Intersection Lighting

The CMF for intersection lighting is applicable to all intersection types. The base condition for this CMF is the absence of intersection lighting. The CMF for lighted intersections adapted from the work of Elvik and Vaa (3) is determined using Equation 12-52.

$$CMF_{5i} = 1 - 0.38 \times p_{ni}$$

Where:

 CMF_{5i} = crash modification factor for the effect of intersection lighting; and

 p_{ni} = proportion of total crashes for unlighted intersections that occur at night.

This CMF applies to all intersection crash types (other than vehicle-pedestrian and vehicle-bicycle). Table 12-43 presents default values for the nighttime crash proportion, p_{ni} . HSM users are encouraged to replace the estimates in Table 12-43 with locally derived values.

Table 12-43. Nighttime Crash Proportions for Unlighted Intersections

	Proportion of Crashes that Occur at Night
Intersection Type	P ni
3ST	0.238
4ST	0.229
3SG and 4SG	0.235

CMF_{6i}—Red Light Cameras

The CMF for red light cameras is applicable only to signalized intersections (of any category). The base condition for red light cameras is their absence. The CMF for installation of a red light camera for enforcement of red signal violations at a signalized intersection is based on an evaluation by Persaud et al. (13). As shown in Chapter 14, this study indicates a CMF for red light camera installation of 0.74 for right-angle collisions and a CMF of 1.18 for rear-end collisions. In other words, red light cameras would typically be expected to reduce right-angle collisions and increase rear-end collisions. There is no evidence that red light installation affects other collision types. Therefore, a CMF for the effect of red light camera installation on all intersection crash types (other than vehicle-pedestrian and vehicle-bicycle) can be computed using Equation 12-53.

$$CMF_{6i} = 1 - p_{ra} \times (1 - 0.74) - p_{re} \times (1 - 1.18)$$
(12-53)

Where:

 CMF_{6i} = crash modification factor for the effect of red light cameras at signalized intersections;

 p_{ra} = proportion of crashes that are multiple-vehicle, right-angle collisions;

 p_{re} = proportion of crashes that are multiple-vehicle, rear-end collisions;

For intersections of two-way arterials with five or fewer lanes, p_{ra} and p_{re} are determined using Equations 12-54 and 12-55.

$$P_{ra} = \frac{P_{ramv(FI)} \times N_{bimv(FI)} + P_{ramv(PDO)} \times N_{bimv(PDO)}}{(N_{bimv(FI)} + N_{bimv(PDO)} + N_{bisv})}$$
(12-54)

(12-52)

$$P_{re} = \frac{P_{remv(FI)} \times N_{bimv(FI)} + P_{remv(PDO)} \times N_{bimv(PDO)}}{(N_{bimv(FI)} + N_{bimv(PDO)} + N_{bisv})}$$
(12-55)

$p_{ramv(FI)}$	= proportion of multiple-vehicle FI crashes represented by right-angle collisions;
pramv(PDO)	= proportion of multiple-vehicle PDO crashes represented by right-angle collisions;
$p_{remv(FI)}$	= proportion of multiple-vehicle FI crashes represented by rear-end collisions; and
$p_{remv(PDO)}$	= proportion of multiple-vehicle PDO crashes represented by rear-end collisions.

The value of $N_{binv(FI)}$ is available from Equation 12-27, the value of $N_{binv(PDO)}$ is available from Equation 12-28, and the value of N_{bisv} is available from Equation 12-29. The values of $p_{ranv(FI)}$, $p_{ranv(PDO)}$, $p_{renv(FI)}$, and $p_{renv(PDO)}$ can be determined from data for the applicable intersection type in Table 12-21. These values may be updated with data for a particular jurisdiction as part of the calibration process presented in Part C, Appendix A.

For intersections of two-way arterials with six or more lanes, p_{ra} and p_{re} are determined using Equations 12-56 and 12-57.

$$P_{ra} = \frac{P_{ra(FI)} \times N_{bi(FI)} + P_{ra(PDO)} \times N_{bi(PDO)}}{(N_{bi(FI)} + N_{bi(PDO)})}$$
(12-56)

$$P_{re} = \frac{P_{re(FI)} \times N_{bi(FI)} + P_{re(PDO)} \times N_{bi(PDO)}}{(N_{bi(FI)} + N_{bi(PDO)})}$$
(12-57)

Where:

$p_{ra(FI)}$	= proportion of multiple-vehicle and single-vehicle FI crashes represented by right-angle collisions;
	- proportion of multiple vehicle and single vehicle PDO graphes represented by right angle

$p_{ra(PDO)}$	=	proportion of multiple-vehicle and single-vehicle PDO crashes represented by right-angle
		collisions;

 $p_{re(FI)}$ = proportion of multiple-vehicle and single-vehicle FI crashes represented by rear-end collisions; and

 $p_{re(PDO)}$ = proportion of multiple-vehicle and single-vehicle PDO crashes represented by rear-end collisions.

The values of $N_{bi(FI)}$ and $N_{bimv(PDO)}$ are available from Equation 12-33. The values of $p_{ra(FI)}$, $p_{ra(PDO)}$, $p_{re(FI)}$, and $p_{re(PDO)}$ can be determined from data for the applicable intersection type in Table 12-25 and Table 12-26. These values may be updated with data for a particular jurisdiction as part of the calibration process presented in Part C, Appendix A.

The data in Table 12-21, Table 12-25, and Table 12-26, by definition, represent average values for a broad range of signalized intersections. Because jurisdictions are likely to implement red-light cameras at intersections with higher than average proportions of right-angle collisions, it is acceptable to replace the values in with estimate based on data for a specific intersection when determining the value of the red light camera CMF.

CMF_{7i}—Number of Lanes

The CMF for the number of lanes on the intersecting arterials at an intersection is applicable only to 2×2 signalized intersections with six or more lanes and signalized intersections of one-way arterials (1×2 or 1×1). For 2×2 intersections with six or more lanes, the base condition for this CMF is six lanes on the major road and two lanes on the minor road. For 1×2 or 1×1 intersections, the base condition is two lanes on the major road and two lanes on the minor road. This CMF applies to all intersection crash types (other than vehicle-pedestrian and vehicle-bicycle). The CMF is based on the work of Lord et al. (11) and computed using Equations 12-58 to 12-60.

$$CMF_{7i} = (e^{a(N_{maj} - N_{maj(base}))}P_{maj} + (1 - P_{maj})) \times (e^{a(N_{min} - 2)}P_{min} + (1 - P_{min}))$$
(12-58)

$$P_{maj} = \frac{AADT_{maj}}{AADT_{maj} + AADT_{min}}$$
(12-59)

$$P_{min} = \frac{AADT_{min}}{AADT_{maj} + AADT_{min}}$$
(12-60)

where,

- N_{maj} = number of lanes on the major road (excluding the left-turn and right-turn lanes added at the intersection);
- $N_{maj(base)}$ = number of lanes on the major road under base conditions: six for 2×2 intersections with six or more lanes, and two for 1×2 or 1×1 intersections (excluding the left-turn and right-turn lanes added at the intersection);

N_{min} = number of lanes on the minor roa
--

P_{maj}	= proportion of AAD	T on the major road; and
P_{maj}	= proportion of AAD	I on the major road; an

 P_{min} = proportion of AADT on the minor road.

The regression coefficient of Equation 12-58 is provided in Table 12-44.

 Table 12-44. Coefficient for Number of Lanes CMF

Intersection Category	Regression Coefficient (<i>a</i>)		
2×2 with six or more lanes	0.194		
1×2 or 1×1	0.242		

This CMF applies to all intersection crash types (other than vehicle-pedestrian and vehicle-bicycle) and is applicable only to signalized intersections. A CMF value of 1.00 is used for unsignalized intersections.

CMF_{8i}—Intersection Right-Turn Channelization

The CMF for intersection right-turn channelization is applicable only to 2×2 intersections with six or more lanes. The base condition for this CMF is the absence of right-turn channelization at both approaches of the major road. The CMF for intersection right turn channelization is based on research by Lord et al. (11) and determined using Equation 12-61.

$$CMF_{8i} = e^{(0.2175 \times n_{ch})}$$

Where:

 n_{ch} = number of major road approaches with channelized right turn lanes.

This CMF applies to all intersection crash types (other than vehicle-pedestrian and vehicle-bicycle) and is applicable only to signalized intersections. A CMF value of 1.00 is used for unsignalized intersections.

CMF9i-U-Turn Prohibition

The CMF for prohibiting U-turns on one or more approaches to a signalized intersection is applicable only to 2×2 intersections with six or more lanes. The base condition for this CMF is permitting U-turns at all approaches of a signalized intersection. The CMF for U-turn prohibition is based on research by Lord et al. (11) and determined using Equation 12-62.

$$CMF_{\rm or} = 0.96^{\left(n_{u-prohib}\right)} \tag{12-62}$$

(12-61)

 CMF_{9i} = crash modification factor for the effect of prohibiting U-turns; and

 $n_{u-prohib}$ = number of signalized intersection approaches from which U-turn is prohibited.

This CMF applies to all intersection crash types (other than vehicle-pedestrian and vehicle-bicycle) and is applicable only to signalized intersections. A CMF value of 1.00 is used for unsignalized intersections.

12.7.3. Crash Modification Factors for Vehicle-Pedestrian Collisions at Signalized Intersections

The effects of major sources of pedestrian activity (i.e., bus stops, schools, alcohol sales establishments) on vehiclepedestrian collisions at signalized intersection are represented by CMFs. CMF_{1p} through CMF_{3p} are applied to vehiclepedestrian collisions at signalized intersections, but not to multiple-vehicle collisions and single-vehicle crashes and not to other intersection types.

CMF_{1p}—Bus Stop

The CMFs for the number of bus stops within 1,000 ft of the center of the intersection are presented in Table 12-45. The base condition for bus stops is the absence of bus stops near the intersection. This CMF applies only to vehicle-pedestrian collisions and is based on research by Harwood et al. (8).

Table 12-45. Crash Modification Factor (CMF_{1p}) for the Number of Bus Stops near the Intersection				
Number of Bus Stops within 1,000 ft of the Intersection CMF _{1p}				
0	1.00			
1 or 2	2.78			
3 or more	4.15			

Table 12-45. Crash Modification Factor (CMF_{1p}) for the Number of Bus Stops near the Intersection

In applying Table 12-45, multiple bus stops at the same intersection (i.e., bus stops in different intersection quadrants or located some distance apart along the same intersection leg) are counted separately. Bus stops located at adjacent intersections would also be counted as long as any portion of the bus stop is located within 1,000 ft of the intersection being evaluated.

CMF_{2p}—Schools

The base condition for school is the absence of a school near the intersection. The CMF for schools within 1,000 ft of the center of the intersection is presented in Table 12-46. A school may be counted if any portion of the school grounds is within 1,000 ft of the intersection. Where one or more schools are located near the intersection, the value of the CMF is independent of the number of schools present. This CMF applies only to vehicle-pedestrian collisions and is based on research by Harwood et al. (8).

This CMF indicates that an intersection with a school nearby is likely to experience more vehicle-pedestrian collisions than an intersection without schools even if the traffic and pedestrian volumes at the two intersections are identical. Such increased crash frequencies indicate that school children are at higher risk than other pedestrians.

Table 12-46. Crash Modification Factor (C	(MF_{2p}) for the Presence of Schools near the Intersection
---	---

Number of Schools within 1,000 ft of the Intersection	\mathbf{CMF}_{2p}
No school present	1.00
School present	1.35

CMF_{3p}—Alcohol Sales Establishments

The base condition for alcohol sales establishments is the absence of alcohol sales establishments near the intersection. The CMF for the number of alcohol sales establishments within 1,000 ft of the center of an intersection is presented in Table 12-47. Any alcohol sales establishment wholly or partly within 1,000 ft of the intersection may be counted. This CMF applies only to vehicle-pedestrian collisions and is based on research by Harwood et al. (8).

This CMF indicates that an intersection with alcohol sales establishments nearby is likely to experience more vehiclepedestrian collisions than an intersection without alcohol sales establishments even if the traffic and pedestrian volumes at the two intersections are identical. This indicated the likelihood of higher risk behavior on the part of either pedestrians or drivers near alcohol sales establishments. The CMF included any alcohol sales establishment which may include liquor stores, bars, restaurants, convenience stores, or grocery stores. Alcohol sales establishments are counted if they are on any intersection leg or even another street, as long as they are within 1,000 ft of the intersection being evaluated.

Table 12-47. Crash Modification Factor (CMF_{3p}) for the Number of Alcohol Sales Establishments near the Intersection

Number of Alcohol Sales Establishments within 1,000 ft of the Intersection	CMF _{3p}	
0	1.00	
1-8	1.12	
9 or more	1.56	

12.8. SEVERITY DISTRIBUTION FUNCTIONS

The SDFs are regression models for estimating the predicted average crash frequency for the following severity levels: fatal (K), incapacitating injury (A), non-incapacitating injury (B), and possible injury (C). Each SDF was developed with observed crash data for a set of similar sites. The SDFs, like all regression models, estimate the value of a dependent variable as a function of a set of independent variables. In the SDFs developed for Chapter 12, the dependent variable is the predicted average crash frequency of each severity level for a roadway segment or an intersection, and the independent variables include various geometric features, traffic control features, and area type (i.e., urban or suburban). In this section, separate SDFs are provided for roadway segments and intersections of arterials with six or more lanes and one-way arterials.

The predictive models used in Chapter 12 to predict average severity distribution are of the general form shown in Equation 12-63.

$$N_j = N_{br,FI} \times P_j \tag{12-63}$$

Where:

 N_j = predicted average crash frequency for severity level j (j = K, A, B, or C);

 $N_{br, FI}$ = predicted average crash frequency for FI crashes on an individual roadway segment; and

 P_j = probability of occurrence for severity level j (j = K, A, B, or C).

There is an SDF associated with each severity level *j* in the predictive model. Each SDF also contains a calibration factor which is used to calibrate it to local conditions.

12.8.1. SDFs for Urban and Suburban Arterial Roadway Segments with Six or More Lanes The SDFs for roadway segments with six or more lanes are described by Equations 12-64 to 12-68.

$$P_{K} = \frac{\exp(V_{K})}{\frac{1.0}{C_{SDF,6+}} + \exp(V_{K}) + \exp(V_{A}) + \exp(V_{B})}$$
(12-64)
$$P_{A} = \frac{\exp(V_{A})}{\frac{1.0}{C_{SDF,6+}} + \exp(V_{K}) + \exp(V_{A}) + \exp(V_{B})}$$
(12-65)

$$P_B = \frac{\exp(V_B)}{\frac{1.0}{C_{SDE-6+}} + \exp(V_A) + \exp(V_A) + \exp(V_B)}$$
(12-66)

$$P_C = 1.0 - (P_K + P_A + P_B) \tag{12-67}$$

$$V_{j} = a + (b \times I_{urban}) + (c \times PSL) + (d \times I_{6D}) + (e \times I_{8D})$$
(12-68)

V_{j}	= systematic component of crash severity likelihood for severity level <i>j</i> ;
C _{SDF, 6+}	= calibration factor to adjust SDF to local conditions for roadway segments with six or more lanes;
Iurban	= area type indicator variable (= 1 if urban, 0 if suburban);
PSL	= posted speed limit (mph);
I_{6D}	= indicator variable for six-lane divided highway (= 1 if six-lane divided, 0 otherwise);
I_{8D}	= indicator variable for eight-lane divided highway (= 1 if 8-lane divided, 0 otherwise); and
a, b, c, d, e	= regression coefficients.

The regression coefficients for Equation 12-68 are provided in Table 12-48.

		Regression Coefficients				
Severity Level (j)	Variable	a	b	С	d	e
Fatal (K)	V_K	-5.114	-0.471	0.044	-0.333	-0.230
Incapacitating injury (A)	V_A	-1.735	-0.251	0.000	-0.292	-0.523
Non-incapacitating injury (B)	V_B	-0.575	-0.251	0.000	-0.094	-0.237

 Table 12-48. SDF Coefficients for Roadway Segments with Six or More Lanes

The SDF is applicable to roadway segments with a posted speed limit in the range of 25 to 60 mph.

The sign of a regression coefficient in Table 12-48 indicates the change in the proportion of crashes associated with a change in the corresponding variable. For example, the negative coefficient associated with the area type indicates that the chance of a crash resulting in a fatality is lower in an urban area than a crash in suburban area. A similar trend exists for the relationship between area type and probability of incapacitating injury and non-incapacitating injury crashes. By inference, the chance of a crash resulting in a possible injury increases in the urban area.

12.8.2. SDFs for One-Way Urban and Suburban Arterial Roadway Segments

The SDFs for one-way roadway segments are described by Equations 12-69 to 12-73.

$$P_{K} = \frac{\exp(V_{K+A})}{\frac{1.0}{C_{SDF,ow}} + \exp(V_{K+A}) + \exp(V_{B})} \times P_{K|K+A}$$
(12-69)

$$P_{A} = \frac{\exp(V_{K+A})}{\frac{1.0}{C_{SDF,ow}} + \exp(V_{K+A}) + \exp(V_{B})} \times (1.0 - P_{K|K+A})$$
(12-70)

$$P_{B} = \frac{\exp(V_{B})}{\frac{1.0}{C_{SDF,ow}} + \exp(V_{K+A}) + \exp(V_{B})}$$
(12-71)

$$P_C = 1.0 - (P_K + P_A + P_B) \tag{12-72}$$

$$V_j = a + (b \times W_l) + (c \times W_{rs}) + (d \times I_{urban}) + (e \times I_{bike})$$

$$(12-73)$$

V_{j}	= systematic component of crash severity likelihood for severity level <i>j</i> ;
$P_{K/K+A}$	= probability of a fatal crash given that the crash has a severity of either fatal or incapacitating injury on a one-way roadway segment;
C _{SDF, ow}	= calibration factor to adjust SDF to local conditions for one-way roadway segments;
W_l	= lane width (ft);
W _{rs}	= right shoulder width (ft);
Ibike	= bike lane presence indicator variable (= 1 if present, 0.0 otherwise); and
a, b, c, d, e	= regression coefficients.

The first term in Equation 12-69 estimates the probability of a fatal or incapacitating injury crash. The second term (i.e., $P_{K/K+A}$) is used to convert the estimate into the probability of a fatal crash. A value of 0.099 is used for $P_{K/K+A}$ based on an analysis of fatal and incapacitating injury crashes on one-way roadway segments.

The regression coefficients for Equation 12-73 are provided in Table 12-49.

	Regression Coefficients					
Severity Level (j)	Variable	а	b	С	d	е
Fatal or incapacitating injury $(K+A)$	V_{K+A}	0.293	-0.123	-0.126	-0.399	0.997
Non-incapacitating injury (B)	V_B	-0.381	0.000	-0.058	0.000	0.504

Table 12-49. SDF Coefficients for One-way Roadway Segments

The SDF is applicable to one-way roadway segments with two, three or four lanes.

The sign of a regression coefficient in Table 12-49 indicates the change in the proportion of crashes associated with a change in the corresponding variable. For example, the negative coefficient associated with right shoulder width indicates that the proportion of fatal and incapacitating injury crashes decreases with an increase in the right shoulder width. A similar trend exists for non-incapacitating injury crashes. By inference, the proportion of possible injury crashes increases with an increase in the right shoulder width.

12.8.3. SDFs for 2×2 Signalized Intersections with Six or More Lanes

The SDFs for 2×2 signalized intersections with six or more lanes are similarly described by Equations 12-69 to 12-72.

A value of 0.094 is used for $P_{K/K+A}$ based on an analysis of fatal and incapacitating injury crashes at 2×2 signalized intersections with six or more lanes.

A model for estimating the systematic component of crash severity (V_j) for 2×2 signalized intersections with six or more lanes is described by Equation 12-74.

(12-74)

$$V_{j} = a + (b \times I_{urban}) + (c \times I_{rtor}) + (d \times I_{uturn}) + (e \times n_{lt}) + (f \times I_{light})$$

Where:

Irtor	= right-turn-on-red prohibition indicator variable (= 1 if prohibited, 0 if allowed);
I _{uturn}	= U-turn prohibition indicator variable (= 1 if prohibited, 0.0 if allowed);
n_{lt}	= number of major street approaches with left-turn lanes;
Ilight	= lighting presence indicator variable (= 1 if present, 0 otherwise); and
a, b, c, d, e, f	= regression coefficients.

The regression coefficients for Equation 12-74 are provided in Table 12-50.

	Regression Coefficients						
Severity Level (j)	Variable	а	b	С	d	е	f
Fatal or incapacitating injury (<i>K</i> + <i>A</i>)	V_{K+A}	-1.767	-0.116	-1.166	-0.142	-0.178	-0.331
Non-incapacitating injury (B)	V_B	-0.725	-0.116	-1.074	-0.069	-0.108	0.000

Table 12-50. SDF Coefficients for 2×2 Signalized Intersections with Six or More Lanes

The sign of a regression coefficient in Table 12-50 indicates the change in the proportion of crashes associated with a change in the corresponding variable. For example, the negative coefficient associated with right-turn-on-red prohibition indicates that the proportion of fatal and incapacitating injury crashes decreases when right-turn movements are prohibited on red. A similar trend exists for non-incapacitating injury crashes. By inference, the proportion of possible injury crashes increases when right-turn movements are prohibited on red.

12.8.4. SDFs for 1×2 and 1×1 Signalized Intersections

The SDFs for 1×2 and 1×1 signalized intersections are similarly described by Equations 12-69 to 12-72.

A value of 0.046 is used for $P_{K/K+A}$ based on an analysis of fatal and incapacitating injury crashes at 1×2 and 1x1 signalized intersections.

A model for estimating the systematic component of crash severity (V_j) for 1×2 and 1×1 signalized intersections is described by Equation 12-75.

$$V_{j} = a + (b \times I_{urban}) + (c \times I_{Maj_tt}) + (d \times I_{Maj_ch}) + (e \times I_{Min_ch})$$
(12-75)

Where:

I _{Maj_lt}	= presence of left-turn lane on the major road indicator variable (= 1.0 if present, 0.0 if absent);
I _{Maj_ch}	= presence of right-turn channelization on the major road indicator variable (= 1.0 if present, 0.0 if absent);
I_{Min_ch}	= presence of right-turn channelization on the minor road indicator variable (= 1.0 if it is present, 0.0 if it is absent); and
a, b, c, d, e	= regression coefficients.

The regression coefficients for Equation 12-75 are provided in Table 12-51.

		Regression Coefficients				
Severity Level (j)	Variable	а	b	С	d	е
Fatal or incapacitating injury $(A + K)$	V_{K+A}	-2.042	-0.407	-0.296	0.000	-0.306
Non-incapacitating injury (B)	V_B	-0.741	-0.099	-0.255	0.557	-0.504

The sign of a regression coefficient in Table 12-51 indicates the change in the proportion of crashes associated with a change in the corresponding variable. For example, the negative coefficient associated with presence of left-turn lane on the major road indicates that the proportion of fatal and incapacitating injury crashes decreases when the left-turn lane is present on the major road. A similar trend exists for non-incapacitating injury crashes. By inference, the proportion of possible injury C crashes increases with the presence of left-turn lane on the major road.

12.8.5. SDFs for 2×2 (with Six or More Lanes), 1×2 , and 1×1 Stop-Controlled Intersections The SDFs for 2×2 (with six or more lanes), 1×2 , and 1×1 stop-controlled intersections are similarly described by Equations 12-69 to 12-72.

A value of 0.043 is used for $P_{K/K+A}$ based on an analysis of fatal and incapacitating injury crashes at 2×2 (with six or more lanes), 1×2, and 1×1 stop-controlled intersections.

A model for estimating the systematic component of crash severity (V_j) for 2×2 (with six or more lanes), 1×2, and 1×1 stop-controlled intersections is described by Equation 12-76.

$$V_j = a + (b \times I_{urban}) + (c \times I_{light}) + (d \times I_{Min_lt})$$
(12-76)

Where:

 I_{light} = presence of intersection lighting indicator variable (= 1.0 if present, 0.0 if absent);

 $I_{Min_{lt}}$ = presence of left-turn lane on the minor road indicator variable (= 1.0 if present, 0.0 if absent); and

a, *b*, *c*, d = regression coefficients.

The regression coefficients for Equation 12-76 are provided in Table 12-52.

Table 12-52. SDF Coefficients for 2×2	(with Six or More Lanes), 1×2	2, and 1×1 Stop-Controlled Intersections
---------------------------------------	-------------------------------	--

		Regression Coefficients			
Severity Level (j)	Variable	а	b	с	d
Fatal or incapacitating injury $(A + K)$	V_{K+A}	-1.106	-0.382	-0.918	0.000
Non-incapacitating injury (B)	V_B	-0.361	-0.278	-0.397	-0.434

The SDF is applicable only to intersections with stop control on the minor road approaches.

The sign of a regression coefficient in Table 12-52 indicates the change in the proportion of crashes associated with a change in the corresponding variable. For example, the negative coefficient associated with presence of intersection lighting indicates that the proportion of fatal and incapacitating injury crashes decreases when lighting is present. A similar trend exists for non-incapacitating injury crashes. By inference, the proportion of possible injury crashes increases with the presence of lighting at the intersection.

12.9. CALIBRATION OF THE SPFS AND SDFS TO LOCAL CONDITIONS

In Step 11 of the predictive method, presented in Section 12.4, the predictive model is calibrated to local state or geographic conditions. Crash frequencies, even for nominally similar roadway segments or intersections, can vary widely from one jurisdiction to another. Geographic regions differ markedly in climate, animal population, driver

populations, crash reporting threshold, and crash reporting practices. These variations may result in some jurisdictions experiencing a different number of reported traffic crashes on urban and suburban arterial highways than others. Calibration factors are included in the methodology to allow highway agencies to adjust the SPFs to match actual local conditions.

The calibration factors for roadway segments and intersections (defined as C_r and C_i , respectively) will have values greater than 1.0 for roadway segments or intersections that, on average, experience more crashes than those used in the development of the SPFs. The calibration factors for roadway segments or intersections that experience fewer crashes on average than those used in the development of the SPFs will have values less than 1.0. The calibration procedures are presented in Part C, Appendix A.

The SDF calibration factors for roadway segments and intersection will have values greater than 1.0 for roadway segments or intersections that, on average, experience more severe crashes than those used in the development of the SDFs. The SDF calibration factors for roadway segments or intersections that experience less severe crashes on average than those used in the development of the SPFs will have values less than one. The calibration procedures for SDFs are presented in Section B.1.4 of Appendix B to Part C, which is available in the supplement volume of the HSM as Chapters 18 and 19.

Calibration factors provide one method of incorporating local data to improve estimated crash frequencies for individual agencies or locations. Several other default values used in the methodology, such as manner of collisions distribution, can also be replaced with locally derived values. The derivation of values for these parameters is addressed in the calibration procedure in Part C, Appendix A.

12.10. INTERIM PREDICTIVE METHOD FOR ROUNDABOUTS

Sufficient research has not yet been conducted to form the basis for development of a predictive method for roundabouts. Since many jurisdictions are planning projects to convert existing intersections into modern roundabouts, an interim predictive method is presented here. This interim procedure is applicable to a location at which a modern roundabout has been constructed or is being planned to replace an existing signalized intersection. The interim procedure is:

1. Apply the predictive method from Chapter 12 to estimate the crash frequency, N_{int}, for the existing intersection.

2. Multiply N_{int} by the appropriate CMF from Chapter 14 for conversion on an existing intersection to a modern roundabout. The applicable CMFs are:

- 0.56 for conversion of a two-way stop-controlled intersection to a modern roundabout.
- 0.52 for conversion of a signalized intersection to a modern roundabout.

These CMFs are applicable to all crash severities and collision types for both one- and two-lane roundabouts in all settings.

At present, there are no available SPFs to determine predicted average crash frequency of an existing or newly constructed roundabout where no intersection currently exists.

12.11. LIMITATIONS OF PREDICTIVE METHOD IN CHAPTER 12

The limitations of the predictive method which apply generally across all of the Part C chapters are discussed in Section C.8. This section discusses limitations of the specific predictive models and the application of the predictive method in Chapter 12.

Where urban and suburban arterials intersect access-controlled facilities (i.e., freeways), the grade-separated interchange facility, including the arterial facility within the interchange area, cannot be addressed with the predictive method for urban and suburban arterials.

12.12. APPLICATION OF CHAPTER 12 PREDICTIVE METHOD

The predictive method presented in Chapter 12 applies to urban and suburban arterials. The predictive method is applied by following the 18 steps presented in Section 12.4. Appendix 12A provides a series of worksheets for applying the predictive method and the predictive models detailed in this chapter. All computations within these worksheets are conducted with values expressed to three decimal places. This level of precision is needed for consistency in computations. In the last stage of computation, rounding the final estimate of the expected average crash frequency to one decimal place is recommended. Spreadsheet programs are also available to assist with application of the Chapter 12 predictive methods. These spreadsheets can be obtained upon request from NCHRP. They are populated with the equations and coefficients documented in Chapter 12. The spreadsheets are configured so the analyst can enter data to describe a site's characteristics and obtain the predicted or expected average crash frequency for the site.

12.13. SUMMARY

The predictive method is used to estimate the expected average crash frequency for a series of contiguous sites (entire urban or suburban arterial facility), or a single individual site. An urban or suburban facility is defined in Section 12.3.

The predictive method for urban and suburban arterial highways is applied by following the 18 steps of the predictive method presented in Section 12.4. Predictive models, developed for urban and suburban arterial facilities, are applied in Steps 9, 10, and 11 of the method. These models have been developed to estimate the predicted average crash frequency of an individual intersection or homogenous roadway segment. The facility is divided into these individual sites in Step 5 of the predictive method.

Where observed data are available, the EB Method may be applied in Step 13 or 15 of the predicative method to improve the reliability of the estimate. The EB Method can be applied at the site-specific level or at the project-specific level. It may also be applied to a future time period if site conditions will not change in the future period. The EB Method is described in Part C, Appendix A.2.

Each predictive model in Chapter 12 consists of a set of SPFs and CMFs, a calibration factor, and pedestrian and bicycle crash adjustment factors. The SPFs are selected in Step 9 and are used to estimate the predicted average crash frequency of each collision type for a site with base conditions. This estimate can be for either total crashes or organized by crash-severity or manner of collision distribution. In order to account for differences between the base conditions of the SPF and the actual conditions of the local site, CMFs are applied in Step 10 which adjust the predicted number of crashes according to the geometric and traffic control conditions of the site.

In order to account for the differences in state or regional crash frequencies, the SPF is calibrated to the specific state and/or geographic region to which they apply. The process for determining calibration factors for the predictive models is described in Part C, Appendix A.1.

Section 12.14 presents 10 sample problems which detail the application of the predictive method. A series of template worksheets have been developed to assist with applying the predictive method in Chapter 12. These worksheets are utilized to solve the sample problems in Section 12.14, and Appendix 12A contains blank version of the worksheets.

12.14. SAMPLE PROBLEMS

In this section, 10 sample problems are presented using the predictive method steps for urban and suburban arterials. Sample Problems 1 through 4 illustrate how to calculate the predicted average crash frequency for urban and suburban arterial roadway segments. Sample Problems 5 through 8 illustrate how to calculate the predicted average crash frequency for urban and suburban arterial intersections. Sample Problem 9 illustrates how to combine the results from Sample Problems 1, 2, 5, and 6 in a case where site-specific observed crash data are available (i.e., using the site-specific EB Method). Sample Problem 10 illustrates how to combine the results from Sample Problems 1, 2, 5, and 6 in a case where site-specific observed crash data are not available (i.e., using the project-level EB Method).

Problem No.	Page No.	Description
1	12-82	Predicted average crash frequency for a three-lane TWLTL arterial roadway segment
2	12-97	Predicted average crash frequency for a four-lane divided arterial roadway segment

3	12-101	Predicted average crash frequency for a seven-lane TWLTL arterial roadway segment
4	12-115	Predicted average crash frequency for a three-lane one-way arterial roadway segment
5	12-132	Predicted average crash frequency for a three-leg stop-controlled intersection with five or fewer lanes
6	12-135	Predicted average crash frequency for a four-leg signalized intersection with five or fewer lanes
7	12-153	Predicted average crash frequency for a four-leg stop-controlled intersection with six or more lanes
8	12-161	Predicted average crash frequency for a three-leg signalized intersection of a one-way arterial
9	12-171	Expected average crash frequency for a facility when site-specific observed crash data are available
10	12-176	Expected average crash frequency for a facility when site-specific observed crash data are not available

12.14.1. Sample Problem 1

The Site/Facility

A three-lane urban arterial roadway segment with a center TWLTL.

The Question

What is the predicted average crash frequency of the roadway segment for a particular year?

The Facts

- 1.5-mi length
- 11,000 veh/day
- 1.0 mi of parallel on-street commercial parking on each side of street
- 30 driveways (10 minor commercial, 2 major residential, 15 minor residential, 3 minor industrial/institutional)
- 10 roadside fixed objects per mile
- 6-ft offset to roadside fixed objects
- Lighting present
- No automated speed enforcement
- 35-mph posted speed

Assumptions

Collision type distributions used are the default values presented in Table 12-4 and Table 12-7 and Equations 12-24 and 12-25.

The calibration factor is assumed to be 1.00.

Results

Using the predictive method steps as outlined below, the predicted average crash frequency for the roadway segment in Sample Problem 1 is determined to be 7.0 crashes per year (rounded to one decimal place).

Steps

Step 1 through 8

To determine the predicted average crash frequency of the roadway segment in Sample Problem 1, only Steps 9 through 11 are conducted. No other steps are necessary because only one roadway segment is analyzed for one year, and the EB Method is not applied.

Step 9—For the selected site, determine and apply the appropriate safety performance function (SPF) for the site's facility type and traffic control features.

For roadway segments with five or fewer lanes, SPF values are determined for multiple-vehicle nondriveway, multiple-vehicle driveway-related, single- vehicle, vehicle-pedestrian, and vehicle-bicycle collisions. The calculations for vehicle-pedestrian and vehicle-bicycle collisions are shown in Step 10 since the CMF values are needed for these models.

Multiple-Vehicle Nondriveway Collisions

The SPF for multiple-vehicle nondriveway collisions for the roadway segment is calculated from Equation 12-12 and Table 12-3 as follows:

$N_{\it spf \ rs \ nondwy}$	=	$\exp\left(a + b \times \ln(AADT) + \ln(L)\right)$
$N_{\it spf \ rs \ nondwy(total)}$	=	$\exp(-12.40 + 1.41 \times \ln(11,000) + \ln(1.5))$
	=	3.805 crashes/year
$N_{spf rs nondwy(FI)}$	=	$\exp(-16.45 + 1.69 \times \ln(11,000) + \ln(1.5))$
	=	0.728 crashes/year
$N_{\it spf \ rs \ nondwy(PDO)}$	=	$\exp(-11.95 + 1.33 \times \ln(11,000) + \ln(1.5))$
	=	2.298 crashes/year

These initial values for FI and PDO crashes are then adjusted using Equations 12-13 and 12-14 to assure that they sum to the value for total crashes as follows:

$$N_{spf rs nondwy(FI)} = N_{spf rs nondwy(total)} \left(\frac{N'_{spf rs nondwy(FI)}}{N'_{spf rs nondwy(FI)} + N'_{spf rs nondwy(PDO)}} \right)$$
$$= 3.085 \left(\frac{0.728}{0.728 + 2.298} \right)$$
$$= 0.742 \text{ crashes/year}$$
$$N_{spf rs nondwy(PDO)} = N_{spf rs nondwy(total)} - N_{spf rs nondwy(FI)}$$
$$= 3.085 - 0.742$$
$$= 2.343 \text{ crashes/year}$$

Multiple-Vehicle Driveway-Related Collisions

The SPF for multiple-vehicle driveway-related collisions for the roadway segment is calculated from Equation 12-15 as follows:

$$N_{spf rs dwy(total)} = \sum_{\substack{\text{all} \\ \text{driveway} \\ \text{types}}} n_j \times N_j \times \left(\frac{AADT}{15,000}\right)^{(t)}$$

The number of driveways within the roadway segment, n_j , for Sample Problem 1 is 10 minor commercial, two major residential, 15 minor residential, and three minor industrial/institutional.

The number of driveway-related collisions, N_j , and the regression coefficient for AADT, t, for a three-lane arterial are provided in Table 12-5.

$$N_{spf rs \, dwy(total)} = 10 \times 0.032 \times \left(\frac{11,000}{15,000}\right)^{(1.0)} + 2 \times 0.053 \times \left(\frac{11,000}{15,000}\right)^{(1.0)} + 15 \times 0.010 \times \left(\frac{11,000}{15,000}\right)^{(1.0)} + 3 \times 0.015 \times \left(\frac{11,000}{15,000}\right)^{(1.0)}$$

= 0.455 crashes/year

Driveway-related collisions can be separated into components by severity level using Equations 12-16 and 12-17 as follows:

From Table 12-5, for a three-lane arterial the proportion of driveway-related collisions that involve fatalities and injuries, $f_{dwy} = 0.243$.

 $N_{spf rs dwy(FI)} = N_{spf rs dwy(total)} \times f_{dwy}$ = 0.455 × 0.243 = 0.111 crashes/year $N_{spf rs dwy(PDO)} = N_{spf rs dwy(total)} - N_{spf rs dwy(FI)}$ = 0.455 - 0.111 = 0.344 crashes/year

Single-Vehicle Crashes

The SPF for single-vehicle crashes for the roadway segment is calculated from Equation 12-18 and Table 12-6 as follows:

N _{spf rs sv}	=	$\exp(a + b \times \ln(AADT) + \ln(L))$
$N_{spf \ rs \ sv(total)}$	=	$\exp(-5.74 + 0.54 \times \ln(11,000) + \ln(1.5))$
	=	0.734 crashes/year
$N_{spf rs sv(FI)}$	=	$\exp(-6.37 + 0.47 \times \ln(11,000) + \ln(1.5))$
	=	0.204 crashes/year
$N_{spf rs sv(PDO)}$	=	$\exp(-6.29 + 0.56 \times \ln(11,000) + \ln(1.5))$
	=	0.510 crashes/year

These initial values for FI and PDO crashes are then adjusted using Equations 12-19 and 12-20 to assure that they sum to the value for total crashes as follows:

$$N_{spf rs sv(FI)} = N_{spf rs sv(total)} \left(\frac{N'_{spf rs sv(FI)}}{N'_{spf rs sv(FI)} + N'_{spf rs sv(PDO)}} \right)$$
$$= 0.734 \left(\frac{0.204}{0.204 + 0.510} \right)$$
$$= 0.210 \text{ crashes/year}$$
$$N_{spf rs sv(PDO)} = N_{spf rs sv(total)} - N_{spf rs sv(FI)}$$
$$= 0.734 - 0.210$$
$$= 0.524 \text{ crashes/year}$$

Step 10—Multiply the result obtained in Step 9 by the appropriate CMFs to adjust base conditions to site specific geometric design and traffic control features.

Each CMF used in the calculation of the predicted average crash frequency of the roadway segment is calculated below:

On-Street Parking (CMF_{1r})

CMF_{1r} is calculated from Equation 12-39 as follows:

$$CMF_{1r} = 1 + p_{pk} \times (f_{pk} - 1.0)$$

The proportion of curb length with on-street parking, p_{pk} , is determined as follows:

$$p_{pk} = 0.5 \times \frac{L_{pk}}{L}$$

Since 1.0 mile of on-street parking on each side of the road is provided, the sum of curb length with on-street parking for both sides of the road combined, $L_{pk} = 2$.

$$p_{pk} = 0.5 \times \frac{2}{1.5} = 0.66$$

From Table 12-32, $f_{pk} = 2.074$.

$$CMF_{1r} = 1 + 0.66 \times (2.074 - 1.0)$$

Roadside Fixed Objects (CMF_{2r})

= 1.71

For roadway segments with five or fewer lanes, CMF₂ is calculated from Equation 12-40 as follows:

$$CMF_{2r} = f_{\text{offset}} \times D_{fo} \times p_{fo} + (1.0 - p_{fo})$$

From Table 12-33, for a roadside fixed objects with an average 6-ft offset, the fixed-object offset factor, f_{offset} , is interpolated as 0.124.

From Table 12-34, for a three-lane arterial, the proportion of total crashes, $p_{fo} = 0.034$.

 $CMF_{2r} = 0.124 \times 10 \times 0.034 + (1.0 - 0.034)$ = 1.01

Median Width (CMF_{3r})

The value of CMF_{3r} is 1.00 for undivided facilities (see Section 12.7.1). It is assumed that a roadway with TWLTL is undivided.

Lighting (*CMF*_{4*r*}) CMF_{4*r*} is calculated from Equation 12-42 as follows:

 $CMF_{4r} = 1.0 - (p_{nr} \times (1.0 - 0.72 \times p_{inr} - 0.83 \times p_{pnr}))$

For a three-lane arterial, $p_{inr} = 0.429$, $p_{pnr} = 0.571$, and $p_{nr} = 0.304$ (see Table 12-36).

$$CMF_{4r} = 1.0 - (0.304 \times (1.0 - 0.72 \times 0.429 - 0.83 \times 0.571))$$

= 0.93

Automated Speed Enforcement (CMF_{5r})

Since there is no automated speed enforcement in Sample Problem 1, $CMF_{5r} = 1.00$ (i.e., the base condition for CMF_{5r} is the absence of automated speed enforcement).

$$CMF_{comb} = 1.71 \times 1.01 \times 0.93$$
$$= 1.61$$

For roadway segments with five or fewer lanes, CMF_{comb} applies to multiple-vehicle nondriveway, multiple-vehicle driveway-related, and single-vehicle crashes. The predicted average crash frequency of each collision type is determined using Equation 12-6, as follows:

$$N_{broondwy} = N_{spf rs nondwy} \times CMF_{comb}$$

$$= 3.085 \times 1.61$$

$$= 4.967 \text{ crashes/year}$$

$$N_{brdwy} = N_{spf rs dwy} \times CMF_{comb}$$

$$= 0.455 \times 1.61$$

$$= 0.734 \text{ crashes/year}$$

$$N_{brsv} = N_{spf rs sv} \times CMF_{comb}$$

$$= 0.734 \times 1.61$$

= 1.182 crashes/year

Vehicle-Pedestrian and Vehicle-Bicycle Collisions

The predicted average crash frequency of an individual roadway segment (excluding vehicle-pedestrian and vehiclebicycle collisions), N_{br} , is calculated first in order to determine vehicle-pedestrian and vehicle-bicycle crashes. N_{br} is determined from Equation 12-4 and 12-5 as follows:

$$N_{br} = N_{brondwy} + N_{brdwy} + N_{brsv}$$
$$= 4.967 + 0.734 + 1.182$$
$$= 6.883 \text{ crashes/year}$$

The SPF for vehicle-pedestrian collisions for the roadway segment is calculated from Equation 12-24 as follows:

$$N_{pedr} = N_{br} \times f_{pedr}$$

From Table 12-16, for a posted speed greater than 30 mph on a three-lane arterial, the pedestrian crash adjustment factor, $f_{pedr} = 0.013$.

$$N_{pedr} = 6.883 \times 0.013$$
$$= 0.089 \text{ crashes/year}$$

The SPF for vehicle-bicycle collisions is calculated from Equation 12-25 as follows:

 $N_{biker} = N_{br} \times f_{biker}$

From Table 12-17, for a posted speed greater than 30 mph on a three-lane arterial, the bicycle crash adjustment factor, $f_{biker} = 0.007$.

 $N_{biker} = 6.883 \times 0.007$ = 0.048 crashes/year

Step 11—Multiply the result obtained in Step 10 by the appropriate calibration factor.

It is assumed that a calibration factor, C_r , of 1.00 has been determined for local conditions. See Part C, Appendix A.1 for further discussion on calibration of the predicted models.

Calculation of Predicted Average Crash Frequency

The predicted average crash frequency is calculated using Equation 12-3 based on the results obtained in Steps 9 through 11 as follows:

$$N_{predicted rs} = C_r \times (N_{br} + N_{pedr} + N_{biker})$$

= 1.00 × (6.883 + 0.089 + 0.048)
= 7.020 crashes/year

WORKSHEETS

The step-by-step instructions above were provided to illustrate the predictive method for calculating the predicted average crash frequency for a roadway segment. To apply the predictive method steps to multiple segments, a series of 12 worksheets are provided for determining the predicted average crash frequency. The 12 worksheets include:

- Worksheet SP1A (Corresponds to Worksheet A-1A)—General Information and Input Data for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes
- Worksheet SP1B (Corresponds to Worksheet A-1B)— Crash Modification Factors for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes
- Worksheet SP1C (Corresponds to Worksheet A-1C)—Multiple-Vehicle Nondriveway Collisions by Severity Level for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes
- Worksheet SP1D (Corresponds to Worksheet A-1D)— Multiple-Vehicle Nondriveway Collisions by Manner of Collision for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes
- Worksheet SP1E (Corresponds to Worksheet A-1E)—Multiple-Vehicle Driveway-Related Collisions by Driveway Type for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes
- Worksheet SP1F (Corresponds to Worksheet A-1F)—Multiple-Vehicle Driveway-Related Collisions by Severity Level for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes
- Worksheet SPIG (Corresponds to Worksheet A-1G)—Single-Vehicle Crashes by Severity Level for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes
- Worksheet SP1H (Corresponds to Worksheet A-1H)— Single-Vehicle Crashes by Manner of Collision for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes
- Worksheet SP11 (Corresponds to Worksheet A-11)— Vehicle-Pedestrian Collisions for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes
- Worksheet SP1J (Corresponds to Worksheet A-1J)— Vehicle-Bicycle Collisions for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes

- Worksheet SP1K (Corresponds to Worksheet A-1K)— Crash Severity*Type Distribution for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes
- Worksheet SP1L (Corresponds to Worksheet A-1L)— Summary Results for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes

Details of these sample problem worksheets are provided below. Blank versions of the corresponding worksheets are provided in Appendix 12A (for two-way urban and suburban arterials with five or fewer lanes).

Worksheet SP1A—General Information and Input Data for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

Worksheet SP1A is a summary of general information about the roadway segment, analysis, input data (i.e., "The Facts"), and assumptions for Sample Problem 1.

Worksheet SP1A. General Information and Input Data for Two-Way Urban and Suburban Roadway S	Segments with
Five or Fewer Lanes	

General Information	Location Information	
Analyst	Roadway	
Agency or Company	Roadway Section	
Date Performed	Jurisdiction	
	Analysis Year	
Input Data	Base Conditions	Site Conditions
Road type (2U, 3T, 4U, 4D, 5T)	_	3T
Length of segment, L (mi)		1.5
AADT (veh/day)		11,000
Type of on-street parking (none/parallel/angle)	none	parallel-commercial
Proportion of curb length with on-street parking		0.66
Median width (ft)	15	not present
Lighting (present / not present)	not present	present
Auto speed enforcement (present/not present)	not present	not present
Major commercial driveways (number)	_	0
Minor commercial driveways (number)	_	10
Major industrial/institutional driveways (number)	_	0
Minor industrial/institutional driveways (number)	_	3
Major residential driveways (number)	_	2
Minor residential driveways (number)	_	15
Other driveways (number)	_	0
Speed category	_	intermediate or high speed (>30 mph)
Roadside fixed object density (fixed objects/mi)	not present	10
Offset to roadside fixed objects (ft)	not present	6
Calibration factor, Cr	1.0	1.0

Worksheet SP1B—Crash Modification Factors for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

In Step 10 of the predictive method, crash modification factors are applied to account for the effects of site specific geometric design and traffic control devices. Section 12.7 presents the tables and equations necessary for determining the CMF values. Once the value for each CMF has been determined, all of the CMFs are multiplied together in Row 6 of Worksheet SP1B which indicates the combined CMF value.

Worksheet SP1B. Crash Modification Factors for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

1000									
(1)	CMF for On-Street Parking	CMF _{1r}	from Equation 12-39	1.71					
(2)	CMF for Roadside Fixed Objects	CMF _{2r}	from Equation 12-40	1.01					
(3)	CMF for Median Width	CMF _{3r}	from Table 12-35	1.00					
(4)	CMF for Lighting	CMF _{4r}	from Equation 12-42	0.93					
(5)	CMF for Automated Speed Enforcement	CMF _{5r}	from Section 12.7.1	1.00					
(6)	Combined CMF	CMFcomb	(1)*(2)*(3)*(4)*(5)	1.61					

Worksheet SP1C—Multiple-Vehicle Nondriveway Collisions by Severity Level for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

The SPF for multiple-vehicle nondriveway collisions along the roadway segment in Sample Problem 1 is calculated using Equation 12-12 and entered into Column 4 of Worksheet SP1C. The coefficients for the SPF and the overdispersion parameter associated with the SPF are entered into Columns 2 and 3; however, the overdispersion parameter is not needed for Sample Problem 1 (as the EB Method is not utilized). Column 5 of the worksheet presents the proportions for crash severity levels calculated from the results in Column 4. These proportions are used to adjust the initial SPF values (from Column 4) to assure that FI and PDO crashes sum to the total crashes as illustrated in Column 6. Column 7 represents the combined CMF (from Row 6 in Worksheet SP1B), and Column 8 represents the calibration factor. Column 9 calculates the predicted average crash frequency of multiple-vehicle nondriveway crashes using the values in Column 6, the combined CMF in Column 7, and the calibration factor in Column 8.

(1)	(2) (3) (4) (5)		(5)	(6)	(7)	(8)	(9)			
Crash	SPF Coe	efficients	Overdispersion Parameter, k	Initial N _{spf rs nondwy}		AdjustedCombinedNspf rs nondwyCMF			Predicted N _{brnondwy}	
Severity Level	from Table 12-3 from			from Proportion of Total Crashes		(6) from (4) _{total} *(5) Worksheet		Calibration Factor, Cr	(6)*(7)*(8)	
_	a	b	Table 12-3	1 2-12			SP1B			
Total	-12.40	1.41	0.66	3.085	1.000	3.085	1.61	1.00	4.967	
FI	-16.45	1.69	0.59	0.728	$\frac{(4)_{FI}/((4)_{FI}+(4)_{PDO})}{0.241}$	0.743	1.61	1.00	1.196	
PDO	-11.95	1.33	0.59	2.298	$(5)_{total} - (5)_{FI}$ 0.759	2.342	1.61	1.00	3.771	

Worksheet SP1C. Multiple-Vehicle Nondriveway Collisions by Severity Level for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

Worksheet SP1D—Multiple-Vehicle Nondriveway Collisions by Manner of Collision for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

Worksheet SP1D presents the default proportions for manner of collision (from Table 12-4) by crash severity level as follows:

- Fatal-and-injury crashes (Column 2)
- Property-damage-only crashes (Column 4)

Using the default proportions, the predicted average crash frequency for multiple-vehicle nondriveway crashes by manner of collision is presented in Columns 3 (FI), 5 (PDO), and 6 (Total).

These proportions may be used to separate the predicted average crash frequency for multiple-vehicle nondriveway crashes (from Column 9, Worksheet SP1C) into components by crash severity and manner of collision.

Worksheet SP1D. Multiple-Vehicle Nondriveway Collisions by Manner of Collision for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner _(FI)	Predicted N _{brnondwy} (FI) (crashes/year)	Proportion of Collision Manner _(PDO)	Predicted Nbrnondwy(PDO) (crashes/year)	Predicted Nbrnondwy(total) (crashes/year)
Manner of Collision	from Table 12-4	(9) _{FI} from Worksheet SP1C	from Table 12-4	(9) _{PDO} from Worksheet SP1C	(9) _{total} from Worksheet SP1C
Total	1.000	1.196	1.000	3.771	4.967
		$(2)^*(3)_{FI}$		$(4)^{*}(5)_{PDO}$	(3)+(5)
Rear-end collision	0.845	1.011	0.842	3.175	4.186
Head-on collision	0.034	0.041	0.020	0.075	0.116
Angle collision	0.069	0.083	0.020	0.075	0.158
Sideswipe, same direction	0.001	0.001	0.078	0.294	0.295
Sideswipe, opposite direction	0.017	0.020	0.020	0.075	0.095
Other multiple-vehicle collision	0.34	0.041	0.020	0.075	0.116

Worksheet SP1E—Multiple-Vehicle Driveway-Related Collisions by Driveway Type for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

Worksheet SP1E determines and presents the number of driveway-related multiple-vehicle collisions. The number of driveways along both sides of the road is entered in Column 2 by driveway type (Column 1). The associated number of crashes per driveway per year by driveway type as found in Table 12-5 is entered in Column 3. Column 4 contains the regression coefficient for AADT also found in Table 12-5. The initial average crash frequency of multiple-vehicle driveway-related crashes is calculated from Equation 12-15 and entered into Column 5. The overdispersion parameter from Table 12-5 is entered into Column 6; however, the overdispersion parameter is not needed for Sample Problem 1 (as the EB Method is not utilized).

(1)	(2)	(3)	(4)	(5)	(6)
		Crashes per Driveway per Year, N _j	Coefficient for Traffic Adjustment, t	Initial Nspf rs dwy	Overdispersion Parameter, k
Manner of Collision	Number of Driveways, n _j	from Table 12-5	from Table 12-5	Equation 12-15 n _j *N _j *(AADT/15,000) ^(t)	from Table 12-5
Major commercial	0	0.102	1.000	0.000	
Minor commercial	10	0.032	1.000	0.235	-
Major industrial/institutional	0	0.110	1.000	0.000	-
Minor industrial/institutional	3	0.015	1.000	0.033	
Major residential	2	0.053	1.000	0.078	
Minor residential	15	0.010	1.000	0.110	
Other	0	0.016	1.000	0.000	
Total	_			0.456	1.10

Worksheet SP1E. Multiple-Vehicle Driveway-Related Collisions by Driveway Type for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

Worksheet SP1F—Multiple-Vehicle Driveway-Related Collisions by Severity Level for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

The initial average crash frequency of multiple-vehicle driveway-related crashes from Column 5 of Worksheet SP1E is entered in Column 2. This value is multiplied by the proportion of crashes by severity level (Column 3) found in Table 12-5 and the adjusted value is entered into Column 4. Column 5 represents the combined CMF (from Row 6 in Worksheet SP1B), and Column 6 represents the calibration factor. Column 7 calculates the predicted average crash frequency of multiple-vehicle driveway-related crashes using the values in Column 4, the combined CMF in Column 5, and the calibration factor in Column 6.

Worksheet SP1F. Multiple-Vehicle Driveway-Related Collisions by Severity Level for Two-Way Urban and Suburban

Roadway Segments with Five or Fewer Lanes

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Initial N _{spf rs dwy}		Proportion of Total Crashes (f _{dwy})	Adjusted N _{spf rs dwy}	Combined CMF	Calibration	Predicted N _{brdwy}
Crash Severity Level	(5) _{total} from Worksheet SP1E	from Table 12-5	(2) _{total} *(3)	(6) from Worksheet SP1B	Factor, Cr	(4)*(5)*(6)
Total	0.456	1.000	0.456	1.61	1.00	0.734
FI	—	0.243	0.111	1.61	1.00	0.179
PDO		0.757	0.345	1.61	1.00	0.555

Worksheet SP1G—Single-Vehicle Collisions by Severity Level for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

The SPF for single-vehicle crashes along the roadway segment in Sample Problem 1 is calculated using Equation 12-18 and entered into Column 4 of Worksheet SP1G. The coefficients for the SPF and the overdispersion parameter associated with the SPF are entered into Columns 2 and 3; however, the overdispersion parameter is not needed for Sample Problem 1 (as the EB Method is not utilized). Column 5 of the worksheet presents the proportions for crash severity levels calculated from the results in Column 4. These proportions are used to adjust the initial SPF values (from Column 4) to assure that FI and PDO crashes sum to the total crashes as illustrated in Column 6. Column 7 represents the combined CMF (from Row 6 in Worksheet SP1B), and Column 8 represents the calibration factor. Column 9 calculates the predicted average crash frequency of single-vehicle crashes using the values in Column 6, the combined CMF in Column 7, and the calibration factor in Column 8.

Worksh	eet SP1G. Sing	gle-Vehicle Colli	sions by Se	verity Level for Tv	vo-Way Urb	an and Subu	rban Roadwa	y
Segments	s with Five or Fe	wer Lanes						

(1)	(2) (3)		(4)	(5)	(6)	(7)	(8)	(9)	
Crash	SPF Coe	SPF Coefficients Overdispersion Parameter, k		Initial N _{spf rs sv}		Adjusted N _{spf rs sv}	÷		Predicted N _{brsv}
Severity Level	from Table 12-6		from From Equation		Proportion of Total Crashes	(4) _{total} *(5)	(6) from Worksheet	Calibration Factor, C _r	(6)*(7)*(8)
	a	a b Table 12-6 12-18	12-18			SP1B			
Total	-5.74	0.54	1.37	0.734	1.000	0.734	1.61	1.00	1.182
FI	-6.37	0.47	1.06	0.204	$\frac{(4)_{FI}/((4)_{FI}+(4)_{PDO})}{0.286}$	0.210	1.61	1.00	0.338
PDO	-6.29	0.56	1.93	0.510	$\frac{(5)_{total} - (5)_{FI}}{0.714}$	0.524	1.61	1.00	0.844

Worksheet SP1H—Single-Vehicle Collisions by Manner of Collision for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

Worksheet SP1H presents the default proportions for manner of collision (from Table 12-7) by crash severity level as follows:

- Fatal-and-injury crashes (Column 2)
- Property-damage-only crashes (Column 4)

Using the default proportions, the predicted average crash frequency for single-vehicle crashes by manner of collision is presented in Columns 3 (FI), 5 (PDO), and 6 (Total).

These proportions may be used to separate the predicted average crash frequency for single-vehicle crashes (from Column 9, Worksheet SP1G) into components by crash severity and manner of collision.

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner(FI)	Predicted N _{brsv(FI)} (crashes/year)	Proportion of Collision Manner _(PDO)	Predicted N _{brsv(PDO)} (crashes/year)	Predicted N _{brsv(total)} (crashes/year)
Manner of Collision	from Table 12-7	(9) _{FI} from Worksheet SP1G	from Table 12-7	(9) _{PDO} from Worksheet SP1G	(9) _{total} from Worksheet SP1G
Total	1.000	0.338	1.000	0.844	1.182
		$(2)^{*}(3)_{FI}$		$(4)^{*}(5)_{PDO}$	(3)+(5)
Collision with animal	0.001	0.000	0.001	0.001	0.001
Collision with fixed object	0.688	0.233	0.963	0.813	1.046
Collision with other object	0.001	0.000	0.001	0.001	0.001
Other single-vehicle crash	0.310	0.105	0.035	0.030	0.135

Worksheet SP1H. Single-Vehicle Collisions by Manner of Collision for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

Worksheet SP1I—Vehicle-Pedestrian Collisions for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

The predicted average crash frequency of multiple-vehicle nondriveway, multiple-vehicle driveway-related, and single-vehicle crashes from Worksheets SP1C, SP1F, and SP1G are entered into Columns 2, 3, and 4, respectively. These values are summed in Column 5. Column 6 contains the pedestrian crash adjustment factor (see Table 12-16). Column 7 represents the calibration factor. The predicted average crash frequency of vehicle-pedestrian collisions (Column 8) is the product of Columns 5, 6, and 7. Since all vehicle-pedestrian crashes are assumed to involve some level of injury, there are no property-damage-only crashes.

Worksheet SP11. Vehicle-Pedestrian Collisions for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Crash	Predicted N _{brnondwy}	Predicted N _{brdwy}	Predicted N _{brsv}	Predicted N _{br}	fpedr	Calibration	Predicted N _{pedr}
Severity Level	(9) from Worksheet SP1C	(7) from Worksheet SP1F	(9) from Worksheet SP1G	(2)+(3)+(4)	from Table 12-16	Factor, Cr	(5)*(6)*(7)
Total	4.967	1.182	0.734	6.883	0.013	1.00	0.089
FI	—	_	—	—	—	1.00	0.089

Worksheet SP1J—Vehicle-Bicycle Collisions for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

The predicted average crash frequency of multiple-vehicle nondriveway, multiple-vehicle driveway-related, and single-vehicle crashes from Worksheets SP1C, SP1F, and SP1G are entered into Columns 2, 3, and 4, respectively. These values are summed in Column 5. Column 6 contains the bicycle crash adjustment factor (see Table 12-17). Column 7 represents the calibration factor. The predicted average crash frequency of vehicle-bicycle collisions (Column 8) is the product of Columns 5, 6, and 7. Since all vehicle-bicycle crashes are assumed to involve some level of injury, there are no property-damage-only crashes.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Crash Severity Level	Predicted N _{brnondwy}	Predicted N _{brdwy}	Predicted N _{brdwy} Predicted N _{brsv}		F _{biker}	Calibration	Predicted N _{biker}
	(9) from Worksheet SP1C	(7) from Worksheet SP1F	(9) from Worksheet SP1G	(2)+(3)+(4)	from Table 12-17	Factor, Cr	(5)*(6)*(7)
Total	4.967	1.182	0.734	6.883	0.007	1.00	0.048
FI	—		—	—	—	1.00	0.048

Worksheet SP1J. Vehicle-Bicycle Collisions for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

Worksheet SP1K—Crash Severity*Type Distribution for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

Worksheet SP1K provides a summary of all manners of collision by severity level. Values from Worksheets SP1D, SP1F, SP1H, SP1I, and SP1J are presented and summed to provide the predicted average crash frequency for each severity level as follows:

- Fatal-and-injury crashes (Column 2)
- Property-damage-only crashes (Column 3)
- Total crashes (Column 4)

Worksheet SP1K. Crash Severity*Type Distribution for Two-Way Urban and Suburban Roadway Segments v	vith
Five or Fewer Lanes	

(1)	(2)	(3)	(4)	
	FI	PDO	Total	
Collision Type	(3) from Worksheets SP1D and SP1H; (7) from Worksheet SP1F; and (8) from Worksheet SP1I and SP1J	(5) from Worksheet SP1D and SP1H; and (7) from Worksheet SP1F	(6) from Worksheets SP1D and SP1H; (7) from Worksheet SP1F; and (8) from Worksheets SP1I and SP1J	
MULTIPLE_VEHICLE				
Rear-end collisions (from Worksheet SP1D)	1.011	3.175	4.186	
Head-on collisions (from Worksheet SP1D)	0.041	0.075	0.116	
Angle collisions (from Worksheet SP1D)	0.083	0.075	0.158	
Sideswipe, same direction (from Worksheet SP1D)	0.001	0.294	0.295	
Sideswipe, opposite direction (from Worksheet SP1D)	0.020	0.075	0.095	
Driveway-related collisions (from Worksheet SP1F)	0.179	0.555	0.734	
Other multiple-vehicle collisions (from Worksheet SP1D)	0.041	0.075	0.116	
Subtotal	1.376	4.324	5.700	
SINGLE_VEHICLE				
Collision with animal (from Worksheet SP1H)	0.000	0.001	0.001	
Collision with fixed object (from Worksheet SP1H)	0.233	0.813	1.046	
Collision with other object (from Worksheet SP1H)	0.000	0.001	0.001	
Other single-vehicle crash (from Worksheet SP1H)	0.105	0.030	0.135	
Collision with pedestrian (from Worksheet SP1I)	0.089	0.000	0.089	
Collision with bicycle (from Worksheet SP1J)	0.048	0.000	0.048	
Subtotal	0.475	0.845	1.320	
Total	1.851	5.169	7.020	

Worksheet SP1L—Summary Results for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

Worksheet SP1L presents a summary of the results. Using the roadway segment length and the AADT, the worksheet presents the crash rate in miles per year (Column 4) and in million vehicle miles (Column 6).

(1)	(2)	(3)	(4)	
	Predicted Average Crash Frequency, N _{predicted rs} (crashes/year)		Crash Rate (crashes/mi/year)	
Crash Severity Level	(total) from Worksheet SP1K	Roadway Segment Length, L (mi)	(2)/(3)	
Total	7.020	1.5	4.7	
FI	1.851	1.5	1.2	
PDO	5.169	1.5	3.4	

Worksheet SP1L. Summary Results for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

12.14.2. Sample Problem 2

The Site/Facility

A four-lane divided urban arterial roadway segment.

The Question

What is the predicted average crash frequency of the roadway segment for a particular year?

The Facts

- 0.75-mi length
- 23,000 veh/day
- On-street parking not permitted
- 8 driveways (1 major commercial, 4 minor commercial, 1 major residential, 1 minor residential, 1 minor industrial/institutional)
- 20 roadside fixed objects per mile
- 12-ft offset to roadside fixed objects
- 40-ft median
- Lighting present
- No automated speed enforcement
- 30-mph posted speed

Assumptions

Collision type distributions used are the default values presented in Table 12-4 and Table **12-7** and Equations 12-24 and 12-25.

The calibration factor is assumed to be 1.00.

Results

Using the predictive method steps as outlined below, the predicted average crash frequency for the roadway segment in Sample Problem 2 is determined to be 3.4 crashes per year (rounded to one decimal place).

Steps

Step 1 through 8

To determine the predicted average crash frequency of the roadway segment in Sample Problem 2, only Steps 9 through 11 are conducted. No other steps are necessary because only one roadway segment is analyzed for one year, and the EB Method is not applied.

Step 9—For the selected site, determine and apply the appropriate safety performance function (SPF) for the site's facility type and traffic control features.

For segments with five or fewer lanes, SPF values are determined for multiple-vehicle nondriveway, multiple-vehicle driveway-related, single- vehicle, vehicle-pedestrian, and vehicle-bicycle collisions. The calculations for total multiple-vehicle nondriveway, single-vehicle, and multiple-vehicle driveway-related collisions are presented below. Detailed

steps for calculating SPFs for FI and PDO crashes are presented in Sample Problem 1. The calculations for vehiclepedestrian and vehicle-bicycle collisions are shown in Step 10 since the CMF values are needed for these two models.

Multiple-Vehicle Nondriveway Collisions

The SPF for multiple-vehicle nondriveway collisions for the roadway segment is calculated from Equation 12-12 and Table 12-3 as follows:

 $N_{spf rs nondwy} = \exp(a + b \times \ln(AADT) + \ln(L))$ $N_{spf rs nondwy(total)} = \exp(-12.34 + 1.36 \times \ln(23,000) + \ln(0.75))$ = 2.804 crashes/year

Multiple-Vehicle Driveway-Related Collisions

The SPF for multiple-vehicle driveway-related collisions for the roadway segment is calculated from Equation 12-15 as follows:

$$N_{spf rs dwy(total)} = \sum_{\substack{\text{all} \\ \text{driveway} \\ \text{types}}} n_j \times N_j \times \left(\frac{AADT}{15,000}\right)^{(t)}$$

The number of driveways within the roadway segment, n_j , for Sample Problem 2 is one major commercial, four minor commercial, one major residential, and one minor industrial/institutional.

The number of driveway-related collisions, N_{j} , and the regression coefficient for AADT, t, for a four-lane divided arterial, are provided in Table 12-5.

$$N_{spf rs dwy(total)} = 1 \times 0.033 \times \left(\frac{23,000}{15,000}\right)^{(1.106)} + 4 \times 0.011 \times \left(\frac{23,000}{15,000}\right)^{(1.106)} + 1 \times 0.018 \times \left(\frac{23,000}{15,000}\right)^{(1.106)} + 1 \times 0.003 \times \left(\frac{23,000}{15,000}\right)^{(1.106)} + 1 \times 0.005 \times \left(\frac{23,000}{15,000}\right)^{(1.106)} = 0.165 \text{ crashes/year}$$

Single-Vehicle Crashes

The SPF for single-vehicle crashes for the roadway segment is calculated from Equation 12-18 and Table 12-6 as follows:

 $N_{brsv} = \exp(a + b \times \ln(AADT) + \ln(L))$ $N_{brsv(total)} = \exp(-5.05 + 0.47 \times \ln(23,000) + \ln(0.75))$ = 0.539 crashes/year

The FI and PDO SPF values for multiple-vehicle nondriveway collisions, multiple-vehicle driveway-related collisions and single-vehicle crashes can be determined by using the same procedure presented in Sample Problem 1.

Step 10—Multiply the result obtained in Step 9 by the appropriate CMFs to adjust base conditions to site specific geometric design and traffic control features.

Each CMF used in the calculation of the predicted average crash frequency of the roadway segment is calculated below:

On-Street Parking (CMF_{1r})

Since on-street parking is not permitted, $CMF_{Ir} = 1.00$ (i.e., the base condition for CMF_{Ir} is the absence of on-street parking).

Roadside Fixed Objects (CMF_{2r})

For roadway segments with five or fewer lanes, CMF₂ is calculated from Equation 12-40 as follows:

 $CMF_{2r} = f_{offset} \times D_{fo} \times p_{fo} + (1.0 - p_{fo})$

From Table 12-33, for roadside fixed objects with an average 12-ft offset, the fixed-object offset factor, f_{offset} , is interpolated as 0.079.

From Table 12-34, for a four-lane divided arterial, the proportion of total crashes, $p_{fo} = 0.036$.

 $CMF_{2r} = 0.079 \times 20 \times 0.036 + (1.0 - 0.036)$ = 1.02

Median Width (CMF_{3r})

From Table 12-35, for a four-lane divided arterial with a 40-ft median, $CMF_{3r} = 0.97$.

Lighting (CMF_{4r})

CMF_{4r} can be calculated from Equation 12-42 as follows:

 $CMF_{4r} = 1.0 - (p_{nr} \times (1.0 - 0.72 \times p_{inr} - 0.83 \times p_{pnr}))$

For a four-lane divided arterial, $p_{inr} = 0.364$, $p_{pnr} = 0.636$, and $p_{nr} = 0.410$ (see Table 12-36).

 $CMF_{4r} = 1.0 - (0.410 \times (1.0 - 0.72 \times 0.364 - 0.83 \times 0.636))$ = 0.91

Automated Speed Enforcement (CMF_{5r})

Since there is no automated speed enforcement in Sample Problem 2, $CMF_{5r} = 1.00$ (i.e., the base condition for CMF_{5r} is the absence of automated speed enforcement).

The combined CMF value for Sample Problem 2 is calculated below.

$$CMF_{5r} = 1.02 \times 0.97 \times 0.91$$

= 0.90

For roadway segments with five or fewer lanes, CMF_{comb} applies to multiple-vehicle nondriveway, multiple-vehicle driveway-related, and single-vehicle crashes. The predicted average crash frequency of each collision type is determined using Equation 12-6, as follows:

$$N_{brondwy} = N_{spf \ rs \ nondwy} \times CMF_{comb}$$

= 2.804 × 0.90

= 2.524 crashes/year

 $N_{brdwy} = N_{spf rs dwy} \times CMF_{comb}$

 $= 0.165 \times 0.90$

= 0.149 crashes/year

$$N_{brsv} = N_{spf rs sv} \times CMF_{comb}$$

 $= 0.539 \times 0.90$

= 0.485 crashes/year

Vehicle-Pedestrian and Vehicle-Bicycle Collisions

The predicted average crash frequency of an individual roadway segment (excluding vehicle-pedestrian and vehiclebicycle collisions), N_{br} , is calculated first in order to determine vehicle-pedestrian and vehicle-bicycle crashes. N_{br} is determined from Equation 12-4 and 12-5 as follows:

$$N_{br} = N_{brnondwy} + N_{brdwy} + N_{brsv}$$
$$= 4.967 + 0.734 + 1.182$$
$$= 3.158 \text{ crashes/year}$$

The SPF for vehicle-pedestrian collisions for the roadway segment is calculated from Equation 12-24 as follows:

 $N_{pedr} = N_{br} \times f_{pedr}$

From Table 12-16, for a posted speed of 30 mph on a four-lane divided arterial, the pedestrian crash adjustment factor, $f_{pedr} = 0.067$.

 $N_{pedr} = 3.158 \times 0.067$ = 0.212 crashes/year

The SPF for vehicle-bicycle collisions is calculated from Equation 12-25 as follows:

 $N_{biker} = N_{br} \times f_{biker}$

From Table 12-17, for a posted of 30 mph on a four-lane divided arterial, the bicycle crash adjustment factor, $f_{biker} = 0.013$.

 $N_{biker} = 3.158 \times 0.013$

= 0.041 crashes/year

Step 11—Multiply the result obtained in Step 10 by the appropriate calibration factor.

It is assumed that a calibration factor, C_r , of 1.00 has been determined for local conditions. See Part C, Appendix A.1 for further discussion on calibration of the predicted models.

Calculation of Predicted Average Crash Frequency

The predicted average crash frequency is calculated using Equation 12-3 based on the results obtained in Steps 9 through 11 as follows:

$$N_{predicted rs} = C_r \times (N_{br} + N_{pedr} + N_{biker})$$

= 1.00 × (3.158 + 0.212 + 0.041)
= 3.411 crashes/year

WORKSHEETS

The step-by-step instructions above were provided to illustrate the predictive method for calculating the predicted average crash frequency for a roadway segment. To apply the predictive method steps to multiple segments, a series of 12 worksheets are provided for determining the predicted average crash frequency. The 12 worksheets include:

- Worksheet SP2A (Corresponds to Worksheet A-1A)—General Information and Input Data for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes
- Worksheet SP2B (Corresponds to Worksheet A-1B)— Crash Modification Factors for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes
- Worksheet SP2C (Corresponds to Worksheet A-1C)—Multiple-Vehicle Nondriveway Collisions by Severity Level for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes
- Worksheet SP2D (Corresponds to Worksheet A-1D)— Multiple-Vehicle Nondriveway Collisions by Manner of Collision for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes
- Worksheet SP2E (Corresponds to Worksheet A-1E)—Multiple-Vehicle Driveway-Related Collisions by Driveway Type for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes
- Worksheet SP2F (Corresponds to Worksheet A-1F)—Multiple-Vehicle Driveway-Related Collisions by Severity Level for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes
- Worksheet SP2G (Corresponds to Worksheet A-1G)—Single-Vehicle Crashes by Severity Level for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes
- Worksheet SP2H (Corresponds to Worksheet A-1H)— Single-Vehicle Crashes by Manner of Collision for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes
- Worksheet SP2I (Corresponds to Worksheet A-11)— Vehicle-Pedestrian Collisions for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes
- Worksheet SP2J (Corresponds to Worksheet A-1J)— Vehicle-Bicycle Collisions for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes
- Worksheet SP2K (Corresponds to Worksheet A-1K)— Crash Severity*Type Distribution for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes
- Worksheet SP2L (Corresponds to Worksheet A-1L)— Summary Results for Two-Way Urban and Suburban Arterial Roadway Segments with Five or Fewer Lanes

Details of these sample problem worksheets are provided below. Blank versions of the corresponding worksheets are provided in Appendix 12A (for two-way urban and suburban arterials with five or fewer lanes).

Worksheet SP2A—General Information and Input Data for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

Worksheet SP2A is a summary of general information about the roadway segment, analysis, input data (i.e., "The Facts"), and assumptions for Sample Problem 2.

General Information	Location Information	
Analyst	Roadway	
Agency or Company	Roadway Section	
Date Performed	Jurisdiction	
	Analysis Year	
Input Data	Base Conditions	Site Conditions
Road type (2U, 3T, 4U, 4D, 5T)		45
Length of segment, L (mi)	_	0.75
AADT (veh/day)		23,000
Type of on-street parking (none/parallel/angle)	none	None
Proportion of curb length with on-street parking		N/A
Median width (ft)	15	40
Lighting (present / not present)	not present	present
Auto speed enforcement (present/not present)	not present	not present
Major commercial driveways (number)		1
Minor commercial driveways (number)		4
Major industrial/institutional driveways (number)		0
Minor industrial/institutional driveways (number)		1
Major residential driveways (number)		1
Minor residential driveways (number)		1
Other driveways (number)		0
Speed category		Low (<30mph)
Roadside fixed object density (fixed objects/mi)	not present	20
Offset to roadside fixed objects (ft)	not present	12
Calibration factor, Cr	1.0	1.0

Worksheet SP2A. General Information and Input Data for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

Worksheet SP2B—Crash Modification Factors for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

In Step 10 of the predictive method, crash modification factors are applied to account for the effects of site specific geometric design and traffic control devices. Section 12.7 presents the tables and equations necessary for determining the CMF values. Once the value for each CMF has been determined, all of the CMFs are multiplied together in Row 6 of Worksheet SP2B which indicates the combined CMF value.

Worksheet SP2B. Crash Modification Factors for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

(1)	CMF for On-Street Parking	CMF _{1r}	from Equation 12-39	1.00
(2)	CMF for Roadside Fixed Objects	CMF _{2r}	from Equation 12-40	1.02
(3)	CMF for Median Width	CMF _{3r}	from Table 12-35	0.97
(4)	CMF for Lighting	CMF _{4r}	from Equation 12-42	0.91
(5)	CMF for Automated Speed Enforcement	CMF _{5r}	from Section 12.7.1	1.00
(6)	Combined CMF	CMF _{comb}	(1)*(2)*(3)*(4)*(5)	0.90

Worksheet SP2C—Multiple-Vehicle Nondriveway Collisions by Severity Level for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

The SPF for multiple-vehicle nondriveway collisions along the roadway segment in Sample Problem 2 is calculated using Equation 12-12 and entered into Column 4 of Worksheet SP2C. The coefficients for the SPF and the overdispersion parameter associated with the SPF are entered into Columns 2 and 3; however, the overdispersion parameter is not needed for Sample Problem 2 (as the EB Method is not utilized). Column 5 of the worksheet presents the proportions for crash severity levels calculated from the results in Column 4. These proportions are used to adjust the initial SPF values (from Column 4) to assure that FI and PDO crashes sum to the total crashes as illustrated in Column 6. Column 7 represents the combined CMF (from Row 6 in Worksheet SP2B), and Column 8 represents the calibration factor. Column 9 calculates the predicted average crash frequency of multiple-vehicle nondriveway crashes using the values in Column 6, the combined CMF in Column 7, and the calibration factor in Column 8.

(1)	(2	2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Crash	SPF Coe	efficients	Overdispersion Parameter, k			Adjusted Combined Nspf rs nondwy CMF			Predicted Nbrnondwy
Severity Level	fro Table	om e 12-3	from	from Equation	Proportion of Total Crashes	(4) _{total} *(5)	(6) from Worksheet	Calibration Factor, C _r	(6)*(7)*(8)
	a	b	Table 12-3	12-12			SP2B		
Total	-12.34	1.36	1.32	2.804	1.000	2.804	0.90	1.00	2.524
FI	-12.76	1.28	1.31	0.825	$\frac{(4)_{FI}/((4)_{FI}+(4)_{PDO})}{0.278}$	0.780	0.90	1.00	0.702
PDO	-12.81	1.38	1.34	2.143	$(5)_{total} - (5)_{FI}$ 0.722	2.024	0.90	1.00	1.822

Worksheet SP2C. Multiple-Vehicle Nondriveway Collisions by Severity Level for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

Worksheet SP2D—Multiple-Vehicle Nondriveway Collisions by Manner of Collision for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

Worksheet SP2D presents the default proportions for manner of collision (from Table 12-4) by crash severity level as follows:

- Fatal-and-injury crashes (Column 2)
- Property-damage-only crashes (Column 4)

Using the default proportions, the predicted average crash frequency for multiple-vehicle nondriveway crashes by manner of collision is presented in Columns 3 (FI), 5 (PDO), and 6 (Total).

These proportions may be used to separate the predicted average crash frequency for multiple-vehicle nondriveway crashes (from Column 9, Worksheet SP2C) into components by crash severity and manner of collision.

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner _(FI)	Predicted Nbrnondwy(FI) (crashes/year)	Proportion of Collision Manner _(PDO)	Predicted Nbrnondwy(PDO) (crashes/year)	Predicted N _{brnondwy(total)} (crashes/year)
Manner of Collision	from Table 12-4	(9) _{FI} from Worksheet SP2C	from Table 12-4	(9) _{PD0} from Worksheet SP2C	(9) _{total} from Worksheet SP2C
Total	1.000	0.702	1.000	1.822	2.524
		$(2)^*(3)_{FI}$		$(4)^{*}(5)_{PDO}$	(3)+(5)
Rear-end collision	0.832	0.584	0.662	1.206	1.790
Head-on collision	0.020	0.014	0.007	0.013	0.027
Angle collision	0.040	0.028	0.036	0.066	0.094
Sideswipe, same direction	0.050	0.035	0.223	0.406	0.441
Sideswipe, opposite direction	0.010	0.007	0.001	0.002	0.009
Other multiple-vehicle collision	0.048	0.034	0.071	0.129	0.163

Worksheet SP2D. Multiple-Vehicle Nondriveway Collisions by Manner of Collision for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

Worksheet SP2E—Multiple-Vehicle Driveway-Related Collisions by Driveway Type for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

Worksheet SP2E determines and presents the number of driveway-related multiple-vehicle collisions. The number of driveways along both sides of the road is entered in Column 2 by driveway type (Column 1). The associated number of crashes per driveway per year by driveway type as found in Table 12-5 is entered in Column 3. Column 4 contains the regression coefficient for AADT also found in Table 12-5. The initial average crash frequency of multiple-vehicle driveway-related crashes is calculated from Equation 12-15 and entered into Column 5. The overdispersion parameter from Table 12-5 is entered into Column 6; however, the overdispersion parameter is not needed for Sample Problem 2 (as the EB Method is not utilized).

(1)	(2)	(3)	(4)	(5)	(6)
		Crashes per Driveway per Year, N _j	Coefficient for Traffic Adjustment, t	Initial N _{spf rs} dwy	Overdispersion Parameter, k
Manner of Collision	Number of Driveways, n _j	from Table 12-5	from Table 12-5	Equation 12-15 nj*Nj*(AADT/15,000) ^(t)	from Table 12-5
Major commercial	1	0.033	1.106	0.053	
Minor commercial	4	0.011	1.106	0.071	
Major industrial/institutional	0	0.036	1.106	0.000	-
Minor industrial/institutional	1	0.005	1.106	0.008	
Major residential	1	0.018	1.106	0.029	-
Minor residential	1	0.003	1.106	0.005	-
Other	0	0.005	1.106	0.000	-
Total		_	—	0.166	1.39

Worksheet SP2E. Multiple-Vehicle Driveway-Related Collisions by Driveway Type for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

0.107

1.00

Worksheet SP2F—Multiple-Vehicle Driveway-Related Collisions by Severity Level for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

The initial average crash frequency of multiple-vehicle driveway-related crashes from Column 5 of Worksheet SP2E is entered in Column 2. This value is multiplied by the proportion of crashes by severity level (Column 3) found in Table 12-5 and the adjusted value is entered into Column 4. Column 5 represents the combined CMF (from Row 6 in Worksheet SP2B), and Column 6 represents the calibration factor. Column 7 calculates the predicted average crash frequency of multiple-vehicle driveway-related crashes using the values in Column 4, the combined CMF in Column 5, and the calibration factor in Column 6.

Worksheet SP2F. Multiple-Vehicle Driveway-Related Collisions by Severity Level for Two-Way Urban and Suburban

Roadway Seg	ments with Five or	Fewer Lanes				
(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Initial N _{spf rs dwy}	Proportion of Total Crashes (f _{dwy})	Adjusted N _{spf rs dwy}	Combined CMF	Calibration	Predicted N _{brdwy}
Crash Severity Level	(5) _{total} from Worksheet SP2E	from Table 12-5	(2) _{total} *(3)	(6) from Worksheet SP2B	Factor, C _r	(4)*(5)*(6)
Total	0.166	1.000	0.166	0.90	1.00	0.149
FI	_	0.284	0.047	0.90	1.00	0.042

0.716

Worksheet SP2G—Single-Vehicle Collisions by Severity Level for Two-Way Urban and Suburban **Roadway Segments with Five or Fewer Lanes**

0.119

0.90

The SPF for single-vehicle crashes along the roadway segment in Sample Problem 2 is calculated using Equation 12-18 and entered into Column 4 of Worksheet SP2G. The coefficients for the SPF and the overdispersion parameter associated with the SPF are entered into Columns 2 and 3; however, the overdispersion parameter is not needed for Sample Problem 2 (as the EB Method is not utilized). Column 5 of the worksheet presents the proportions for crash severity levels calculated from the results in Column 4. These proportions are used to adjust the initial SPF values (from Column 4) to assure that FI and PDO crashes sum to the total crashes as illustrated in Column 6. Column 7 represents the combined CMF (from Row 6 in Worksheet SP2B), and Column 8 represents the calibration factor. Column 9 calculates the predicted average crash frequency of single-vehicle crashes using the values in Column 6, the combined CMF in Column 7, and the calibration factor in Column 8.

(1)	(2	2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Crash	SPF Coe	efficients	OverdispersionInitialParameter, kNspf rs sv				Combined CMF		Predicted N _{brsv}
Severity Level		om e 12-6	from	from Equation	Proportion of Total Crashes		(6) from Worksheet		(6)*(7)*(8)
	a	b	Table 12-6	12-18			SP2B		
Total	-5.05	0.47	0.86	0.539	1.000	0.539	0.90	1.00	0.485
FI	-8.71	0.66	0.28	0.094	$\frac{(4)_{FI}/((4)_{FI}+(4)_{PDO})}{0.174}$	0.094	0.90	1.00	0.085
PDO	-5.04	0.45	1.06	0.446	$(5)_{total} - (5)_{FI}$ 0.826	0.445	0.90	1.00	0.401

Worksheet SP2G. Single-Vehicle Collisions by Severity Level for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

PDO

Worksheet SP2H—Single-Vehicle Collisions by Manner of Collision for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

Worksheet SP2H presents the default proportions for manner of collision (from Table 12-7) by crash severity level as follows:

- Fatal-and-injury crashes (Column 2)
- Property-damage-only crashes (Column 4)

Using the default proportions, the predicted average crash frequency for single-vehicle crashes by manner of collision is presented in Columns 3 (FI), 5 (PDO), and 6 (Total).

These proportions may be used to separate the predicted average crash frequency for single-vehicle crashes (from Column 9, Worksheet SP2G) into components by crash severity and manner of collision.

Worksheet SP2H. Single-Vehicle Collisions by Manner of Collision for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner(FI)	Predicted N _{brsv(FI)} (crashes/year)	Proportion of Collision Manner(PDO)	Predicted N _{brsv} (PDO) (crashes/year)	Predicted N _{brsv(total)} (crashes/year)
Manner of Collision	from Table 12-7	(9) _{FI} from Worksheet SP2G	from Table 12-7	(9) _{PDO} from Worksheet SP2G	(9) _{total} from Worksheet SP2G
Total	1.000	0.085	1.000	0.401	0.485
		$(2)^{*}(3)_{FI}$		$(4)^{*}(5)_{PDO}$	(3)+(5)
Collision with animal	0.001	0.000	0.063	0.025	0.025
Collision with fixed object	0.500	0.043	0.813	0.326	0.369
Collision with other object	0.208	0.002	0.016	0.006	0.008
Other single-vehicle crash	0.471	0.040	0.108	0.043	0.083

Worksheet SP2I—Vehicle-Pedestrian Collisions for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

The predicted average crash frequency of multiple-vehicle nondriveway, multiple-vehicle driveway-related, and single-vehicle crashes from Worksheets SP2C, SP2F, and SP2G are entered into Columns 2, 3, and 4, respectively. These values are summed in Column 5. Column 6 contains the pedestrian crash adjustment factor (see Table 12-16). Column 7 represents the calibration factor. The predicted average crash frequency of vehicle-pedestrian collisions (Column 8) is the product of Columns 5, 6, and 7. Since all vehicle-pedestrian crashes are assumed to involve some level of injury, there are no property-damage-only crashes.

Worksheet SP2I. Vehicle-Pedestrian Collisions for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Crash	Predicted N _{brnondwy}	Predicted N _{brdwy}	Predicted N _{brsv}	Predicted N _{br}	f pedr	Calibration	Predicted N _{pedr}
Severity Level	(9) from Worksheet SP2C	(7) from Worksheet SP2F	(9) from Worksheet SP2G	(2)+(3)+(4)	from Table 12-16	Factor, C _r	(5)*(6)*(7)
Total	2.524	0.485	0.149	3.158	0.067	1.000	0.212
FI	—	—	—	—	—	1.000	0.212

Worksheet SP2J—Vehicle-Bicycle Collisions for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

The predicted average crash frequency of multiple-vehicle nondriveway, multiple-vehicle driveway-related, and single-vehicle crashes from Worksheets SP2C, SP2F, and SP2G are entered into Columns 2, 3, and 4, respectively. These values are summed in Column 5. Column 6 contains the bicycle crash adjustment factor (see Table 12-17). Column 7 represents the calibration factor. The predicted average crash frequency of vehicle-bicycle collisions (Column 8) is the product of Columns 5, 6, and 7. Since all vehicle-bicycle crashes are assumed to involve some level of injury, there are no property-damage-only crashes.

Worksheet SP2J. Vehicle-Bicycle Collisions for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Crash	Predicted N _{brnondwy}	Predicted N _{brdwy}	Predicted N _{brsv}	Predicted N _{br}	F _{biker}	Calibration	Predicted N _{biker}
Severity Level	(9) from Worksheet SP2C	(7) from Worksheet SP2F	(9) from Worksheet SP2G (2)+(3)+(4)	from Table 12-17	Factor, Cr	(5)*(6)*(7)	
Total	2.524	0.485	0.149	3.158	0.013	1.000	0.041
FI	—				—	1.000	0.041

Worksheet SP2K—Crash Severity*Type Distribution for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

Worksheet SP2K provides a summary of all manners of collision by severity level. Values from Worksheets SP2D, SP2F, SP2H, SP2I, and SP2J are presented and summed to provide the predicted average crash frequency for each severity level as follows:

- Fatal-and-injury crashes (Column 2)
- Property-damage-only crashes (Column 3)
- Total crashes (Column 4)

Worksheet SP2K. Crash Severity*Type Distribution for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

(1)	(2)	(3)	(4)	
	FI	PDO	Total	
Collision Type	(3) from Worksheets SP2D and SP2H; (7) from Worksheet SP2F; and (8) from Worksheet SP2I and SP2J	(5) from Worksheet SP1D and SP2H; and (7) from Worksheet SP2F	(6) from Worksheets SP2D and SP2H; (7) from Worksheet SP2E and (8) from Worksheets SP2I and SP2J	
MULTIPLE_VEHICLE				
Rear-end collisions (from Worksheet SP2D)	0.584	1.206	1.790	
Head-on collisions (from Worksheet SP2D)	0.014	0.013	0.027	
Angle collisions (from Worksheet SP2D)	0.028	0.066	0.094	
Sideswipe, same direction (from Worksheet SP2D)	0.035	0.406	0.441	
Sideswipe, opposite direction (from Worksheet SP2D)	0.007	0.002	0.009	
Driveway-related collisions (from Worksheet SP2F)	0.042	0.107	0.149	
Other multiple-vehicle collisions (from Worksheet SP2D)	0.034	0.129	0.163	
Subtotal	0.744	1.929	2.673	
SINGLE_VEHICLE				
Collision with animal (from Worksheet SP2H)	0.000	0.025	0.025	
Collision with fixed object (from Worksheet SP2H)	0.043	0.326	0.369	
Collision with other object (from Worksheet SP2H)	0.002	0.006	0.008	
Other single-vehicle crash (from Worksheet SP2H)	0.040	0.043	0.083	
Collision with pedestrian (from Worksheet SP2I)	0.212	0.000	0.212	
Collision with bicycle (from Worksheet SP2J)	0.041	0.000	0.041	
Subtotal	0.338	0.400	0.738	
Total	1.082	2.329	3.411	

Worksheet SP2L—Summary Results for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

Worksheet SP2L presents a summary of the results. Using the roadway segment length and the AADT, the worksheet presents the crash rate in miles per year (Column 4) and in million vehicle miles (Column 6).

(1)	(2)	(3)	(4)
	Predicted Average Crash Frequency, N _{predicted rs} (crashes/year)		Crash Rate (crashes/mi/year)
Crash Severity Level	(total) from Worksheet SP1K	Roadway Segment Length, L (mi)	(2)/(3)
Total	3.411	0.75	4.5
FI	1.082	0.75	1.4
PDO	2.329	0.75	3.1

Worksheet SP2L. Summary Results for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

The Site/Facility

A seven-lane suburban arterial roadway segment with a center TWLTL.

The Question

What is the predicted average crash frequency of the roadway segment for a particular year?

The Facts

- 0.8-mi length
- 26,000 veh/day
- 11-ft lanes
- 3-ft right shoulders on both travel directions
- 9 driveways (2 major commercial, 2 major industrial, 5 minor residential)
- 10 roadside fixed objects per mile
- 8-ft offset to roadside fixed objects
- No highway-rail grade crossing present
- No automated speed enforcement
- 45-mph posted speed

Assumptions

Collision type distributions used are the default values presented in Table 12-9 and Table 12-11 and Equations 12-24 and 12-25.

The calibration factor is assumed to be 1.00.

Results

Using the predictive method steps as outlined below, the predicted average crash frequency for the roadway segment in Sample Problem 3 is determined to be 7.3 crashes per year (rounded to one decimal place).

Steps

Step 1 through 8

To determine the predicted average crash frequency of the roadway segment in Sample Problem 3, only Steps 9 through 11 are conducted. No other steps are necessary because only one roadway segment is analyzed for one year, and the EB Method is not applied.

Step 9—For the selected site, determine and apply the appropriate safety performance function (SPF) for the site's facility type and traffic control features.

For roadway segments with six or more lanes, SPF values are determined for multiple-vehicle, single- vehicle, vehiclepedestrian, and vehicle-bicycle collisions. The calculations for vehicle-pedestrian and vehicle-bicycle collisions are shown in Step 10 since the CMF values are needed for these models.

Multiple-Vehicle Collisions

The SPF for multiple-vehicle collisions for the roadway segment is calculated from Equation 12-21 and Table 12-8 as follows:

$N_{spf rs mv}$	$= \exp(a + b \times \ln(AADT) + \ln(L))$
$N_{spf rs mv(FI)}$	$= \exp(-11.44 + 1.24 \times \ln(26,000) + \ln(0.8))$
	= 2.566 crashes/year
$N_{spf \ rs \ mv(PDO)}$	$= \exp(-9.20 + 1.06 \times \ln(26,000) + \ln(0.8))$
	= 3.868 crashes/year
$N_{spf \ rs \ mv(total)}$	= 2.566 + 3.868
	= 6.434 crashes/year

Single-Vehicle Crashes

The SPF for single-vehicle crashes for the roadway segment is calculated from Equation 12-23 and Table 12-10 as follows:

N _{spf rs sv}	$= \exp(a + b \times \ln(AADT) + \ln(L))$
$N_{spf rs sv(FI)}$	$= \exp(-4.54 + 0.37 \times \ln(26,000) + \ln(0.8))$
	= 0.367 crashes/year
$N_{spf rs sv(PDO)}$	$= \exp(-3.98 + 0.34 \times \ln(26,000) + \ln(0.8))$
	= 0.474 crashes/year
$N_{spf rs sv(total)}$	= 0.367 + 0.474
	= 0.841 crashes/year

Step 10—Multiply the result obtained in Step 9 by the appropriate CMFs to adjust base conditions to site specific geometric design and traffic control features.

Each CMF used in the calculation of the predicted average crash frequency of the roadway segment is calculated below:

Roadside Fixed Objects (CMF_{2r})

For roadway segments with six or more lanes, CMF_{2r} is calculated from Equation 12-41 as follows:

 $CMF_{2r} = f_{offset} \times D_{fo} \times 0.01 + 1.0$

From Table 12-33, for roadside fixed objects with an average 8-ft offset, the fixed-object offset factor, f_{offset} , is interpolated as 0.367.

 $CMF_{2r} = 0.367 \times 10 \times 0.01 + 1.0$ = 1.037

Median Width (CMF_{3r})

The value of CMF_{3r} is 1.00 for undivided facilities (see Section 12.7.1). It is assumed that a roadway with TWLTL is undivided.

Automated Speed Enforcement (CMF_{5r})

Since there is no automated speed enforcement in Sample Problem 3, $CMF_{5r} = 1.00$ (i.e., the base condition for CMF_{5r} is the absence of automated speed enforcement).

Lane Width (CMF_{6r})

 CMF_{6r} is calculated from Equation 12-43 as follows:

$$CMF_{6r} = e^{-0.0219(W_l - 12)}$$

= $e^{-0.0219(11 - 12)}$
= 1.022

*Outside Shoulder Width (CMF*₇*r*) CMF₇*r* is calculated from Equation 12-44 as follows:

$$CMF_{7r} = e^{-0.0285(W_{ox} - 1.5)}$$

= $e^{-0.0285(3 - 1.5)}$
= 0.958

Highway-Rail Grade Crossing (CMF_{8r})

The value of CMF_{8r} is 1.00 in the absence of highway-rail grade crossings.

Median Barriers (CMF_{9r})

The value of CMF_{9r} is 1.00 in the absence of median barriers. It is assumed that a roadway with TWLTL does not have a median barrier.

Major Industrial Driveways (CMF₁₀)

CMF_{10r} is calculated from Equation 12-47 as follows:

$$CMF_{10r} = e^{0.0107(\frac{n_{id}}{L}-1)}$$
$$= e^{0.0107(\frac{2}{0.8}-1)}$$
$$= 1.016$$

*Major Commercial Driveways (CMF*_{11r}) CMF_{11r} is calculated from Equation 12-48 as follows:

$$CMF_{11r} = e^{a(\frac{n_{cd}}{L}-2)}$$

From Table 12-38, for two-way roadway segments with six or more lanes, the coefficient a is 0.0350.

$$CMF_{11r} = e^{0.0350(\frac{2}{0.8}-2)}$$
$$= 1.018$$

*Minor Driveways (CMF*_{12r}) CMF_{12r} is calculated from Equation 12-49 as follows:

$$CMF_{12r} = e^{a(\frac{n_{mnd}}{L}-10)}$$

From Table 12-39, for two-way roadway segments with six or more lanes, the coefficient a is 0.0054.

$$CMF_{12r} = e^{0.0054(\frac{5}{0.8}-10)}$$

= 0.980

For two-way roadway segments with six or more lanes, separate combined CMF values are calculated for multiple-vehicle collisions and single-vehicle crashes.

$$CMF_{comb(mv)} = 1.022 \times 0.958 \times 1.016 \times 1.018 \times 0.980$$

= 0.992
$$CMF_{comb(sv)} = 1.037 \times 1.022 \times 0.958$$

= 1.015

The predicted average crash frequency of each collision type is determined using Equation 12-6, as follows:

$$N_{brmv} = N_{spf rs mv} \times CMF_{comb(mv)}$$

= 6.434 × 0.992
= 6.383 crashes/year
$$N_{brsv} = N_{spf rs sv} \times CMF_{comb(sv)}$$

= 0.841 × 1.015

= 0.854 crashes/year

Vehicle-Pedestrian and Vehicle-Bicycle Collisions

The predicted average crash frequency of an individual roadway segment (excluding vehicle-pedestrian and vehiclebicycle collisions), N_{br} , is calculated first in order to determine vehicle-pedestrian and vehicle-bicycle crashes. N_{br} is determined from Equation 12-4 as follows:

$$N_{br} = N_{brmv} + N_{brsv}$$
$$= 6.383 + 0.854$$
$$= 7.237 \text{ crashes/year}$$

The SPF for vehicle-pedestrian collisions for the roadway segment is calculated from Equation 12-24 as follows:

$$N_{pedr} = N_{br} \times f_{pedr}$$

From Table 12-16, for a posted speed greater than 30 mph on a seven-lane arterial, the pedestrian crash adjustment factor, $f_{pedr} = 0.014$.

$$N_{pedr} = 7.237 \times 0.014$$
$$= 0.101 \text{ crashes/year}$$

The SPF for vehicle-bicycle collisions is calculated from Equation 12-25 as follows:

$$N_{biker} = N_{br} \times f_{biker}$$

From Table 12-17, for a posted speed limit greater than 30 mph on a seven-lane arterial, the bicycle crash adjustment factor, $f_{biker} = 0.001$.

 $N_{biker} = 7.237 \times 0.001$

= 0.007 crashes/year

Step 11—Multiply the result obtained in Step 10 by the appropriate calibration factor.

It is assumed that a calibration factor, C_r , of 1.00 has been determined for local conditions. See Part C, Appendix A.1 for further discussion on calibration of the predicted models.

Calculation of Predicted Average Crash Frequency

The predicted average crash frequency is calculated using Equation 12-3 based on the results obtained in Steps 9 through 11 as follows:

 $N_{predicted rs} = C_r \times (N_{br} + N_{pedr} + N_{biker})$ = 1.00 × (7.237 + 0.101 + 0.007) = 7.345 crashes/year

WORKSHEETS

The step-by-step instructions above were provided to illustrate the predictive method for calculating the predicted average crash frequency for a roadway segment. To apply the predictive method steps to multiple segments, a series of 10 worksheets are provided for determining the predicted average crash frequency. The 10 worksheets include:

- Worksheet SP3A (Corresponds to Worksheet B-1A)—General Information and Input Data for Two-Way Urban and Suburban Arterial Roadway Segments with Six or More Lanes
- Worksheet SP3B (Corresponds to Worksheet B-1B)—Crash Modification Factors for Two-Way Urban and Suburban Arterial Roadway Segments with Six or More Lanes
- Worksheet SP3C (Corresponds to Worksheet B-1C)—Multiple-Vehicle Collisions by Severity Level for Two-Way Urban and Suburban Arterial Roadway Segments with Six or More Lanes
- Worksheet SP3D (Corresponds to Worksheet B-1D)—Multiple-Vehicle Collisions by Manner of Collision for Two-Way Urban and Suburban Arterial Roadway Segments with Six or More Lanes
- Worksheet SP3E (Corresponds to Worksheet B-1E)—Single-Vehicle Crashes by Severity Level for Two-Way Urban and Suburban Arterial Roadway Segments with Six or More Lanes
- Worksheet SP3F (Corresponds to Worksheet B-1F)—Single-Vehicle Crashes by Manner of Collision for Two-Way Urban and Suburban Arterial Roadway Segments with Six or More Lanes
- Worksheet SP3G(Corresponds to Worksheet B-1G)—Vehicle-Pedestrian Collisions for Two-Way Urban and Suburban Arterial Roadway Segments with Six or More Lanes
- Worksheet SP3H(Corresponds to Worksheet B-1H)—Vehicle-Bicycle Collisions for Two-Way Urban and Suburban Arterial Roadway Segments with Six or More Lanes
- Worksheet SP3I (Corresponds to Worksheet B-11)—Crash Severity*Type Distribution for Two-Way Urban and Suburban Arterial Roadway Segments with Six or More Lanes
- Worksheet SP3J (Corresponds to Worksheet B-1J)—Summary Results for Two-Way Urban and Suburban Arterial Roadway Segments with Six or More Lanes

Details of these sample problem worksheets are provided below. Blank versions of the corresponding worksheets are provided in Appendix 12B (for two-way urban and suburban arterials with six or more lanes).

Worksheet SP3A—General Information and Input Data for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

Worksheet SP3A is a summary of general information about the roadway segment, analysis, input data (i.e., "The Facts"), and assumptions for Sample Problem 3.

Worksheet SP3A	. General Information and Input Data for Two-Way Urban and Suburban Roadway Segments with
Six or More Lanes	

General Information	Location Information	
Analyst	Roadway	
Agency or Company	Roadway Section	
Date Performed	Jurisdiction	
	Analysis Year	
Input Data	Base Conditions	Site Conditions
Road type (6U, 6D, 7T, 8D)	_	7T
Area type (urban/suburban)	_	suburban
Length of segment, L (mi)	—	0.8
AADT (veh/day)	—	26,000
Lane width (ft)	12	11
Outside shoulder width (ft)	1.5	3
Median width (ft)	15	not present
Median barriers (present / not present)	not present	not present
Highway-rail grade crossing density (crossing/mi)	0	0
Auto speed enforcement (present/not present)	not present	not present
Major commercial driveway density (driveways/mi)	2	2/0.8
Major industrial/institutional driveway density (driveways/mi)	1	2/0.8
Minor driveway density (driveways/mi)	10	5/0.8
Posted speed limit (mph)	—	45
Roadside fixed object density (fixed objects/mi)	not present	10
Offset to roadside fixed objects (ft)	not present	8
Calibration factor, Cr	1.0	1.0

Worksheet SP3B—Crash Modification Factors for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

In Step 10 of the predictive method, crash modification factors are applied to account for the effects of site specific geometric design and traffic control devices. Section 12.7 presents the tables and equations necessary for determining the CMF values. Once the value for each CMF has been determined, all of the CMFs are multiplied together in Row 11 of Worksheet SP3B which indicates the combined CMF value.

				Collision	п Туре
				Multiple-Vehicle (mv)	Single-Vehicle
(1)	CMF for Roadside Fixed Objects	CMF _{2r}	from Equation 12-41	_	1.037
(2)	CMF for Median Width	CMF _{3r}	from Table 12-35	1.000	1.000
(3)	CMF for Automated Speed Enforcement	CMF _{5r}	from Section 12.7.1	1.000	1.000
(4)	CMF for Lane Width	CMF _{6r}	from Equation 12-43	1.022	1.022
(5)	CMF for Outside Shoulder Width	CMF _{7r}	from Equation 12-44	0.958	0.958
(6)	CMF for Highway-Rail Grade Crossings	CMF _{8r}	from Equation 12-45	1.000	1.000
(7)	CMF for Median Barriers	CMF _{9r}	from Equation 12-46	1.000	1.000
(8)	CMF for Major Industrial Driveways	CMF _{10r}	from Equation 12-47	1.016	_
(9)	CMF for Major Commercial Driveways	CMF _{11r}	from Equation 12-48	1.018	_
(10)	CMF for Minor Driveways	CMF _{12r}	from Equation 12-49	0.980	_
(11)	Combined CMF	CMF _{comb}	(1)*(2)**(10)	0.992	1.015

Worksheet SP3B. Crash Modification Factors for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

Worksheet SP3C—Multiple-Vehicle Collisions by Severity Level for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

The SPF for multiple-vehicle collisions along the roadway segment in Sample Problem 3 is calculated using Equation 12-22 and entered into Column 4 of Worksheet SP3C. The coefficients for the SPF and the overdispersion parameter associated with the SPF are entered into Columns 2 and 3; however, the overdispersion parameter is not needed for Sample Problem 3 (as the EB Method is not utilized). Column 5 represents the combined CMF for multiple-vehicle crashes (from Row 11 in Worksheet SP3B), and Column 6 represents the calibration factor. Column 7 calculates the predicted average crash frequency of multiple-vehicle crashes using the values in Column 4, the combined CMF in Column 5, and the calibration factor in Column 6.

(1)		(2)		(3)	(4)	(5)	(6)	(7)
Crash SPF Coefficients		Overdispersion Parameter, k	N _{spf} rs mv	Combined CMF	Calibration	Predicted N _{brmv}		
Severity Level	fre	from Table 12-8 fr	from	from from		Factor, Cr	(4)*(5)*(6)	
Lever	a	b	c	Equation 12-22	Equation 12-21	Worksheet SP3B		(4)*(5)*(6)
FI	-11.44	1.24	1.30	0.341	2.566	0.992	1.00	2.546
PDO	-9.20	1.06	1.08	0.424	3.868	0.992	1.00	3.837
Total							1.00	6.383

Worksheet SP3C. Multiple-Vehicle Collisions by Severity Level for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

Worksheet SP3D—Multiple-Vehicle Collisions by Manner of Collision for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

Worksheet SP3D presents the default proportions for manner of collision (from Table 12-9) by crash severity level as follows:

- Fatal-and-injury crashes (Column 2)
- Property-damage-only crashes (Column 4)

Using the default proportions, the predicted average crash frequency for multiple-vehicle crashes by manner of collision is presented in Columns 3 (FI), 5 (PDO), and 6 (Total).

These proportions may be used to separate the predicted average crash frequency for multiple-vehicle crashes (from Column 7, Worksheet SP3C) into components by crash severity and manner of collision.

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner(FI)	Predicted N _{brmv(FI)} (crashes/year)	Proportion of Collision Manner _(PDO)	Predicted N _{brmv(PDO)} (crashes/year)	Predicted N _{brmv(total)} (crashes/year)
Manner of Collision	from Table 12-9	(7) _{FI} from Worksheet SP3C	from Table 12-9	(7) _{PDO} from Worksheet SP3C	(7) _{total} from Worksheet SP3C
Total	1.000	2.546	1.000	3.837	6.383
		$(2)^*(3)_{FI}$		$(4)^{*}(5)_{PDO}$	(3)+(5)
Rear-end collision	0.694	1.767	0.588	2.256	4.023
Head-on collision	0.034	0.087	0.012	0.046	0.133
Angle collision	0.148	0.377	0.092	0.353	0.730
Sideswipe, same direction	0.072	0.183	0.255	0.978	1.161
Sideswipe, opposite direction	0.020	0.051	0.024	0.092	0.143
Other multiple-vehicle collision	0.031	0.079	0.029	0.111	0.190

Worksheet SP3D. Multiple-Vehicle Collisions by Manner of Collision for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

Worksheet SP3E—Single-Vehicle Collisions by Severity Level for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

The SPF for single-vehicle crashes along the roadway segment in Sample Problem 3 is calculated using Equation 12-23 and entered into Column 4 of Worksheet SP3E. The coefficients for the SPF and the overdispersion parameter associated with the SPF are entered into Columns 2 and 3; however, the overdispersion parameter is not needed for Sample Problem 3 (as the EB Method is not utilized). Column 5 represents the combined CMF for single-vehicle crashes (from Row 11 in Worksheet SP3B), and Column 6 represents the calibration factor. Column 7 calculates the predicted average crash frequency of single-vehicle crashes using the values in Column 4, the combined CMF in Column 5, and the calibration factor in Column 6.

Worksheet SP3E. Single-Vehicle Collisions by Severity Level for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

(1)	(2)		(3)	(4)	(5)	(6)	(7)		
Crash SPF Coefficients		SPF Coefficients		SPF Coefficients Overdispersion Parameter, k		Nspf rs sv	Combined CMF	Calibration	Predicted N _{brsv}
Severity Level	fro	m Table 12	-10	from	from from (11) _{sv} from		Factor, C _r	(4)*(5)*(6)	
	а	b	c	Equation 12-22	Equation 12-23	Worksheet SP3B		(+) (3)*(0)	
FI	-4.54	0.37	3.08	0.057	0.367	1.015	1.00	0.373	
PDO	-3.98	0.34	1.97	0.174	0.474	1.015	1.00	0.481	
Total	—	—	—	—	_	—	1.00	0.854	

Worksheet SP3F—Single-Vehicle Collisions by Manner of Collision for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

Worksheet SP3F presents the default proportions for manner of collision (from Table 12-11) by crash severity level as follows:

- Fatal-and-injury crashes (Column 2)
- Property-damage-only crashes (Column 4)

Using the default proportions, the predicted average crash frequency for single-vehicle crashes by manner of collision is presented in Columns 3 (FI), 5 (PDO), and 6 (Total).

These proportions may be used to separate the predicted average crash frequency for single-vehicle crashes (from Column 7, Worksheet SP3E) into components by crash severity and manner of collision.

Worksheet SP3F. Single-Vehicle Collisions by Manner of Collision for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner(FI)	Predicted N _{brsv(FI)} (crashes/year)	Proportion of Collision Manner(PDO)	Predicted N _{brsv} (PDO) (crashes/year)	Predicted N _{brsv(total)} (crashes/year)
Manner of Collision	from Table 12-11	(7) _{FI} from Worksheet SP3E	from Table 12-11	(7) _{PDO} from Worksheet SP3E	(7) _{total} from Worksheet SP3E
Total	1.000	0.373	1.000	0.481	0.854
		$(2)^*(3)_{FI}$		$(4)^{*}(5)_{PDO}$	(3)+(5)
Collision with fixed object - left	0.158	0.059	0.248	0.119	0.178
Collision with fixed object - right	0.495	0.185	0.481	0.231	0.416
Collision with other object	0.011	0.004	0.037	0.018	0.022
Other single-vehicle crash	0.337	0.126	0.234	0.113	0.239

Worksheet SP3G—Vehicle-Pedestrian Collisions for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

The predicted average crash frequency of multiple-vehicle and single-vehicle crashes from Worksheets SP3C and SP3E are entered into Columns 2 and 3, respectively. These values are summed in Column 4. Column 5 contains the pedestrian crash adjustment factor (see Table 12-16). Column 6 represents the calibration factor. The predicted average crash frequency of vehicle-pedestrian collisions (Column 7) is the product of Columns 4, 5, and 6. Since all vehicle-pedestrian crashes are assumed to involve some level of injury, there are no property-damage-only crashes.

Worksheet SP3G. Vehicle-Pedestrian Collisions for Two-Way Urban and Suburban Roadway Segments with Six	x or
More Lanes	

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Crash Severity	Predicted N _{brmv}	Predicted N _{brsv}	Predicted N _{br}	\mathbf{f}_{pedr}	Calibration	Predicted N _{pedr}
Level	(7) from Worksheet SP3C	(7) from Worksheet SP3E	(2)+(3)	From Table 12-16	Factor, Cr	(4)*(5)*(6)
Total	6.383	0.854	7.237	0.014	1.00	0.101
FI	—	—	_	—	1.00	0.101

Worksheet SP3H—Vehicle-Bicycle Collisions for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

The predicted average crash frequency of multiple-vehicle and single-vehicle crashes from Worksheets SP3C and SP3E are entered into Columns 2 and 3, respectively. These values are summed in Column 4. Column 5 contains the bicycle crash adjustment factor (see Table 12-17). Column 6 represents the calibration factor. The predicted average crash frequency of vehicle-bicycle collisions (Column 7) is the product of Columns 4, 5, and 6. Since all vehicle-bicycle crashes are assumed to involve some level of injury, there are no property-damage-only crashes.

Worksheet SP3H. Vehicle-Bicycle Collisions for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Crash Severity	Predicted N _{brmv}	Predicted N _{brsv}	Predicted N _{br}	\mathbf{f}_{biker}	Calibration	Predicted N _{biker}
Level	(7) from Worksheet SP3C	(7) from Worksheet SP3E	(2)+(3)	From Table 12-17	Factor, Cr	(4)*(5)*(6)
Total	6.383	0.854	7.237	0.001	1.00	0.007
FI	—	—	—	—	1.00	0.007

Worksheet SP3I—Crash Severity*Type Distribution for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

Worksheet SP3I provides a summary of all manners of collision by severity level. Values from Worksheets SP3D, SP3F, SP3G, and SP3H are presented and summed to provide the predicted average crash frequency for each severity level as follows:

- Fatal-and-injury crashes (Column 2)
- Property-damage-only crashes (Column 3)
- Total crashes (Column 4)

Worksheet SP3I. Crash Severity*Type Distribution for Two-Way Urban and Suburban Roadway Segments with Six
or More Lanes

(1)	(2)	(3)	(4)	
	FI	PDO	Total	
Collision Type	(3) from Worksheets SP3D and SP3F; and (7) from Worksheet SP3G and SP3H	(5) from Worksheet SP3D and SP3F	(6) from Worksheets SP3D and SP3F; and (7) from Worksheets SP3G and SP3H	
MULTIPLE_VEHICLE				
Rear-end collision (from Worksheet SP3D)	1.767	2.256	4.023	
Head-on collision (from Worksheet SP3D)	0.087	0.046	0.133	
Angle collision (from Worksheet SP3D)	0.377	0.353	0.730	
Sideswipe, same direction (from Worksheet SP3D)	0.183	0.978	1.161	
Sideswipe, opposite direction (from Worksheet SP3D)	0.051	0.092	0.143	
Other multiple-vehicle collision (from Worksheet SP3D)	0.079	0.111	0.190	
Subtotal	2.546	3.837	6.383	
SINGLE_VEHICLE				
Collision with fixed object – left (from Worksheet SP3F)	0.059	0.119	0.178	
Collision with fixed object – right (from Worksheet SP3F)	0.185	0.231	0.416	
Collision with other object (from Worksheet SP3F)	0.004	0.018	0.022	
Other single-vehicle crash (from Worksheet SP3F)	0.126	0.113	0.239	
Collision with pedestrian (from Worksheet SP3G)	0.101	0.000	0.101	
Collision with bicycle (from Worksheet SP3H)	0.007	0.000	0.007	
Subtotal	0.481	0.481	0.962	
Total	3.027	4.318	7.345	

Worksheet SP3J—Summary Results for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

Worksheet SP3J presents a summary of the results. Using the roadway segment length and the AADT, the worksheet presents the crash rate in miles per year (Column 4) and in million vehicle miles (Column 6).

(1)	(2)	(3)	(4)	
Predicted Average Crash Frequency, Npredicted rs (crashes/year)			Crash Rate (crashes/mi/year)	
Crash Severity Level	(total) from Worksheet SP3I	Roadway Segment Length, L (mi)	(2)/(3)	
Total	7.345	0.8	9.18	
FI	4.318	0.8	5.40	
PDO	3.027	0.8	3.78	

Worksheet SP3J. Summary Results for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

12.14.4. Sample Problem 4

The Site/Facility

A three-lane one-way urban arterial roadway segment.

The Question

What is the predicted average crash frequency of the roadway segment for a particular year?

The Facts

- 0.4-mi length
- 15,000 veh/day
- 11-ft lanes
- 1.5-ft right shoulder
- 0.2 mile of parallel street parking on one side of the street and 0.1 mile on the other side
- 6 driveways (1 major commercial, 5 minor driveways)
- 10 roadside fixed objects per mile
- 6-ft offset to roadside fixed objects
- No automated speed enforcement
- 30-mph posted speed
- No bike lane

Assumptions

Collision type distributions used are the default values presented in and Equations 12-24 and 12-25.

The calibration factor is assumed to be 1.00.

Results

Using the predictive method steps as outlined below, the predicted average crash frequency for the roadway segment in Sample Problem 4 is determined to be 3.8 crashes per year (rounded to one decimal place).

Steps

Step 1 through 8

To determine the predicted average crash frequency of the roadway segment in Sample Problem 4, only Steps 9 through 11 are conducted. No other steps are necessary because only one roadway segment is analyzed for one year, and the EB Method is not applied.

Step 9—For the selected site, determine and apply the appropriate safety performance function (SPF) for the site's facility type and traffic control features.

For one-way roadway segments, SPF values are determined for multiple-vehicle, single- vehicle, vehicle-pedestrian, and vehicle-bicycle collisions. The calculations for vehicle-pedestrian and vehicle-bicycle collisions are shown in Step 10 since the CMF values are needed for these models.

Multiple-Vehicle Collisions

The SPF for multiple-vehicle collisions for the roadway segment is calculated from Equation 12-21 and Table 12-8 as follows:

$N_{spf \ rs \ mv}$	$= \exp(a + b \times \ln(AADT) + \ln(L))$
$N_{spf rs mv(FI)}$	$= \exp(-11.49 + 1.26 \times \ln(15,000) + \ln(0.4))$
	= 0.748 crashes/year
$N_{spf rs mv(PDO)}$	$= \exp(-8.27 + 1.02 \times \ln(15,000) + \ln(0.4))$
	= 1.862 crashes/year
$N_{\it spf \ rs \ mv(total)}$	= 0.748 + 1.862
	= 2.610 crashes/year

Single-Vehicle Crashes

The SPF for single-vehicle crashes for the roadway segment is calculated from Equation 12-23 and Table 12-10 as follows:

$N_{spf rs sv}$	$= \exp(a + b \times \ln(AADT) + \ln(L))$
$N_{spf rs sv(FI)}$	$= \exp(-4.93 + 0.42 \times \ln(15,000) + \ln(0.4))$
	= 0.164 crashes/year
$N_{spf rs sv(PDO)}$	$= \exp(-4.72 + 0.43 \times \ln(15,000) + \ln(0.4))$
	= 0.223 crashes/year
$N_{\it spf \ rs \ sv(total)}$	= 0.164 + 0.223
	= 0.387 crashes/year

Step 10—Multiply the result obtained in Step 9 by the appropriate CMFs to adjust base conditions to site specific geometric design and traffic control features.

Each CMF used in the calculation of the predicted average crash frequency of the roadway segment is calculated below:

On-Street Parking (CMF_{1r})

CMF_{1r} is calculated from Equation 12-39 as follows:

 $CMF_{1r} = 1 + p_{pk} \times (f_{pk} - 1.0)$

The proportion of curb length with on-street parallel parking, p_{pk} , is determined as follows:

$$p_{pk} = 0.5 \times \frac{L_{pk}}{L}$$

Since 0.2 and 0.1 mile of on-street parking is provided on each side of the road, the sum of curb length with on-street parking for both sides of the road combined, $L_{pk} = 0.3$.

$$p_{pk} = 0.5 \times \frac{0.3}{0.4} = 0.375$$

From Table 12-32, $f_{pk} = 1.359$.

 $CMF_{1r} = 1 + 0.375 \times (1.359 - 1.0)$

= 1.135

Roadside Fixed Objects (CMF_{2r})

For one-way roadway segments, CMF_{2r} is calculated from Equation 12-41 as follows:

$$CMF_{2r} = f_{offset} \times D_{fo} \times 0.01 + 1.0$$

From Table 12-33, for roadside fixed objects with an average 6-ft offset, the fixed-object offset factor, f_{offset} , is interpolated as 0.579.

$$CMF_{2r} = 0.579 \times 10 \times 0.01 + 1.0$$

= 1.058

Automated Speed Enforcement (CMF_{5r})

Since there is no automated speed enforcement in Sample Problem 4, $CMF_{5r} = 1.00$ (i.e., the base condition for CMF_{5r} is the absence of automated speed enforcement).

*Major Commercial Driveways (CMF*_{11r}) CMF_{11r} is calculated from Equation 12-48 as follows:

$$CMF_{11r} = e^{a(\frac{n_{cd}}{L}-2)}$$

From Table 12-38, for one-way roadway segments, the coefficient *a* is 0.0177.

$$CMF_{11r} = e^{0.0177(\frac{1}{0.4}-2)}$$
$$= 1.009$$

*Minor Driveways (CMF*_{12r}) CMF_{12r} is calculated from Equation 12-49 as follows:

$$CMF_{12r} = e^{a(\frac{n_{mad}}{L}-10)}$$

From Table 12-39, for one-way roadway segments, the coefficient *a* is 0.0046.

$$CMF_{12r} = e^{0.0046(\frac{5}{0.4}-10)}$$

= 1.012

*Right Shoulder Width (CMF*_{13r}) CMF_{13r} is calculated from Equation 12-50 as follows:

$$CMF_{13r} = e^{-0.0201(W_{rs}-4)}$$

= $e^{-0.0201(1.5-4)}$
= 1.052

For one-way roadway segments, separate combined CMF values are calculated for multiple-vehicle collisions and single-vehicle crashes.

$$CMF_{comb(mv)} =$$
 1.135 × 1.009 × 1.012 × 1.052
= 1.219
 $CMF_{comb(sv)} =$ 1.135 × 1.058 × 1.052
= 1.263

The predicted average crash frequency of each collision type is determined using Equation 12-6, as follows:

$$N_{brmv} = N_{spf \ rs \ mv} \times CMF_{comb(mv)}$$

= 2.610 × 1.219
= 3.182 crashes/year
$$N_{brsv} = N_{spf \ rs \ sv} \times CMF_{comb(sv)}$$

= 0.387 × 1.263
= 0.489 crashes/year

Vehicle-Pedestrian and Vehicle-Bicycle Collisions

The predicted average crash frequency of an individual roadway segment (excluding vehicle-pedestrian and vehiclebicycle collisions), N_{br} , is calculated first in order to determine vehicle-pedestrian and vehicle-bicycle crashes. N_{br} is determined from Equation 12-4 as follows:

$$N_{br} = N_{brmv} + N_{brsv}$$

= 3.182 + 0.489
= 3.671 crashes/year

The SPF for vehicle-pedestrian collisions for the roadway segment is calculated from Equation 12-24 as follows:

$$N_{pedr} = N_{br} \times f_{pedr}$$

From Table 12-16, for a posted speed of 30 mph on a three-lane one-way arterial, the pedestrian crash adjustment factor, $f_{pedr} = 0.024$.

 $N_{pedr} = 3.671 \times 0.024$ = 0.088 crashes/year

The SPF for vehicle-bicycle collisions is calculated from Equation 12-25 as follows:

$$N_{\it biker} = N_{\it br} \times f_{\it biker}$$

From Table 12-17, for a posted speed of 30 mph on a three-lane one-way arterial, the bicycle crash adjustment factor, $f_{biker} = 0.011$.

 N_{biker} = 3.671 × 0.011 = 0.040 crashes/year

Step 11—Multiply the result obtained in Step 10 by the appropriate calibration factor.

It is assumed that a calibration factor, C_r , of 1.00 has been determined for local conditions. See Part C, Appendix A.1 for further discussion on calibration of the predicted models.

Calculation of Predicted Average Crash Frequency

The predicted average crash frequency is calculated using Equation 12-3 based on the results obtained in Steps 9 through 11 as follows:

The predicted average crash frequency is calculated using Equation 12-3 based on the results obtained in Steps 9 through 11 as follows:

 $N_{predicted \, rs}$ = $C_r \times (N_{br} + N_{pedr} + N_{biker})$ = $1.00 \times (3.671 + 0.088 + 0.040)$ = $3.799 \, \text{crashes/year}$

WORKSHEETS

The step-by-step instructions above were provided to illustrate the predictive method for calculating the predicted average crash frequency for a roadway segment. To apply the predictive method steps to multiple segments, a series of 10 worksheets are provided for determining the predicted average crash frequency. The 10 worksheets include:

- Worksheet SP4A (Corresponds to Worksheet C-1A)—General Information and Input Data for One-Way Urban and Suburban Arterial Roadway Segments
- Worksheet SP4B (Corresponds to Worksheet C-1B)—Crash Modification Factors for One-Way Urban and Suburban Arterial Roadway Segments
- Worksheet SP4C (Corresponds to Worksheet C-1C)—Multiple-Vehicle Collisions by Severity Level for One-Way Urban and Suburban Arterial Roadway Segments
- Worksheet SP4D (Corresponds to Worksheet C-1D)—Multiple-Vehicle Collisions by Manner of Collision for One-Way Urban and Suburban Arterial Roadway Segments
- Worksheet SP4E (Corresponds to Worksheet C-1E)—Single-Vehicle Crashes by Severity Level for One-Way Urban and Suburban Arterial Roadway Segments
- Worksheet SP4F (Corresponds to Worksheet C-1F)—Single-Vehicle Crashes by Manner of Collision for One-Way Urban and Suburban Arterial Roadway Segments
- Worksheet SP4G(Corresponds to Worksheet C-1G)—Vehicle-Pedestrian Collisions for One-Way Urban and Suburban Arterial Roadway Segments
- Worksheet SP4H(Corresponds to Worksheet C-1H)—Vehicle-Bicycle Collisions for One-Way Urban and Suburban Arterial Roadway Segments
- Worksheet SP4I (Corresponds to Worksheet C-11)—Crash Severity*Type Distribution for One-Way Urban and Suburban Arterial Roadway Segments
- Worksheet SP4J (Corresponds to Worksheet C-1J)—Summary Results for One-Way Urban and Suburban Arterial Roadway Segments

Details of these sample problem worksheets are provided below. Blank versions of the corresponding worksheets are provided in Appendix 12C (for one-way urban and suburban arterials).

Worksheet SP4A—General Information and Input Data for One-Way Urban and Suburban Roadway Segments

Worksheet SP4A is a summary of general information about the roadway segment, analysis, input data (i.e., "The Facts"), and assumptions for Sample Problem 4.

Worksheet SP4A	. General Information and In	put Data for One-Way	^v Urban and Suburban	Roadway Segments

General Information	Location Information	
Analyst	Roadway	
Agency or Company	Roadway Section	
Date Performed	Jurisdiction	
	Analysis Year	
Input Data	Base Conditions	Site Conditions
Road type (20, 30, 40)		30
Area type (urban/suburban)		urban
Length of segment, $L(mi)$	_	0.4
AADT (veh/day)	_	15,000
Type of on-street parking (none/parallel/angle)	none	parallel
Proportion of curb length with on-street parking	_	0.375
Lane width (ft)	_	11
Right shoulder width (ft)	4	1.5
Auto speed enforcement (present/not present)	not present	not present
Major commercial driveway density (driveways/mi)	2	1
Minor driveway density (driveways/mi)	10	5
Speed category		Low (<30mph)
Bike lane (present/not present)		not present
Roadside fixed object density (fixed objects/mi)	not present	10
Offset to roadside fixed objects (ft)	not present	6
Calibration factor, C _r	1.0	1.0

Worksheet SP4B—Crash Modification Factors for One-Way Urban and Suburban Roadway Segments In Step 10 of the predictive method, crash modification factors are applied to account for the effects of site specific geometric design and traffic control devices. Section 12.7 presents the tables and equations necessary for determining the CMF values. Once the value for each CMF has been determined, all of the CMFs are multiplied together in Row 5 of Worksheet SP4B which indicates the combined CMF value.

				Collision	1 Туре
				Multiple-Vehicle (mv)	Single-Vehicle (sv)
(1)	CMF for On-Street Parking	CMF _{1r}	from Equation 12-39	1.135	1.135
(2)	CMF for Roadside Fixed Objects	CMF _{2r}	from Equation 12-41	_	1.058
(3)	CMF for Automated Speed Enforcement	CMF _{5r}	from Section 12.7.1	1.000	1.000
(4)	CMF for Major Commercial Driveways	CMF _{11r}	from Equation 12-48	1.009	_
(5)	CMF for Minor Driveways	CMF _{12r}	from Equation 12-49	1.012	—
(6)	CMF for Right Shoulder Width	CMF _{13r}	from Equation 12-50	1.052	1.052
(7)	Combined CMF	CMF _{comb}	(1)*(2)*(3)*(4)*(5)*(6)	1.219	1.263

Worksheet SP4B. Crash Modification Factors for One-Way Urban and Suburban Roadway Segments

Worksheet SP4C—Multiple-Vehicle Collisions by Severity Level for One-Way Urban and Suburban Roadway Segments

The SPF for multiple-vehicle collisions along the roadway segment in Sample Problem 4 is calculated using Equation 12-22 and entered into Column 4 of Worksheet SP4C. The coefficients for the SPF and the overdispersion parameter associated with the SPF are entered into Columns 2 and 3; however, the overdispersion parameter is not needed for Sample Problem 4 (as the EB Method is not utilized). Column 5 represents the combined CMF for multiple-vehicle crashes (from Row 5 in Worksheet SP4B), and Column 6 represents the calibration factor. Column 7 calculates the predicted average crash frequency of multiple-vehicle crashes using the values in Column 4, the combined CMF in Column 5, and the calibration factor in Column 6.

Worksheet SP4C. Multiple-Vehicle Collisions by Severity Level for One-Way Urban and Suburba	1 Roadway
Segments	

(1)	(2)		(3)	(4)	(5)	(6)	(7)	
Crash	SPF Coefficients from Table 12-8		Overdispersion Parameter, k	N _{spf rs mv} Combined CMF		Calibration Predicted		
Severity Level			from	from	(7) _{mv} from	Factor, Cr	(4)*(5)*(6)	
	а	b	c	Equation 12-22	Equation 12-21	Worksheet SP4B		$(4)^{(3)}(0)$
FI	-11.49	1.26	2.57	0.191	0.748	1.219	1.00	0.912
PDO	-8.27	1.02	2.45	0.216	1.862	1.219	1.00	2.270
Total		_	_	_		—	1.00	3.182

Worksheet SP4D—Multiple-Vehicle Collisions by Manner of Collision for One-Way Urban and Suburban Roadway Segments

Worksheet SP4D presents the default proportions for manner of collision (from) by crash severity level as follows:

- Fatal-and-injury crashes (Column 2)
- Property-damage-only crashes (Column 4)

Using the default proportions, the predicted average crash frequency for multiple-vehicle crashes by manner of collision is presented in Columns 3 (FI), 5 (PDO), and 6 (Total).

These proportions may be used to separate the predicted average crash frequency for multiple-vehicle crashes (from Column 7, Worksheet SP4C) into components by crash severity and manner of collision.

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner _(FI)	Predicted N _{brmv(FI)} (crashes/year)	Proportion of Collision Manner _(PDO)	Predicted N _{brmv(PDO)} (crashes/year)	Predicted N _{brmv(total)} (crashes/year)
Manner of Collision	from	(7) _{FI} from Worksheet SP4C	from	(7) _{PDO} from Worksheet SP4C	(7) _{total} from Worksheet SP4C
Total	1.000	0.912	1.000	2.270	3.182
		$(2)^*(3)_{FI}$		$(4)^{*}(5)_{PDO}$	(3)+(5)
Rear-end collision	0.671	0.612	0.435	0.987	1.599
Head-on collision	0.013	0.012	0.013	0.030	0.042
Angle collision	0.133	0.121	0.115	0.261	0.382
Sideswipe, same direction	0.133	0.121	0.384	0.872	0.993
Sideswipe, opposite direction	0.013	0.012	0.017	0.039	0.051
Other multiple-vehicle collision	0.038	0.035	0.036	0.082	0.117

Worksheet SP4D. Multiple-Vehicle Collisions by Manner of Collision for One-Way Urban and Suburban Roadway Segments

Worksheet SP4E—Single-Vehicle Collisions by Severity Level for One-Way Urban and Suburban Roadway Segments

The SPF for single-vehicle crashes along the roadway segment in Sample Problem 4 is calculated using Equation 12-23 and entered into Column 4 of Worksheet SP4E. The coefficients for the SPF and the overdispersion parameter associated with the SPF are entered into Columns 2 and 3; however, the overdispersion parameter is not needed for Sample Problem 4 (as the EB Method is not utilized). Column 5 represents the combined CMF for single-vehicle crashes (from Row 5 in Worksheet SP4B), and Column 6 represents the calibration factor. Column 7 calculates the predicted average crash frequency of single-vehicle crashes using the values in Column 4, the combined CMF in Column 5, and the calibration factor in Column 6.

Worksheet SP4E. Single-Vehicle Collisions by Severity Level for One-Way Urban and Suburban Roadwa	y
Segments	

(1)		(2)		(3)	(4)	(5)	(6)	(7)
Crash	SF	'F Coefficie	nts	Overdispersion Parameter, k	N _{spf rs sv}	Combined CMF	Calibration	Predicted N _{brsv}
Severity Level	fro	m Table 12	-10	from	from	(7) _{sv} from	Factor, C _r	(4)*(5)*(6)
	а	b	с	Equation 12-22	Equation 12-23	Worksheet SP4B		(4) (3) (0)
FI	-4.93	0.42	1.94	0.359	0.164	1.263	1.00	0.207
PDO	-4.72	0.43	1.98	0.345	0.223	1.263	1.00	0.282
Total	—	—	_	—		—	1.00	0.489

Worksheet SP4F—Single-Vehicle Collisions by Manner of Collision for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

Worksheet SP4F presents the default proportions for manner of collision (from) by crash severity level as follows:

- Fatal-and-injury crashes (Column 2)
- Property-damage-only crashes (Column 4)

Using the default proportions, the predicted average crash frequency for single-vehicle crashes by manner of collision is presented in Columns 3 (FI), 5 (PDO), and 6 (Total).

These proportions may be used to separate the predicted average crash frequency for single-vehicle crashes (from Column 7, Worksheet SP4E) into components by crash severity and manner of collision.

Worksheet SP4F. Single-Vehicle Collisions by Manner of Collision for One-Way Urban and Suburban Roadway Segments

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner _(FI)	Predicted N _{brsv(FI)} (crashes/year)	Proportion of Collision Manner _(PDO)	Predicted N _{brsv(PDO)} (crashes/year)	Predicted N _{brsv(total)} (crashes/year)
Manner of Collision	from	(7) _{FI} from Worksheet SP4E	from	(7) _{PDO} from Worksheet SP4E	(7) _{total} from Worksheet SP4E
Total	1.000	0.207	1.000	0.282	0.489
		$(2)^{*}(3)_{FI}$		$(4)^{*}(5)_{PDO}$	(3)+(5)
Collision with animal	0.182	0.038	0.489	0.138	0.176
Collision with fixed object	0.182	0.038	0.289	0.081	0.119
Collision with other object	0.091	0.019	0.044	0.012	0.031
Other single-vehicle crash	0.545	0.113	0.178	0.050	0.163

Worksheet SP4G—Vehicle-Pedestrian Collisions for One-Way Urban and Suburban Roadway Segments

The predicted average crash frequency of multiple-vehicle and single-vehicle crashes from Worksheets SP4C and SP4E are entered into Columns 2 and 3, respectively. These values are summed in Column 4. Column 5 contains the pedestrian crash adjustment factor (see Table 12-16). Column 6 represents the calibration factor. The predicted average crash frequency of vehicle-pedestrian collisions (Column 7) is the product of Columns 4, 5, and 6. Since all vehicle-pedestrian crashes are assumed to involve some level of injury, there are no property-damage-only crashes.

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Crash Severity	Predicted N _{brmv}	Predicted N _{brsv}	Predicted N _{br}	\mathbf{f}_{pedr}	Calibration	Predicted N _{pedr}
Level	(7) from Worksheet SP4C	(7) from Worksheet SP4E	(2)+(3)	From Table 12-16	Factor, C _r	(4)*(5)*(6)
Total	3.182	0.489	3.671	0.024	1.00	0.088
FI	—	—	_		1.00	0.088

Worksheet SP3H—Vehicle-Bicycle Collisions for One-Way Urban and Suburban Roadway Segments The predicted average crash frequency of multiple-vehicle and single-vehicle crashes from Worksheets SP4C and SP4E are entered into Columns 2 and 3, respectively. These values are summed in Column 4. Column 5 contains the bicycle crash adjustment factor (see Table 12-17). Column 6 represents the calibration factor. The predicted average crash frequency of vehicle-bicycle collisions (Column 7) is the product of Columns 4, 5, and 6. Since all vehicle-bicycle crashes are assumed to involve some level of injury, there are no property-damage-only crashes.

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Crash Severity	Predicted N _{brmv}	Predicted N _{brsv}	Predicted N _{br}	f _{biker}	Calibration	Predicted N _{biker}
Level	(7) from Worksheet SP4C	(7) from Worksheet SP4E	(2)+(3)	From Table 12-17	Factor, C _r	(4)*(5)*(6)
Total	3.182	0.489	3.671	0.011	1.00	0.040
FI	—	—	_	—	1.00	0.040

Worksheet SP4H. Vehicle-Bicycle Collisions for One-Way Urban and Suburban Roadway Segments

Worksheet SP4I—Crash Severity*Type Distribution for One-Way Urban and Suburban Roadway Segments

Worksheet SP4I provides a summary of all manners of collision by severity level. Values from Worksheets SP4D, SP4F, SP4G, and SP4H are presented and summed to provide the predicted average crash frequency for each severity level as follows:

- Fatal-and-injury crashes (Column 2)
- Property-damage-only crashes (Column 3)
- Total crashes (Column 4)

A-	1	28
A-	I	20

Worksheet SP4I. Crash Severity*Type Distribution for One-Way Urban and Suburban Roadway Segme

(1)	(2)	(3)	(4)
	FI	PDO	Total
Collision Type	(3) from Worksheets SP4D and SP4F; and (7) from Worksheet SP4G and SP4H	(5) from Worksheet SP4D and SP4F	(6) from Worksheets SP4D and SP4F; and (7) from Worksheets SP4G and SP4H
MULTIPLE_VEHICLE			
Rear-end collision (from Worksheet SP4D)	0.612	0.987	1.599
Head-on collision (from Worksheet SP4D)	0.012	0.030	0.042
Angle collision (from Worksheet SP4D)	0.121	0.261	0.382
Sideswipe, same direction (from Worksheet SP4D)	0.121	0.872	0.993
Sideswipe, opposite direction (from Worksheet SP4D)	0.012	0.039	0.051
Other multiple-vehicle collision (from Worksheet SP4D)	0.035	0.082	0.117
Subtotal	0.912	2.270	3.182
SINGLE_VEHICLE			
Collision with animal (from Worksheet SP4F)	0.038	0.138	0.176
Collision with fixed object (from Worksheet SP4F)	0.038	0.081	0.119
Collision with other object (from Worksheet SP4F)	0.019	0.012	0.031
Other single-vehicle crash (from Worksheet SP4F)	0.113	0.050	0.163
Collision with pedestrian (from Worksheet SP4G)	0.088	0.000	0.088
Collision with bicycle (from Worksheet SP4H)	0.040	0.000	0.040
Subtotal	0.335	0.282	0.617
Total	1.247	2.552	3.799

Worksheet SP4J—Summary Results for One-Way Urban and Suburban Roadway Segments Worksheet SP4J presents a summary of the results. Using the roadway segment length and the AADT, the worksheet presents the crash rate in miles per year (Column 4) and in million vehicle miles (Column 6).

Worksheet SP4J. Summary Results for One-Way Urban and Suburban Roadway Segme	ents
--	------

(1)	(2)	(3)	(4)
	Predicted Average Crash Frequency, N _{predicted rs} (crashes/year)		Crash Rate (crashes/mi/year)
Crash Severity Level	(total) from Worksheet SP4I	Roadway Segment Length, L (mi)	(2)/(3)
Total	3.799	0.4	9.50
FI	1.247	0.4	3.12
PDO	2.552	0.4	6.38

The Site/Facility

A three-leg stop-controlled intersection located on an urban arterial.

The Question

What is the predicted average crash frequency of the unsignalized intersection for a particular year?

The Facts

- 4-lane undivided major road
- 2-lane undivided minor road
- 1 left-turn lane on one major road approach
- No right-turn lanes on any approach
- AADT of major road is 14,000 veh/day
- AADT of minor road is 4,000 veh/day

Assumptions

Collision type distributions used are the default values from Table 12-21 and Table 12-23 and Equations 12-37 and 12-38.

The calibration factor is assumed to be 1.00.

Results

Using the predictive method steps as outlined below, the predicted average crash frequency for the unsignalized intersection in Sample Problem 5 is determined to be 1.6 crashes per year (rounded to one decimal place).

Steps

Step 1 through 8

To determine the predicted average crash frequency of the intersection in Sample Problem 5, only Steps 9 through 11 are conducted. No other steps are necessary because only one intersection is analyzed for one year, and the EB Method is not applied.

Step 9—For the selected site, determine and apply the appropriate safety performance function (SPF) for the site's facility type and traffic control features.

For intersections of two-way arterials with five or fewer lanes, SPF values are determined for multiple-vehicle, single-vehicle, vehicle-pedestrian, and vehicle-bicycle collisions. The calculations for vehicle-pedestrian and vehicle-bicycle collisions are shown in Step 10 since the CMF values are needed for these models.

Multiple-Vehicle Collisions

The SPF for multiple-vehicle collisions for a single three-leg stop-controlled intersection is calculated from Equation 12-26 and Table 12-20 as follows:

 $N_{spf int mv} = \exp(a + b \times \ln(AADT_{maj}) + c \times \ln(AADT_{min}))$ $N_{spf int mv(total)} = \exp(-13.63 + 1.11 \times \ln(14,000) + 0.41 \times \ln(4,000))$ = 1.892 crashes/year $N_{spf int mv(FI)} = \exp(-14.01 + 1.16 \times \ln(14,000) + 0.30 \times \ln(4,000))$ = 0.639 crashes/year $N_{spf int mv(PDO)} = \exp(-15.38 + 1.20 \times \ln(14,000) + 0.51 \times \ln(4,000))$ = 1.358 crashes/year

The initial values for FI and PDO crashes are then adjusted using Equations 12-27 and 12-28 to assure that they sum to the value for total crashes as follows:

$$N_{spf int mv(FI)} = N_{spf int mv(total)} \left[\frac{N'_{spf int mv(FI)}}{N'_{spf int mv(FI)} + N'_{spf int mv(PDO)}} \right]$$
$$= 1.892 \times \left(\frac{0.639}{0.639 + 1.358} \right)$$
$$= 0.605 \text{ crashes/year}$$
$$N_{spf int mv(PDO)} = N_{spf int mv(total)} - N_{spf int mv(FI)}$$
$$= 1.892 - 0.605$$
$$= 1.287 \text{ crashes/year}$$

Single-Vehicle Crashes

The SPF for single-vehicle crashes for a single three-leg stop-controlled intersection is calculated from Equation 12-29 and Table 12-22 as follows:

 $N_{spf int sv} = \exp(a + b \times \ln(AADT_{maj}) + c \times \ln(AADT_{min}))$ $N_{spf int sv(total)} = \exp(-6.81 + 0.16 \times \ln(14,000) + 0.51 \times \ln(4,000))$ = 0.349 crashes/year $N_{spf int sv(PDO)} = \exp(-8.36 + 0.25 \times \ln(14,000) + 0.55 \times \ln(4,000))$ = 0.244 crashes/year

Since there are no models for FI crashes at a three-leg stop-controlled intersection, $N_{spf int sv(FI)}$ is calculated using Equation 12-32 (in place of Equation 12-30), and the initial value for $N_{spf int sv(PDO)}$ calculated above is then adjusted using Equation 12-31 to assure that FI and PDO crashes sum to the value for total crashes as follows:

$$N_{spf int sv(FI)} = N_{spf int sv(total)} \times f_{bisv}$$

For a three-leg stop-controlled intersection, the default proportion of FI crashes, $f_{bisv} = 0.31$ (see Section 12.6.2.1, Single-Vehicle Crashes)

 $N_{spf int sv(FI)} = 0.349 \times 0.31$ = 0.108 crashes/year $N_{spf int sv(PDO)} = N_{spf int sv(total)} - N_{spf int sv(FI)}$ = 0.349 - 0.108 = 0.241 crashes/year

Step 10—Multiply the result obtained in Step 9 by the appropriate CMFs to adjust base conditions to site specific geometric design and traffic control features.

Each CMF used in the calculation of the predicted average crash frequency of the intersection is calculated below:

Intersection Left-Turn Lanes (CMF_{1i})

From Table 12-40, for a three-leg stop-controlled intersection with one left-turn lane on the major road, $CMF_{II} = 0.67$.

Intersection Left-Turn Signal Phasing (CMF_{2i})

For unsignalized intersections, $CMF_{2i} = 1.00$.

Intersection Right-Turn Lanes (CMF_{3i})

Since no right-turn lanes are present, CMF_{3i} is 1.00 (i.e., the base condition for CMF_{3i} is the absence of right-turn lanes on the intersection approaches).

Right-Turn-on-Red (CMF_{4i})

For unsignalized intersections, $CMF_{4i} = 1.00$.

Lighting (CMF_{5i})

Since there is no lighting at this intersection, CMF_{5i} is 1.00 (i.e., the base condition for CMF_{5i} is the absence of intersection lighting).

Red-Light Cameras (CMF_{6i})

For unsignalized intersections, CMF_{6i} is always 1.00.

The combined CMF value for Sample Problem 5 is 0.67.

The predicted average crash frequency of multiple-vehicle collisions and single-vehicle crashes are determined using Equation 12-9, as follows:

$N_{brmv} = N_{spf rs mv} \times CMF_{comb}$

 $= 1.892 \times 0.67$

= 1.268 crashes/year

$$N_{brsv} = N_{spf rs sv} \times CMF_{comb}$$

 $= 0.349 \times 0.67$

= 0.234 crashes/year

Vehicle-Pedestrian and Vehicle-Bicycle Collisions

The predicted average crash frequency of an intersection (excluding vehicle-pedestrian and vehicle-bicycle collisions), N_{bi} , must be calculated in order to determine vehicle-pedestrian and vehicle-bicycle crashes. N_{bi} is determined from Equation 12-8 as follows:

$$N_{bi} = N_{binv} + N_{bisv}$$
$$= 1.268 + 0.234$$
$$= 1.502 \text{ crashes/year}$$

The SPF for vehicle-pedestrian collisions is calculated from Equation 12-37 as follows: $N_{pedi} = N_{bi} \times f_{pedi}$

From Table 12-29, for a three-leg stop-controlled intersection of a two-way arterial with five or fewer lanes, the pedestrian crash adjustment factor, $f_{pedi} = 0.021$.

 $N_{pedi} = 1.502 \times 0.021$

= 0.032 crashes/year

The SPF for vehicle-bicycle collisions is calculated from Equation 12-38 as follows:

$$N_{bikei} = N_{bi} \times f_{bikei}$$

From Table 12-30, for a three-leg stop-controlled intersection of a two-way arterial with five or fewer lanes, the bicycle crash adjustment factor, $f_{bikei} = 0.016$.

Nbikei = 1.502×0.016

= 0.024 crashes/year

Step 11—Multiply the result obtained in Step 10 by the appropriate calibration factor.

It is assumed that a calibration factor, C_i , of 1.00 has been determined for local conditions. See Part C, Appendix A.1 for further discussion on calibration of the predicted models.

Calculation of Predicted Average Crash Frequency

The predicted average crash frequency is calculated using Equation 12-7 based on the results obtained in Steps 9 through 11 as follows:

 $N_{\text{predicted int}} = C_i \times (N_{bi} + N_{pedi} + N_{bikei})$ = 1.00 × (1.502 + 0.032 + 0.024) = 1.558 crashes/year

WORKSHEETS

The step-by-step instructions above were provided to illustrate the predictive method for calculating the predicted average crash frequency for an intersection. To apply the predictive method steps to multiple intersections, a series of 10 worksheets are provided for determining the predicted average crash frequency. The 10 worksheets include:

- Worksheet SP5A (Corresponds to Worksheet A-2A)—General Information and Input Data for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes
- *Worksheet SP5B (Corresponds to Worksheet A-2B)* Crash Modification Factors for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes
- Worksheet SP5C (Corresponds to Worksheet A-2C)—Multiple-Vehicle Collisions by Severity Level for Intersections
 of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes
- Worksheet SP5D (Corresponds to Worksheet A-2D)— Multiple-Vehicle Collisions by Manner of Collision for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes
- Worksheet SP5E (Corresponds to Worksheet A-2E)—Single-Vehicle Crashes by Severity Level for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes
- Worksheet SP5F (Corresponds to Worksheet A-2F)— Single-Vehicle Crashes by Manner of Collision for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes
- Worksheet SP2G (Corresponds to Worksheet A-2G)— Vehicle-Pedestrian Collisions for Stop-Controlled Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

- Worksheet SP5J (Corresponds to Worksheet A-2J)— Vehicle-Bicycle Collisions for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes
- Worksheet SP5K (Corresponds to Worksheet A-2K)— Crash Severity*Type Distribution for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes
- Worksheet SP5L (Corresponds to Worksheet A-2L)— Summary Results for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Details of these sample problem worksheets are provided below. Blank versions of the corresponding worksheets are provided in Appendix 12A (for two-way urban and suburban arterials with five or fewer lanes).

Worksheet SP5A—General Information and Input Data for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet SP5A is a summary of general information about the intersection, analysis, input data (i.e., "The Facts"), and assumptions for Sample Problem 5.

Worksheet SP5A. General Information and Input Data for Intersections of Two-Way Urban and Suburban Arterial	S
with Five or Fewer Lanes	

General Information		Location Information		
Analyst		Roadway		
Agency or Company		Intersection		
Date Performed		Jurisdiction		
		Analysis Year		
Input Data		Base Conditions	Site Conditions	
Intersection Type (3ST, 3SG, 4ST, 4	lSG)	_	3ST	
AADT _{maj} (veh/day)		_	14,000	
AADT _{min} (veh/day)		_	4,000	
Intersection lighting (present/not pre	esent)	not present	not present	
Calibration factor, C _i		1.00	1.00	
Data for unsignalized intersections of	only:			
Number of major-road approach	nes with left-turn lanes (0, 1, 2)	0	1	
Number of major-road approaches with right-turn lanes (0, 1, 2)		0	0	
Data for signalized intersections only	y:			
Number of approaches with left	-turn lanes (0, 1, 2, 3, 4)	0	N/A	
Number of approaches with righ	nt-turn lanes (0, 1, 2, 3, 4)	0	N/A	
Number of approaches with left	-turn signal phasing	_	N/A	
Number of approaches with righ	nt-turn-on-red prohibited	0	N/A	
Type of left-turn signal phasing		permissive	N/A	
Intersection red-light cameras (J	present/not present)	not present	N/A	
Sum of all pedestrian crossing volumes (PedVol)		_	N/A	
Maximum number of lanes crossed by a pedestrian (n _{lanesx})		_	N/A	
Number of bus stops within 100	00 ft of the intersection	0	N/A	
Schools within 1000 ft of the in	tersection (present/not present)	not present	N/A	
Number of alcohol sales establis	shments within 1000 ft of the intersection	0	N/A	

Worksheet SP5B—Crash Modification Factors for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

In Step 10 of the predictive method, crash modification factors are applied to account for the effects of site specific geometric design and traffic control devices. Section 12.7 presents the tables and equations necessary for determining the CMF values. Once the value for each CMF has been determined, all of the CMFs are multiplied together in Row 7 of Worksheet SP5B which indicates the combined CMF value.

Worksheet SP5B. Crash Modification Factors for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

011				
(1)	CMF for Left-Turn Lanes	CMF _{1i}	from Table 12-40	0.67
(2)	CMF for Left-Turn Signal Phasing	CMF _{2i}	from Table 12-41	1.00
(3)	CMF for Right-Turn Lanes	CMF _{3i}	from Table 12-42	1.00
(4)	CMF for Right-Turn-on-Red	CMF _{4i}	from Equation 12-51	1.00
(5)	CMF for Lighting	CMF _{5i}	from Equation 12-52	1.00
(6)	CMF for Red-Light Cameras	CMF _{6i}	from Equation 12-53	1.00
(7)	Combined CMF	CMFcomb	(1)*(2)*(3)*(4)*(5)*(6)	0.67

Worksheet SP5C—Multiple-Vehicle Collisions by Severity Level for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

The SPF for multiple-vehicle collisions at the intersection in Sample Problem 5 is calculated using Equation 12-26 and entered into Column 4 of Worksheet SP5C. The coefficients for the SPF and the overdispersion parameter associated with the SPF are entered into Columns 2 and 3; however, the overdispersion parameter is not needed for Sample Problem 5 (as the EB Method is not utilized). Column 5 of the worksheet presents the proportions for crash severity levels calculated from the results in Column 4. These proportions are used to adjust the initial SPF values (from Column 4) to assure that FI and PDO crashes sum to the total crashes as illustrated in Column 6. Column 7 represents the combined CMF (from Row 7 in Worksheet SP5B), and Column 8 represents the calibration factor. Column 9 calculates the predicted average crash frequency of multiple-vehicle crashes using the values in Column 6, the combined CMF in Column 7, and the calibration factor in Column 8.

Worksheet SP5C. Multiple-Vehicle Collisions by Severity Level for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)		(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)		
Crash	SPF	' Coeffici	ents	Overdispersion Parameter, k	•				Adjusted N _{spf int mv}	Combined CMF		Predicted N _{bimv}
Severity from Level Table 12-20		from	from	Total Crashes	(4) _{total} *(5)	(7) from Worksheet	Calibration Factor, C _i	(6)*(7)*(8)				
	A	b	с	Table 12-20	12-26		()	SP5B				
Total	-13.36	1.11	0.41	0.80	1.892	1.000	1.892	0.67	1.00	1.268		
FI	-14.01	1.16	0.30	0.69	0.639	$(4)_{FI}/((4)_{FI}+(4)_{PDO})$ 0.320	0.605	0.67	1.00	0.405		
PDO	-15.38	1.20	0.51	0.77	1.358	$(5)_{total} - (5)_{FI}$ 0.680	1.287	0.67	1.00	0.862		

Worksheet SP5D—Multiple-Vehicle Collisions by Manner of Collision for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet SP5D presents the default proportions for manner of collision (from Table 12-21) by crash severity level as follows:

- Fatal-and-injury crashes (Column 2)
- Property-damage-only crashes (Column 4)

Using the default proportions, the predicted average crash frequency for multiple-vehicle crashes by manner of collision is presented in Columns 3 (FI), 5 (PDO), and 6 (Total).

These proportions may be used to separate the predicted average crash frequency for multiple-vehicle crashes (from Column 9, Worksheet SP5C) into components by crash severity and manner of collision.

Worksheet SP5D. Multiple-Vehicle Collisions by Manner of Collision for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner _(FI)	Predicted N _{bimv(FI)} (crashes/year)	Proportion of Collision Manner _(PDO)	Predicted N _{bimv(PDO)} (crashes/year)	Predicted N _{bimv(total)} (crashes/year)
Manner of Collision	from Table 12-21	(9) _{FI} from Worksheet SP5C	from Table 12-21	(9) _{PDO} from Worksheet SP5C	(9) _{total} from Worksheet SP5C
Total	1.000	0.405	1.000	0.862	1.268
		$(2)^{*}(3)_{FI}$		(4)*(5) _{PDO}	(3)+(5)
Rear-end collision	0.421	0.171	0.440	0.379	0.550
Head-on collision	0.045	0.018	0.023	0.020	0.038
Angle collision	0.343	0.139	0.262	0.226	0.365
Sideswipe	0.126	0.051	0.040	0.034	0.085
Other multiple-vehicle collision	0.065	0.026	0.235	0.203	0.229

Worksheet SP5E—Single-Vehicle Collisions by Severity Level for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

The SPF for single-vehicle crashes at the intersection in Sample Problem 5 is calculated using Equation 12-18 and entered into Column 4 of Worksheet SP5E. The coefficients for the SPF and the overdispersion parameter associated with the SPF are entered into Columns 2 and 3; however, the overdispersion parameter is not needed for Sample Problem 5 (as the EB Method is not utilized). Column 5 of the worksheet presents the proportions for crash severity levels calculated from the results in Column 4. These proportions are used to adjust the initial SPF values (from Column 4) to assure that FI and PDO crashes sum to the total crashes as illustrated in Column 6. Column 7 represents the combined CMF (from Row 7 in Worksheet SP5B), and Column 8 represents the calibration factor. Column 9 calculates the predicted average crash frequency of Single-vehicle crashes using the values in Column 6, the combined CMF in Column 7, and the calibration factor in Column 8.

(1)		(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)
Crash	SPI	Coeffici	ents	Overdispersion Parameter, k	Initial N _{spf int sv}	Proportion of	Adjusted N _{spf int sv}	Combined CMF		Predicted N _{bisv}
Severity Level	everity		22	from	Faustion		(4) _{total} *(5)	(7) from Worksheet	Calibration Factor, C _i	(6)*(7)*(8)
	a	b	с	Table 12-22	12-29			SP5B		
Total	-6.81	0.16	0.51	1.14	0.349	1.000	0.349	0.67	1.00	0.234
FI	N/A	N/A	N/A	N/A	0.108	$(4)_{FI} / ((4)_{FI} + (4)_{PDO}) $ N/A	0.108	0.67	1.00	0.072
PDO	-8.36	0.25	0.55	1.29	0.244	$(5)_{total} - (5)_{FI}$ 0.693	0.242	0.67	1.00	0.162

Worksheet SP5E. Single-Vehicle Collisions by Severity Level for Intersections of Two-Way Urban and Suburban	1
Arterials with Five or Fewer Lanes	

Worksheet SP5F—Single-Vehicle Collisions by Manner of Collision for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet SP5F presents the default proportions for manner of collision (from Table 12-23) by crash severity level as follows:

- Fatal-and-injury crashes (Column 2)
- Property-damage-only crashes (Column 4)

Using the default proportions, the predicted average crash frequency for single-vehicle crashes by manner of collision is presented in Columns 3 (FI), 5 (PDO), and 6 (Total).

These proportions may be used to separate the predicted average crash frequency for single-vehicle crashes (from Column 9, Worksheet SP5E) into components by crash severity and manner of collision.

Worksheet SP5F. Single-Vehicle Collisions by Manner of Collision for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner(FI)	Predicted N _{bisv(FI)} (crashes/year)	Proportion of Collision Manner _(PDO)	Predicted N _{bisv(PDO)} (crashes/year)	Predicted N _{bisv(total)} (crashes/year)
Manner of Collision	from Table 12-23	(9) _{FI} from Worksheet SP5E	from Table 12-23	(9) _{PDO} from Worksheet SP5E	(9) _{total} from Worksheet SP5E
Total	1.000	0.072	1.000	0.162	0.234
		$(2)^{*}(3)_{FI}$		$(4)^{*}(5)_{PDO}$	(3)+(5)
Collision with parked vehicle	0.001	0.000	0.003	0.000	0.000
Collision with animal	0.003	0.000	0.018	0.003	0.003
Collision with fixed object	0.762	0.055	0.834	0.135	0.190
Collision with other object	0.090	0.006	0.092	0.015	0.021
Other single-vehicle collision	0.039	0.003	0.023	0.004	0.007
Single-vehicle noncollision	0.105	0.008	0.030	0.005	0.013

Worksheet SP5G—Vehicle-Pedestrian Collisions for Stop-Controlled Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

The predicted average crash frequency of multiple-vehicle and single-vehicle crashes from Worksheets SP5C and SP5E are entered into Columns 2 and 3 respectively. These values are summed in Column 4. Column 5 contains the pedestrian crash adjustment factor (see Table 12-29). Column 6 presents the calibration factor. The predicted average crash frequency of vehicle-pedestrian collisions (Column 7) is the product of Columns 4, 5, and 6. Since all vehicle-pedestrian crashes are assumed to involve some level of injury, there are no property-damage-only crashes.

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Croch Severity Predicted N _{bimv}		Predicted N _{bisv} Predicted N _{bi}		f _{pedi}	Calibration	Predicted N _{pedi}
Crash Severity Level	(9) from Worksheet SP5C	(9) from Worksheet SP5E	(2)+(3)	From Table 12-29	Factor, C _i	(4)*(5)*(6)
Total	1.268	0.234	1.502	0.021	1.00	0.032
FI	—	_	—	—	1.00	0.032

Worksheet SP5G. Vehicle-Pedestrian Collisions for Stop-Controlled Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet SP5J—Vehicle-Bicycle Collisions for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

The predicted average crash frequency of multiple-vehicle and single-vehicle crashes from Worksheets SP5C and SP5E are entered into Columns 2 and 3 respectively. These values are summed in Column 4. Column 5 contains the bicycle crash adjustment factor (see Table 12-30). Column 6 presents the calibration factor. The predicted average crash frequency of vehicle-bicycle collisions (Column 7) is the product of Columns 4, 5, and 6. Since all vehicle-bicycle crashes are assumed to involve some level of injury, there are no property-damage-only crashes.

Worksheet SP5J. Vehicle-Bicycle Collisions for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Crash Severity	Predicted N _{bimv}		Predicted N _{bi}	\mathbf{F}_{bikei}	Calibration	Predicted N _{bikei}
Level	(9) from Worksheet SP5C	(9) from Worksheet SP5E	(2)+(3)	from Table 12-30	Factor, C _i	(4)*(5)*(6)
Total	1.268	0.234	1.502	0.016	1.000	0.024
FI	—	—	—	—	1.000	0.024

Worksheet SP5K—Crash Severity*Type Distribution for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet SP5K provides a summary of all manners of collision by severity level. Values from Worksheets SP5D, SP5F, SP5G, and SP5J are presented and summed to provide the predicted average crash frequency for each severity level as follows:

- Fatal-and-injury crashes (Column 2)
- Property-damage-only crashes (Column 3)
- Total crashes (Column 4)

Worksheet SP5K. Crash Severity*Type Distribution for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)	(2)	(3)	(4)	
	FI	PDO	Total (6) from Worksheets SP5D and SP5F; (7) from Worksheets SP5G and SP5J	
Collision Type	(3) from Worksheets SP5D and SP5F; (7) from Worksheets SP5G and SP5J	(5) from Worksheet SP5D and SP5F		
MULTIPLE_VEHICLE				
Rear-end collisions (from Worksheet SP5D)	0.171	0.379	0.550	
Head-on collisions (from Worksheet SP5D)	0.018	0.020	0.038	
Angle collisions (from Worksheet SP5D)	0.139	0.226	0.365	
Sideswipe (from Worksheet SP5D)	0.051	0.034	0.085	
Other multiple-vehicle collisions (from Worksheet SP5D)	0.026	0.203	0.229	
Subtotal	0.405	0.862	1.267	
SINGLE_VEHICLE				
Collision with parked vehicle (from Worksheet SP5F)	0.000	0.000	0.000	
Collision with animal (from Worksheet SP5F)	0.000	0.003	0.003	
Collision with fixed object (from Worksheet SP5F)	0.055	0.135	0.190	
Collision with other object (from Worksheet SP5F)	0.006	0.015	0.021	
Other single-vehicle collision (from Worksheet SP5F)	0.003	0.004	0.007	
Single-vehicle noncollision (from Worksheet SP5F)	0.008	0.005	0.013	
Collision with pedestrian (from Worksheet SP5G)	0.032	0.000	0.032	
Collision with bicycle (from Worksheet SP5J)	0.024	0.000	0.024	
Subtotal	0.128	0.162	0.290	
Total	0.533	1.024	1.557	

Worksheet SP5L—Summary Results for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet SP5L presents a summary of the results.

Worksheet SP5L. Summary Results for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)	(2)
	Predicted Average Crash Frequency, N _{predicted int} (crashes/year)
Crash Severity Level	(total) from Worksheet SP5K
Total	1.557
FI	0.533
PDO	1.024

The Site/Facility

A four-leg signalized intersection located on an urban arterial.

The Question

What is the predicted average crash frequency of the signalized intersection for a particular year?

The Facts

- 4-lane divided major road
- 2-lane undivided minor road
- 1 left-turn lane on each of the two major road approaches
- 1 right-turn lane on each of the two major road approaches
- Protected/permissive left-turn signal phasing on major road
- AADT of major road is 15,000 veh/day
- AADT of minor road is 9,000 veh/day
- Lighting is present
- No approaches with prohibited right-turn-on-red
- Four-lane divided major road
- Two-lane undivided minor road
- Pedestrian volume is 1,500 peds/day
- The number of bus stops within 1,000 ft of intersection is 2
- A school is present within 1,000 ft of intersection
- The number of alcohol establishments within 1,000 ft of intersection is 6

Assumptions

Collision type distributions used are the default values from Table 12-21 and Table 12-23 and Equations 12-35 and 12-38.

The calibration factor is assumed to be 1.00.

The maximum number of lanes crossed by a pedestrian is assumed to be four (crossing two through lanes, one left-turn lane, and one right-turn lane across one side of the divided major road).

Results

Using the predictive method steps as outlined below, the predicted average crash frequency for the signalized intersection in Sample Problem 6 is determined to be 3.4 crashes per year (rounded to one decimal place).

Steps

Step 1 through 8

To determine the predicted average crash frequency of the intersection in Sample Problem 6, only Steps 9 through 11 are conducted. No other steps are necessary because only one intersection is analyzed for one year, and the EB Method is not applied.

Step 9—For the selected site, determine and apply the appropriate safety performance function (SPF) for the site's facility type and traffic control features.

For intersections of two-way arterials with five or fewer lanes, SPF values are determined for multiple-vehicle, single-vehicle, vehicle-pedestrian, and vehicle-bicycle collisions. The calculations for total multiple- and single-vehicle collisions are presented below. Detailed steps for calculating SPFs for FI and PDO crashes are presented in Sample Problem 5 (for FI base crashes at a four-leg signalized intersection, Equation 12-30 in place of Equation 12-32 is used). The calculations for vehicle-pedestrian and vehicle-bicycle collisions are shown in Step 10 since the CMF values are needed for these two models.

Multiple-Vehicle Collisions

The SPF for multiple-vehicle collisions for a single four-leg signalized intersection is calculated from Equation 12-26 and Table 12-20 as follows:

$N_{spf int mv}$	$= \exp(a + b \times \ln(AADT_{maj}) + c \times \ln(AADT_{min}))$	
$N_{spf int mv(total)}$	$= \exp(-10.99 + 1.07 \times \ln(15,000) + 0.23 \times \ln(9,000))$	0))
	= 4.027 crashes/year	

Single-Vehicle Crashes

The SPF for single-vehicle crashes for a single four-leg signalized intersection is calculated from Equation 12-29 and Table 12-22 as follows:

 $N_{spf int sv} = \exp(a + b \times \ln(AADT_{maj}) + c \times \ln(AADT_{min}))$ $= \exp(-10.21 + 0.68 \times \ln(15,000) + 0.27 \times \ln(9,000))$ = 0.297 crashes/year

Step 10—Multiply the result obtained in Step 9 by the appropriate CMFs to adjust base conditions to site specific geometric design and traffic control features.

Each CMF used in the calculation of the predicted average crash frequency of the intersection is calculated below. CMF_{Ii} through CMF_{9i} are applied to multiple-vehicle and single-vehicle collisions, while CMF_{Ip} through CMF_{3p} are applied to vehicle-pedestrian collisions.

Intersection Left-Turn Lanes (CMF1i)

From Table 12-40, for a four-leg signalized intersection with one left-turn lane on each of the two approaches, $CMF_{1i} = 0.81$.

Intersection Left-Turn Signal Phasing (CMF_{2i})

From Table 12-41, for a four-leg signalized intersection with protected/permissive left-turn signal phasing for two approaches, $CMF_{2i} = 0.98 (0.99*0.99)$.

Intersection Right-Turn Lanes (CMF_{3i})

From Table 12-42, for a four-leg signalized intersection with one right-turn lane on each of the two approaches, $CMF_{3i} = 0.92$.

Right-Turn-on-Red (CMF_{4i})

Since right-turn-on-red (RTOR) is not prohibited on any of the intersection legs, $CMF_{4i} = 1.00$ (i.e., the base condition for CMF_{4i} is permitting a RTOR at all approaches to a signalized intersection).

Lighting (CMF_{5i})

CMF_{5i} is calculated from Equation 12-52.

$$CMF_{5i} = 1 - 0.38 \times p_{ni}$$

From Table 12-43, the proportion of crashes that occur at night, $p_{ni} = 0.235$.

$$CMF_{5i} = 1 - 0.38 \times 0.235$$

= 0.91

Red-Light Cameras (CMF_{6i})

Since no red light cameras are present at this intersection, $CMF_{6i} = 1.00$ (i.e., the base condition for CMF_{6i} is the absence of red light cameras).

The combined CMF value applied to multiple-vehicle and single-vehicle crashes in Sample Problem 6 is calculated below.

$$CMF_{comb} = 0.81 \times 0.98 \times 0.92 \times 0.91$$
$$= 0.66$$

The predicted average crash frequency of multiple-vehicle collisions and single-vehicle crashes are determined using Equation 12-9, as follows:

$$N_{brmv} = N_{spf rs mv} \times CMF_{comb}$$
$$= 4.027 \times 0.66$$
$$= 2.658 \text{ crashes/year}$$
$$N_{brsv} = N_{spf rs sv} \times CMF_{comb}$$

$$= 0.297 \times 0.66$$

= 0.196 crashes/year

Bus Stops (CMF_{1p})

From Table 12-45, for two bus stop within 1,000 ft of the center of the intersection, $CMF_{1p} = 2.78$.

Schools (CMF_{2p})

From Table 12-46, for one school within 1,000 ft of the center of the intersection, $CMF_{2p} = 1.35$.

Alcohol Sale Establishments (CMF_{3p})

From Table 12-47, for six alcohol sales establishments within 1,000 ft of the center of the intersection, $CMF_{3p} = 1.12$.

Vehicle-Pedestrian and Vehicle-Bicycle Collisions

The SPF for vehicle-pedestrian collisions for a four-leg signalized intersection is calculated from Equation 12-35 as follows:

 $N_{pedi} = N_{pedbase} \times (CMF_{1p} \times CMF_{2p} \times CMF_{3p})$

N_{pedbase} is calculated from Equation 12-36 using the coefficients from Table 12-27.

$$N_{pedbase} = \exp\left(a + b \times \ln(AADT_{total}) + c \times \ln\left(\frac{AADT_{low}}{AADT_{high}}\right) + d \times \ln(PedVol) + e \times n_{lanesx}\right)$$
$$= \exp\left(-9.53 + 0.40 \times \ln(24,000) + 0.26 \times \ln\left(\frac{9,000}{15,000}\right) + 0.45 \times \ln(1,500) + 0.04 \times 4\right)$$
$$= 0.113 \text{ crashes/year}$$

The CMF values for vehicle-pedestrian collisions calculated above are $CMF_{1p} = 2.78$, $CMF_{2p} = 1.35$, and $CMF_{3p} = 1.12$.

$$N_{pedi} = 0.113 \times 2.78 \times 1.35 \times 1.12$$
$$= 0.475 \text{ crashes/year}$$

The predicted average crash frequency of an intersection (excluding vehicle-pedestrian and vehicle-bicycle collisions), N_{bi} , must be calculated in order to determine vehicle-bicycle crashes. N_{bi} is determined from Equation 12-8 as follows:

$$N_{bi} = N_{bimv} + N_{bisv}$$
$$= 2.658 + 0.196$$
$$= 2.854 \text{ crashes/year}$$

The SPF for vehicle-bicycle collisions is calculated from Equation 12-38 as follows:

$$N_{bikei} = N_{bi} \times f_{bikei}$$

From Table 12-30, for a four-leg signalized intersection of a two-way arterial with five or fewer lanes, the bicycle crash adjustment factor, $f_{bikei} = 0.015$.

$$N_{bikei} = 2.854 \times 0.015$$
$$= 0.043 \text{ crashes/year}$$

Step 11—Multiply the result obtained in Step 10 by the appropriate calibration factor.

It is assumed in Sample Problem 6 that a calibration factor, C_i , of 1.00 has been determined for local conditions. See Part C, Appendix A.1 for further discussion on calibration of the predicted models.

Calculation of Predicted Average Crash Frequency

The predicted average crash frequency is calculated using Equation 12-7 based on the results obtained in Steps 9 through 11 as follows:

$$N_{\text{predicted int}} = C_i \times (N_{bi} + N_{pedi} + N_{bikei})$$

= 1.00 × (2.854 + 0.475 + 0.043)
= 3.372 crashes/year

WORKSHEETS

The step-by-step instructions above were provided to illustrate the predictive method for calculating the predicted average crash frequency for an intersection. To apply the predictive method steps to multiple intersections, a series of 11 worksheets are provided for determining the predicted average crash frequency. The 11 worksheets include:

 Worksheet SP6A (Corresponds to Worksheet A-2A)—General Information and Input Data for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

- *Worksheet SP6B (Corresponds to Worksheet A-2B)* Crash Modification Factors for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes
- Worksheet SP6C (Corresponds to Worksheet A-2C)—Multiple-Vehicle Collisions by Severity Level for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes
- Worksheet SP6D (Corresponds to Worksheet A-2D)— Multiple-Vehicle Collisions by Manner of Collision for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes
- Worksheet SP6E (Corresponds to Worksheet A-2E)—Single-Vehicle Crashes by Severity Level for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes
- Worksheet SP6F (Corresponds to Worksheet A-2F)— Single-Vehicle Crashes by Manner of Collision for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes
- Worksheet SP6H (Corresponds to Worksheet A-2H)— Crash Modification Factors for Vehicle-Pedestrian Collisions for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes
- Worksheet SP6I (Corresponds to Worksheet A-2I)— Vehicle-Pedestrian Collisions for Signalized Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes
- Worksheet SP6J (Corresponds to Worksheet A-2J)— Vehicle-Bicycle Collisions for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes
- Worksheet SP6K (Corresponds to Worksheet A-2K)— Crash Severity*Type Distribution for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes
- Worksheet SP6L (Corresponds to Worksheet A-2L)— Summary Results for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Details of these sample problem worksheets are provided below. Blank versions of the corresponding worksheets are provided in Appendix 12A (for two-way urban and suburban arterials with five or fewer lanes).

Worksheet SP6A—General Information and Input Data for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet SP6A is a summary of general information about the intersection, analysis, input data (i.e., "The Facts"), and assumptions for Sample Problem 6.

General Information	Location Information	Location Information		
Analyst	Roadway			
Agency or Company	Intersection			
Date Performed	Jurisdiction			
	Analysis Year			
Input Data	Base Conditions	Site Conditions		
Intersection Type (3ST, 3SG, 4ST, 4SG)	_	4SG		
AADT _{maj} (veh/day)		15,000		
AADT _{min} (veh/day)		9,000		
Intersection lighting (present/not present)	not present	present		
Calibration factor, C _i	1.00	1.00		
Data for unsignalized intersections only:				
Number of major-road approaches with left-turn lanes (0, 1, 2)	0	N/A		
Number of major-road approaches with right-turn lanes (0, 1, 2)	0	N/A		
Data for signalized intersections only:				
Number of approaches with left-turn lanes (0, 1, 2, 3, 4)	0	2		
Number of approaches with right-turn lanes (0, 1, 2, 3, 4)	0	2		
Number of approaches with left-turn signal phasing		2		
Number of approaches with right-turn-on-red prohibited	0	0		
Type of left-turn signal phasing	permissive	protected/permissive		
Intersection red-light cameras (present/not present)	not present	not present		
Sum of all pedestrian crossing volumes (PedVol)		1,500		
Maximum number of lanes crossed by a pedestrian (n _{tanesx})	_	4		
Number of bus stops within 1000 ft of the intersection	0	2		
Schools within 1000 ft of the intersection (present/not present)	not present	present		
Number of alcohol sales establishments within 1000 ft of the intersec	tion 0	6		

Worksheet SP6A. General Information and Input Data for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet SP6B—Crash Modification Factors for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

In Step 10 of the predictive method, crash modification factors are applied to account for the effects of site specific geometric design and traffic control devices. Section 12.7 presents the tables and equations necessary for determining the CMF values. Once the value for each CMF has been determined, all of the CMFs are multiplied together in Row 7 of Worksheet SP6B which indicates the combined CMF value.

Worksheet SP6B. Crash Modification Factors for Intersections of Two-Way Urban and Suburban Arterials with Fiv	e
or Fewer Lanes	

(1)	CMF for Left-Turn Lanes	CMF _{1i}	from Table 12-40	0.81
(2)	CMF for Left-Turn Signal Phasing	CMF _{2i}	from Table 12-41	0.98
(3)	CMF for Right-Turn Lanes	CMF _{3i}	from Table 12-42	0.92
(4)	CMF for Right-Turn-on-Red	CMF _{4i}	from Equation 12-51	1.00
(5)	CMF for Lighting	CMF _{5i}	from Equation 12-52	0.91
(6)	CMF for Red-Light Cameras	CMF _{6i}	from Equation 12-53	1.00
(7)	Combined CMF	CMFcomb	(1)*(2)*(3)*(4)*(5)*(6)	0.66

Worksheet SP6C—Multiple-Vehicle Collisions by Severity Level for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

The SPF for multiple-vehicle collisions at the intersection in Sample Problem 6 is calculated using Equation 12-26 and entered into Column 4 of Worksheet SP6C. The coefficients for the SPF and the overdispersion parameter associated with the SPF are entered into Columns 2 and 3; however, the overdispersion parameter is not needed for Sample Problem 6 (as the EB Method is not utilized). Column 5 of the worksheet presents the proportions for crash severity levels calculated from the results in Column 4. These proportions are used to adjust the initial SPF values (from Column 4) to assure that FI and PDO crashes sum to the total crashes as illustrated in Column 6. Column 7 represents the combined CMF (from Row 7 in Worksheet SP6B), and Column 8 represents the calibration factor. Column 9 calculates the predicted average crash frequency of multiple-vehicle crashes using the values in Column 6, the combined CMF in Column 7, and the calibration factor in Column 8.

Worksheet SP6C. Multiple-Vehicle Collisions by Severity Level for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)	(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Crash	Crash Severity Level Table 12-20 A b c		Overdispersion Parameter, k	Initial N _{spf int mv}	Proportion of	Adjusted N _{spf int mv}	Combined CMF		Predicted N _{bimv}	
Severity			from	from Equation	Total Crashes	$(4)_{total}^{*}(5)$	(7) from Worksheet	Calibration Factor, C _i	(6)*(7)*(8)	
_			Table 12-20	12-26		().0 ())	SP6B			
Total	-10.99	1.07	0.23	0.39	4.027	1.000	4.027	0.66	1.000	2.658
FI	-13.14	1.18	0.22	0.33	1.233	$(4)_{FI}/ ((4)_{FI}+(4)_{PDO}) = 0.318$	1.281	0.66	1.000	0.845
PDO	-11.02	1.02	0.24	0.44	2.647	$(5)_{total} - (5)_{FI}$ 0.682	2.746	0.66	1.000	1.812

Worksheet SP6D—Multiple-Vehicle Collisions by Manner of Collision for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet SP6D presents the default proportions for manner of collision (from Table 12-21) by crash severity level as follows:

- Fatal-and-injury crashes (Column 2)
- Property-damage-only crashes (Column 4)

Using the default proportions, the predicted average crash frequency for multiple-vehicle crashes by manner of collision is presented in Columns 3 (FI), 5 (PDO), and 6 (Total).

These proportions may be used to separate the predicted average crash frequency for multiple-vehicle crashes (from Column 9, Worksheet SP6C) into components by crash severity and manner of collision.

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner _(FI)	Predicted N _{bimv(FI)} (crashes/year)	Proportion of Collision Manner _(PDO)	Predicted N _{bimv(PDO)} (crashes/year)	Predicted N _{bimv(total)} (crashes/year)
Manner of Collision	from Table 12-21	(9) _{FI} from Worksheet SP6C	from Table 12-21	(9) _{PDO} from Worksheet SP6C	(9) _{total} from Worksheet SP6C
Total	1.000	0.845	1.000	1.812	2.658
		$(2)^*(3)_{FI}$		$(4)^{*}(5)_{PDO}$	(3)+(5)
Rear-end collision	0.450	0.380	0.483	0.875	1.255
Head-on collision	0.049	0.041	0.030	0.054	0.095
Angle collision	0.347	0.293	0.244	0.442	0.735
Sideswipe	0.099	0.084	0.032	0.058	0.142
Other multiple-vehicle collision	0.055	0.046	0.211	0.382	0.428

Worksheet SP6D. Multiple-Vehicle Collisions by Manner of Collision for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet SP6E—Single-Vehicle Collisions by Severity Level for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

The SPF for single-vehicle crashes at the intersection in Sample Problem 6 is calculated using Equation 12-18 and entered into Column 4 of Worksheet SP6E. The coefficients for the SPF and the overdispersion parameter associated with the SPF are entered into Columns 2 and 3; however, the overdispersion parameter is not needed for Sample Problem 6 (as the EB Method is not utilized). Column 5 of the worksheet presents the proportions for crash severity levels calculated from the results in Column 4. These proportions are used to adjust the initial SPF values (from Column 4) to assure that FI and PDO crashes sum to the total crashes as illustrated in Column 6. Column 7 represents the combined CMF (from Row 7 in Worksheet SP6B), and Column 8 represents the calibration factor. Column 9 calculates the predicted average crash frequency of Single-vehicle crashes using the values in Column 6, the combined CMF in Column 7, and the calibration factor in Column 8.

Worksheet SP6E. Single-Vehicle Collisions by Severity Level for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)		(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)
Crash	SPF	Coeffici	ents	Overdispersion Parameter, k	Initial N _{spf int sv}	Proportion of	Adjusted N _{spf int sv}	Combined CMF		Predicted N _{bisv}
Severity Level	from Table 12-22		22	from	from To	Total Crashes	(4) _{total} *(5)	(7) from Worksheet	Calibration Factor, C _i	(6)*(7)*(8)
	a	b	c	Table 12-22	12-29		()(),	SP6B		
Total	-10.21	0.68	0.27	0.36	0.297	1.000	0.297	0.66	1.000	0.196
FI	-9.25	0.43	0.29	0.09	0.084	$(4)_{FI}/((4)_{FI}+(4)_{PDO})$ 0.287	0.085	0.66	1.000	0.056
PDO	-11.34	0.78	0.25	0.44	0.209	$(5)_{total} - (5)_{FI}$ 0.713	0.212	0.66	1.000	0.140

Worksheet SP6F—Single-Vehicle Collisions by Manner of Collision for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet SP6F presents the default proportions for manner of collision (from Table 12-23) by crash severity level as follows:

- Fatal-and-injury crashes (Column 2)
- Property-damage-only crashes (Column 4)

Using the default proportions, the predicted average crash frequency for single-vehicle crashes by manner of collision is presented in Columns 3 (FI), 5 (PDO), and 6 (Total).

These proportions may be used to separate the predicted average crash frequency for single-vehicle crashes (from Column 9, Worksheet SP6E) into components by crash severity and manner of collision.

Worksheet SP6F. Single-Vehicle Collisions by Manner of Collision for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner _(FI)	Predicted N _{bisv(FI)} (crashes/year)	Proportion of Collision Manner _(PDO)	Predicted N _{bisv(PDO)} (crashes/year)	Predicted N _{bisv(total)} (crashes/year)
Manner of Collision	from Table 12-23	(9) _{FI} from Worksheet SP6E	from Table 12-23	(9) _{PDO} from Worksheet SP6E	(9) _{total} from Worksheet SP6E
Total	1.000	0.056	1.000	0.140	0.196
		$(2)^{*}(3)_{FI}$		$(4)^{*}(5)_{PDO}$	(3)+(5)
Collision with parked vehicle	0.001	0.000	0.001	0.000	0.000
Collision with animal	0.002	0.000	0.002	0.000	0.000
Collision with fixed object	0.744	0.042	0.870	0.122	0.164
Collision with other object	0.072	0.004	0.070	0.010	0.014
Other single-vehicle collision	0.040	0.002	0.023	0.003	0.005
Single-vehicle noncollision	0.141	0.008	0.034	0.005	0.013

Worksheet SP6H. Crash Modification Factors for Vehicle-Pedestrian Collisions for Signalized Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

In Step 10 of the predictive method, crash modification factors are applied to account for the effects of site specific geometric design and traffic control devices. Section 12.7 presents the tables and equations necessary for determining the CMF values for vehicle-pedestrian collisions. Once the value for each CMF has been determined, all of the CMFs are multiplied together in Row 4 of Worksheet SP6H which indicates the combined CMF value for vehicle-pedestrian collisions.

Worksheet SP6H. Crash Modification Factors for Vehicle-Pedestrian Collisions for Signalized Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

11 60 9				
(1)	CMF for Bus Stops	CMF _{1p}	from Table 12-45	2.78
(2)	CMF for Schools	CMF_{2p}	from Table 12-46	1.35
(3)	CMF for Alcohol Sales Establishments	CMF _{3p}	from Table 12-47	1.12
(4)	Combined CMF	CMFcomb	(1)*(2)*(3)	4.20

Worksheet SP6I—Vehicle-Pedestrian Collisions for Signalized Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

The predicted number of vehicle-pedestrian collisions per year for base conditions at a signalized intersection, N_{pedbase}, is calculated using Equation 12-35 and entered into Column 4 of Worksheet SP6I. The coefficients for the SPF and the overdispersion parameter associated with the SPF are entered into Columns 2 and 3; however, the overdispersion parameter is not needed for Sample Problem 6 (as the EB Method is not utilized). Column 5 represents the combined CMF for vehicle-pedestrian collisions (from Row 4 in Worksheet SP6H), and Column 6 represents the calibration factor. Column 7 calculates the predicted average crash frequency of vehicle-pedestrian collisions using the values in Column 4, the combined CMF in Column 5, and the calibration factor in Column 6. Since all vehicle-pedestrian crashes are assumed to involve some level of injury, there are no property-damage-only crashes.

(1)	(2)					(3)	(4)	(5)	(6)	(7)
Crash		SPF	' Coeffici	ents		Overdispersion Parameter, k	Npedbase	Combined CMF	Calibration	Predicted N _{pedi}
Severity Level	from Table 12-27					from	from	(4) from	Factor, C _i	
Lever	a	b	c	d	e	Table 12-27	Equation 12-35	Worksheet SP6H		(4)*(5)*(6)
Total	-9.53	0.40	0.26	0.45	0.04	0.24	0.113	4.20	1.000	0.475
FI	_	_	_	_	_	_	_	—	1.000	0.475

Worksheet SP6I. Vehicle-Pedestrian Collisions for Signalized Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet SP6J—Vehicle-Bicycle Collisions for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

The predicted average crash frequency of multiple-vehicle and single-vehicle crashes from Worksheets SP6C and SP6E are entered into Columns 2 and 3 respectively. These values are summed in Column 4. Column 5 contains the bicycle crash adjustment factor (see Table 12-30). Column 6 presents the calibration factor. The predicted average crash frequency of vehicle-bicycle collisions (Column 7) is the product of Columns 4, 5, and 6. Since all vehicle-bicycle crashes are assumed to involve some level of injury, there are no property-damage-only crashes.

Worksheet SP6J. Vehicle-Bicycle Collisions for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Crash Severity	Predicted N _{bimv}	Predicted N _{bisv}	Predicted N _{bi}	Fbikei	Calibration	Predicted N _{bikei}
Level	(9) from Worksheet SP6C	(9) from Worksheet SP6E	(2)+(3)	from Table 12-30	from Factor, C _i	
Total	2.658	0.196	2.854	0.015	1.000	0.043
FI	_	_	—	—	1.000	0.043

Worksheet SP6K—Crash Severity*Type Distribution for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet SP6K provides a summary of all manners of collision by severity level. Values from Worksheets SP6D, SP6F, SP6G, and SP6J are presented and summed to provide the predicted average crash frequency for each severity level as follows:

- Fatal-and-injury crashes (Column 2)
- Property-damage-only crashes (Column 3)
- Total crashes (Column 4)

Worksheet SP6K. Crash Severity*Type Distribution for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)	(2)	(3)	(4)		
	FI	PDO	Total		
Collision Type	(3) from Worksheets SP6D and SP6F; (7) from Worksheets SP6I and SP6J	(5) from Worksheet SP6D and SP6F	(6) from Worksheets SP6D and SP6F; (7) from Worksheets SP6I and SP6J		
MULTIPLE_VEHICLE					
Rear-end collisions (from Worksheet SP6D)	0.380	0.875	1.255		
Head-on collisions (from Worksheet SP6D)	0.041	0.054	0.095		
Angle collisions (from Worksheet SP6D)	0.293	0.442	0.735		
Sideswipe (from Worksheet SP6D)	0.084	0.058	0.142		
Other multiple-vehicle collisions (from Worksheet SP6D)	0.046	0.382	0.428		
Subtotal	0.844	1.811	2.655		
SINGLE_VEHICLE					
Collision with parked vehicle (from Worksheet SP6F)	0.000	0.000	0.000		
Collision with animal (from Worksheet SP6F)	0.000	0.000	0.000		
Collision with fixed object (from Worksheet SP6F)	0.042	0.122	0.164		
Collision with other object (from Worksheet SP6F)	0.004	0.010	0.014		
Other single-vehicle collision (from Worksheet SP6F)	0.002	0.003	0.005		
Single-vehicle noncollision (from Worksheet SP6F)	0.008	0.005	0.013		
Collision with pedestrian (from Worksheet SP6I)	0.475	0.000	0.475		
Collision with bicycle (from Worksheet SP6J)	0.043	0.000	0.043		
Subtotal	0.574	0.140	0.714		
Total	1.418	1.951	3.369		

Worksheet SP6L—Summary Results for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet SP6L presents a summary of the results.

Worksheet SP6L. Summary Results for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)	(2)	
	Predicted Average Crash Frequency, Npredicted int (crashes/year)	
Crash Severity Level	(total) from Worksheet SP6K	
Total	3.369	
FI	1.418	
PDO	1.951	

12.14.7. Sample Problem 7

The Site/Facility

A four-leg stop-controlled intersection located on a suburban two-way arterial with six lanes.

The Question

What is the predicted average crash frequency of the stop-controlled intersection for a particular year?

The Facts

- Six-lane divided major road
- Two-lane undivided minor road
- No left-turn lane on minor road approaches
- AADT of major road is 25,000 veh/day
- AADT of minor road is 2,000 veh/day
- Intersection is lighted

Assumptions

Collision type distributions used are the default values presented in Table 12-25 and Equations 12-37 and 12-38.

The calibration factor is assumed to be 1.00.

Results

Using the predictive method steps as outlined below, the predicted average crash frequency for the stop-controlled intersection in Sample Problem 7 is determined to be 3.0 crashes per year (rounded to one decimal place).

Steps

Step 1 through 8

To determine the predicted average crash frequency of the intersection in Sample Problem 7, only Steps 9 through 11 are conducted. No other steps are necessary because only one intersection is analyzed for one year, and the EB Method is not applied.

Step 9—For the selected site, determine and apply the appropriate safety performance function (SPF) for the site's facility type and traffic control features.

For intersections of two-way arterials with six or more lanes, SPF values are determined for multiple-vehicle and single-vehicle collisions, vehicle-pedestrian, and vehicle-bicycle collisions. The calculations for vehicle-pedestrian and vehicle-bicycle collisions are shown in Step 10 since the CMF values are needed for these models.

Multiple-Vehicle and Single-Vehicle Collisions

The SPF for multiple-vehicle and single-vehicle collisions for a single four-leg stop-controlled intersection is calculated from Equation 12-33 and Table 12-24 as follows:

$N_{spf int}$	$= \exp(a + b \times \ln(AADT_{maj}) + c \times \ln(AADT_{min}))$
$N_{spf int(FI)}$	$= \exp(-10.08 + 0.58 \times \ln(25,000) + 0.60 \times \ln(2,000))$
	= 1.425 crashes/year

 $N_{spfint(PDO)} = \exp(-12.01 + 0.67 \times \ln(25,000) + 0.75 \times \ln(2,000))$

= 1.609 crashes/year

 $N_{spf int(total)} = 1.425 + 1.609$

= 3.034 crashes/year

Step 10—Multiply the result obtained in Step 9 by the appropriate CMFs to adjust base conditions to site specific geometric design and traffic control features.

Each CMF used in the calculation of the predicted average crash frequency of the intersection is calculated below:

*Intersection Left-Turn Signal Phasing (CMF*_{2i}) For unsignalized intersections, $CMF_{2i} = 1.00$.

Right-Turn-on-Red (*CMF*_{4i}) For unsignalized intersections, $CMF_{4i} = 1.00$.

Lighting (CMF_{5i}) CMF_{5i} is calculated from Equation 12-52.

 $CMF_{5i} = 1 - 0.38 \times p_{ni}$

From Table 12-43, the proportion of crashes that occur at night, $p_{ni} = 0.229$.

 $CMF_{5i} = 1 - 0.38 \times 0.229$ = 0.913

Red-Light Cameras (*CMF*_{6i}) For unsignalized intersections, $CMF_{6i} = 1.00$.

Number of Lanes (*CMF*_{7i}) For unsignalized intersections, $CMF_{7i} = 1.00$.

*Intersection Right-Turn Channelization (CMF*_{8i}) For unsignalized intersections, $CMF_{8i} = 1.00$.

*U-Turn Prohibition (CMF*_{9i}) For unsignalized intersections, $CMF_{8i} = 1.00$.

The combined CMF value for Sample Problem 7 is 0.913.

The predicted average crash frequency of multiple-vehicle and single-vehicle collisions is determined using Equation 12-9, as follows:

 N_{bi} = $N_{spf int} \times CMF_{comb}$ = 3.034×0.913

= 2.770 crashes/year

Vehicle-Pedestrian and Vehicle-Bicycle Collisions

The SPF for vehicle-pedestrian collisions for the intersection is calculated from Equation 12-37 as follows:

 $N_{pedi} = N_{bi} \times f_{pedi}$

From Table 12-29, for a four-leg stop-controlled intersection of a two-way arterial with six or more lanes, the pedestrian crash adjustment factor, $f_{pedi} = 0.049$.

 $N_{pedi} = 2.770 \times 0.049$ = 0.136 crashes/year

The SPF for vehicle-bicycle collisions for the intersection is calculated from Equation 12-38 as follows:

 $N_{bikei} = N_{bi} \times f_{bikei}$

From Table 12-30, for a four-leg stop-controlled intersection of a two-way arterial with six or more lanes, the bicycle crash adjustment factor, $f_{bikei} = 0.039$.

 $N_{bikei} = 2.770 \times 0.039$

= 0.108 crashes/year

Step 11—Multiply the result obtained in Step 10 by the appropriate calibration factor.

It is assumed that a calibration factor, C_i , of 1.00 has been determined for local conditions. See Part C, Appendix A.1 for further discussion on calibration of the predicted models.

Calculation of Predicted Average Crash Frequency

The predicted average crash frequency is calculated using Equation 12-7 based on the results obtained in Steps 9 through 11 as follows:

$$N_{\text{predicted int}} = C_i \times (N_{bi} + N_{pedi} + N_{bikei})$$

= 1.00 × (2.770 + 0.136 + 0.108)
= 3.014 crashes/year

WORKSHEETS

The step-by-step instructions above were provided to illustrate the predictive method for calculating the predicted average crash frequency for an intersection. To apply the predictive method steps to multiple intersections, a series of 9 worksheets are provided for determining the predicted average crash frequency. The 9 worksheets include:

- Worksheet SP7A (Corresponds to Worksheet B-2A)—General Information and Input Data for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes
- Worksheet SP7B (Corresponds to Worksheet B-2B)—Crash Modification Factors for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes
- Worksheet SP7C (Corresponds to Worksheet B-2C)—Multiple-Vehicle and Single-Vehicle Collisions by Severity Level for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes
- Worksheet SP7D (Corresponds to Worksheet B-2D)—Multiple-Vehicle and Single-Vehicle Collisions by Manner of Collision for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes
- Worksheet SP7E (Corresponds to Worksheet B-2E)— Vehicle-Pedestrian Collisions for Stop-Controlled Intersections
 of Two-Way Urban and Suburban Arterials with Six or More Lanes
- Worksheet SP7H (Corresponds to Worksheet B-2H)—Vehicle-Bicycle Collisions for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes
- Worksheet SP7I (Corresponds to Worksheet B-2I)—Crash Severity*Type Distribution for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

 Worksheet SP7J (Corresponds to Worksheet B-2J)—Summary Results for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

Details of these sample problem worksheets are provided below. Blank versions of the corresponding worksheets are provided in Appendix 12B (for two-way urban and suburban arterials with six or more lanes).

Worksheet SP7A—General Information and Input Data for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

Worksheet SP7A is a summary of general information about the intersection, analysis, input data (i.e., "The Facts"), and assumptions for Sample Problem 7.

Worksheet SP7A. General Information and Input Data for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

General Information	Location Information	
Analyst	Roadway	
Agency or Company	Intersection	
Date Performed	Jurisdiction	
	Analysis Year	
Input Data	Base Conditions	Site Conditions
Intersection Type (3ST, 3SG, 4ST, 4SG)	—	4ST
Area type (urban/suburban)	_	suburban
AADT _{maj} (veh/day)	_	25,000
AADT _{min} (veh/day)	_	2,000
Intersection lighting (present/not present)	not present	present
Calibration factor, C _i	1.00	1.00
Data for stop-controlled intersections only:		
Left-turn lane on a minor-road approach (present/not present)	_	not present
Data for signalized intersections only:		
Total number of lanes on major road	6	N/A
Total number of lanes on minor road	2	N/A
Number of major-road approaches with left-turn lanes (0, 1, 2)	_	N/A
Number of approaches with left-turn signal phasing	_	N/A
Number of approaches with right-turn-on-red prohibited	0	N/A
Number of approaches with U-turn prohibited	0	N/A
Number of major road approaches with channelized right-turn lane	0	N/A
Type of left-turn signal phasing	permissive	N/A
Intersection red-light cameras (present/not present)	not present	N/A
Sum of all pedestrian crossing volumes (PedVol)	—	N/A
Maximum number of lanes crossed by a pedestrian (n_{taness})	—	N/A
Number of bus stops within 1000 ft of the intersection	0	N/A
Schools within 1000 ft of the intersection (present/not present)	not present	N/A
Number of alcohol sales establishments within 1000 ft of the intersection	0	N/A

Worksheet SP7B—Crash Modification Factors for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

In Step 10 of the predictive method, crash modification factors are applied to account for the effects of site specific geometric design and traffic control devices. Section 12.7 presents the tables and equations necessary for determining the CMF values. Once the value for each CMF has been determined, all of the CMFs are multiplied together in Row 8 of Worksheet SP7B which indicates the combined CMF value.

Worksheet SP7B. Crash Modification Factors for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

(1)	CMF for Left-Turn Signal Phasing	CMF_{2i}	from Table 12-41	1.000
(2)	CMF for Right-Turn-on-Red	CMF _{4i}	from Equation 12-51	1.000
(3)	CMF for Lighting	CMF _{5i}	from Equation 12-52	0.913
(4)	CMF for Red-Light Cameras	CMF _{6i}	from Equation 12-53	1.000
(5)	CMF for Number of Lanes	CMF _{7i}	from Equation 12-58	1.000
(6)	CMF for Right-Turn Channelization	CMF _{8i}	from Equation 12-61	1.000
(7)	CMF for U-Turn Prohibition	CMF _{9i}	from Equation 12-62	1.000
(8)	Combined CMF	CMFcomb	(1)*(2)*(3)*(4)*(5)*(6)*(7)	0.913

Worksheet SP7C—Multiple-Vehicle and Single-Vehicle Collisions by Severity Level for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

The SPF for multiple-vehicle and single-vehicle collisions at the intersection in Sample Problem 7 is calculated using Equation 12-33 and entered into Column 4 of Worksheet SP7C. The coefficients for the SPF and the overdispersion parameter associated with the SPF are entered into Columns 2 and 3; however, the overdispersion parameter is not needed for Sample Problem 7 (as the EB Method is not utilized). Column 5 represents the combined CMF (from Row 8 in Worksheet SP7B), and Column 6 represents the calibration factor. Column 7 calculates the predicted average crash frequency of multiple-vehicle and single-vehicle crashes using the values in Column 4, the combined CMF in Column 5, and the calibration factor in Column 6.

(1)	(2)			(3)	(4)	(5)	(6)	(7)	
Crash	SPF Coefficients		Overdispersion Parameter, k	N _{spf int}	Combined CMF	Calibration	Predicted N _{bi}		
Severity Level	from Table 12-24				from	from	(8) from	Factor, C _i	(4)*(5)*(6)
	а	b	с	d	Equation 12-34	Equation 12-33	Worksheet SP7B		(4)*(5)*(0)
FI	-10.08	0.58	0.60	1.67	0.599	1.425	0.913	1.00	1.301
PDO	-12.01	0.67	0.75	0.88	1.136	1.609	0.913	1.00	1.469
Total	—	—	—	—		—		1.00	2.770

Worksheet SP7C. Multiple-Vehicle and Single-Vehicle Collisions by Severity Level for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

Worksheet SP7D—Multiple-Vehicle and Single-Vehicle Collisions by Manner of Collision for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes Worksheet SP7D presents the default proportions for manner of collision (from Table 12-25) by crash severity level as

Worksheet SP/D presents the default proportions for manner of collision (from Table 12-25) by crash severity level as follows:

- Fatal-and-injury crashes (Column 2)
- Property-damage-only crashes (Column 4)

Using the default proportions, the predicted average crash frequency for multiple-vehicle and single-vehicle crashes by manner of collision is presented in Columns 3 (FI), 5 (PDO), and 6 (Total).

These proportions may be used to separate the predicted average crash frequency for multiple-vehicle and single-vehicle crashes (from Column 7, Worksheet SP7C) into components by crash severity and manner of collision.

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner _(FI)	Predicted N _{bi(FI)} (crashes/year)	Proportion of Collision Manner _(PDO)	Predicted N _{bi(PDO)} (crashes/year)	Predicted N _{bi(total)} (crashes/year)
Manner of Collision	from Table 12-25	(7) _{FI} from Worksheet SP7C	from Table 12-25	(7) _{PDO} from Worksheet SP7C	(7) _{total} from Worksheet SP7C
Total	1.000	1.301	1.000	1.469	2.770
		$(2)^{*}(3)_{FI}$		$(4)^{*}(5)_{PDO}$	(3)+(5)
Rear-end collision	0.079	0.103	0.098	0.144	0.247
Head-on collision	0.030	0.039	0.012	0.018	0.057
Angle collision	0.806	1.049	0.707	1.039	2.088
Sideswipe	0.055	0.072	0.122	0.179	0.251
Other multiple-vehicle collision	0.024	0.031	0.024	0.035	0.066
Single-Vehicle Crash	0.006	0.008	0.037	0.054	0.062

Worksheet SP7D. Multiple-Vehicle and Single-Vehicle Collisions by Collision Type for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

Worksheet SP7E—Vehicle-Pedestrian Collisions for Intersections of One-Way Urban and Suburban Arterials

The predicted average crash frequency of multiple-vehicle and single-vehicle collisions from Worksheet SP7C is entered into Columns 2. Column 3 contains the pedestrian crash adjustment factor (see Table 12-29). Column 4 presents the calibration factor. The predicted average crash frequency of vehicle-pedestrian collisions (Column 5) is the product of Columns 2, 3, and 4. Since all vehicle-pedestrian crashes are assumed to involve some level of injury, there are no property-damage-only crashes.

Worksheet SP7E. Vehicle-Pedestrian Collisions for Stop-Controlled Intersections of One-Way Urban and Suburban	1
Arterials	

(1)	(2)	(3)	(4)	(5)
Cruch Constitut Long	Predicted N _{bi}	\mathbf{f}_{pedi}	Calibration Factor,	Predicted N _{pedi}
Crash Severity Level	(7) from Worksheet SP7C	from Table 12-29	Ci	(2)*(3)*(4)
Total	2.770	0.049	1.00	0.136
FI	—	—	1.00	0.136

Worksheet SP7H—Vehicle-Bicycle Collisions for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

The predicted average crash frequency of multiple-vehicle and single-vehicle collisions from Worksheet SP7C is entered into Columns 2. Column 3 contains the bicycle crash adjustment factor (see Table 12-30). Column 4 presents the calibration factor. The predicted average crash frequency of vehicle-bicycle collisions (Column 5) is the product of Columns 2, 3, and 4. Since all vehicle-bicycle crashes are assumed to involve some level of injury, there are no property-damage-only crashes.

(1)	(2)	(3)	(4)	(5)
Creach Severity Level	Predicted N _{bi}	\mathbf{F}_{bikei}	Calibration Factor,	Predicted N _{pedi}
Crash Severity Level	(7) from Worksheet SP7C	from Table 12-30	Ci	(2)*(3)*(4)
Total	2.770	0.039	1.00	0.108
FI	—	—	1.00	0.108

Worksheet SP7H. Vehicle-Bicycle Collisions for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

Worksheet SP7I—Crash Severity*Type Distribution for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

Worksheet SP7I provides a summary of all manners of collision by severity level. Values from Worksheets SP7D, SP7G, and SP7H are presented and summed to provide the predicted average crash frequency for each severity level as follows:

- Fatal-and-injury crashes (Column 2)
- Property-damage-only crashes (Column 3)
- Total crashes (Column 4)

Worksheet SP7I. Crash Severity*Type Distribution for Intersections of Two-Way Urban and Suburban Arterials with	h
Six or More Lanes	

(1)	(2)	(3)	(4)	
	FI	PDO	Total	
Collision Type	(3) from Worksheets SP7D; (5) from Worksheets SP7E; (5) from Worksheet SP7H	(5) from Worksheet SP7D	(6) from Worksheets SP7D; (5) from Worksheets SP7E; (5) from Worksheet SP7H	
MULTIPLE_VEHICLE				
Rear-end collision (from Worksheet SP7D)	0.103	0.144	0.247	
Head-on collision (from Worksheet SP7D)	0.039	0.018	0.057	
Angle collision (from Worksheet SP7D)	1.049	1.039	2.088	
Sideswipe (from Worksheet SP7D)	0.072	0.179	0.251	
Other multiple-vehicle collision (from Worksheet SP7D)	0.031	0.035	0.066	
Subtotal	1.294	1.415	2.709	
SINGLE_VEHICLE				
Collision with pedestrian (from Worksheet SP7E)	0.136	0.000	0.136	
Collision with bicycle (from Worksheet SP7H)	0.108	0.000	0.108	
Other single-vehicle crash (from Worksheet SP7D)	0.008	0.054	0.062	
Subtotal	0.252	0.054	0.306	
Total	1.546	1.469	3.014	

Worksheet SP7J—Summary Results for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

Worksheet SP7J presents a summary of the results.

Worksheet SP7J. Summary Results for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

(1)	(2)		
Predicted Average Crash Frequency, Npredicted int (crash			
Crash Severity Level	(total) from Worksheet SP7I		
Total	3.014		
FI	1.546		
PDO	1.469		

12.14.8. Sample Problem 8

The Site/Facility

A three-leg signalized intersection of an urban one-way arterial with a two-way arterial.

The Question

What is the predicted average crash frequency of the signalized intersection for a particular year?

The Facts

- Top side of the "T" intersection: one-way road with three lanes
- Stem of the "T" intersection: two-way divided road with four lanes (both directions)
- AADT of the one-way road is 18,000 veh/day
- AADT of the two-way road is 22,000 veh/day
- Right-turn-on-red prohibited from the stem of the "T" intersection
- No channelized right turn lane
- No red light camera
- Intersection is not lighted
- Pedestrian volume is 800 peds/day
- A bus stop within 1,000 ft of intersection
- No school within 1,000 ft of intersection
- The number of alcohol sales establishments with 1,000 ft of intersection is 5

Assumptions

Collision type distributions used are the default values presented in Table 12-26 and Equations 12-35 and 12-38.

The calibration factor is assumed to be 1.00.

The maximum number of lanes crossed by a pedestrian is assumed to be three (crossing three through lanes on the oneway road).

Results

Using the predictive method steps as outlined below, the predicted average crash frequency for the signalized intersection in Sample Problem 8 is determined to be 7.1 crashes per year (rounded to one decimal place).

Steps

Step 1 through 8

To determine the predicted average crash frequency of the intersection in Sample Problem 8, only Steps 9 through 11 are conducted. No other steps are necessary because only one intersection is analyzed for one year, and the EB Method is not applied.

Step 9—For the selected site, determine and apply the appropriate safety performance function (SPF) for the site's facility type and traffic control features.

For intersections of one-way arterials (1×2 or 1×1), SPF values are determined for multiple-vehicle and single-vehicle collisions, vehicle-pedestrian, and vehicle-bicycle collisions. The calculations for vehicle-pedestrian and vehicle-bicycle collisions are shown in Step 10 since the CMF values are needed for these models.

Multiple-Vehicle and Single-Vehicle Collisions

For a 1×2 intersection, the one-way road is designated as major road and the two-way road as minor road regardless of the AADTs. The SPF for multiple-vehicle or single-vehicle collisions for a single three-leg signalized intersection is calculated from Equation 12-33 and Table 12-24 as follows:

$N_{spf int}$	$= \exp(a + b \times \ln(AADT_{maj}) + c \times \ln(AADT_{min}))$
$N_{spf int(FI)}$	$= \exp(-11.21 + 0.59 \times \ln(18,000) + 0.56 \times \ln(22,000))$
	= 1.186 crashes/year
$N_{spf int(PDO)}$	$= \exp(-7.07 + 0.49 \times \ln(18,000) + 0.35 \times \ln(22,000))$
	= 3.423 crashes/year
$N_{\it spf\ int(total)}$	= 1.186 + 3.423
	= 4.609 crashes/year

Step 10—Multiply the result obtained in Step 9 by the appropriate CMFs to adjust base conditions to site specific geometric design and traffic control features.

Each CMF used in the calculation of the predicted average crash frequency of the intersection is calculated below. CMF_{Ii} through CMF_{7i} are applied to multiple-vehicle and single-vehicle collisions, while CMF_{Ip} through CMF_{3p} are applied to vehicle-pedestrian collisions.

Right-Turn-on-Red (CMF_{4i})

 CMF_{4i} is calculated from Equation 12-51.

 $CMF_{4i} = 0.98^{(n_{prohib})}$

Right-turn-on-red (RTOR) is prohibited from one intersection approach. Therefore $CMF_{4i} = 0.98$.

Lighting (CMF_{5i})

Since there is no lighting at this intersection, CMF_{5i} is 1.00 (i.e., the base condition for CMF_{5i} is the absence of intersection lighting).

Red-Light Cameras (CMF_{6i})

Since no red light cameras are present at this intersection, $CMF_{6i} = 1.00$ (i.e., the base condition for CMF_{6i} is the absence of red light cameras).

Number of Lanes (CMF7i)

For 1×2 intersections, CMF_{7i} is calculated from Equation 12-58.

$$CMF_{7i} = (e^{0.242(N_{mai}-2)}P_{maj} + (1-P_{maj})) \times (e^{0.242(N_{min}-2)}P_{min} + (1-P_{min}))$$

P_{maj} and P_{min} are determined using Equations 12-59 and 12-60.

$$P_{maj} = \frac{AADT_{maj}}{AADT_{maj} + AADT_{min}}$$
$$= \frac{18000}{18000 + 22000}$$
$$= 0.45$$
$$P_{min} = \frac{AADT_{min}}{AADT_{maj} + AADT_{min}}$$
$$= \frac{22000}{18000 + 22000}$$
$$= 0.55$$

The major road has three lanes whereas the minor road has four lanes. CMF_{7i} is calculated below:

$$CMF_{7i} = (e^{0.242(3-2)} 0.45 + (1-0.45)) \times (e^{0.242(4-2)} 0.55 + (1-0.55))$$

= 1.508

The combined CMF value applied to multiple-vehicle and single-vehicle crashes in Sample Problem 8 is calculated below.

$$CMF_{comb} = 0.98 \times 1.508$$
$$= 1.478$$

The predicted average crash frequency of multiple-vehicle and single-vehicle collisions is determined using Equation 12-9, as follows:

$$N_{bi} = N_{spf int} \times CMF_{comb}$$

= 4.609 × 1.478

= 6.811 crashes/year

Bus Stops (CMF_{1p})

From Table 12-45, for one bus stop within 1,000 ft of the center of the intersection, $CMF_{1p} = 2.78$.

Schools (CMF_{2p})

From Table 12-46, for no school present within 1,000 ft of the center of the intersection, $CMF_{2p} = 1.00$.

Alcohol Sale Establishments (CMF_{3p})

From Table 12-47, for five alcohol sales establishments within 1,000 ft of the center of the intersection, $CMF_{3p} = 1.12$.

Vehicle-Pedestrian and Vehicle-Bicycle Collisions

The SPF for vehicle-pedestrian collisions for a three-leg signalized intersection is calculated from Equation 12-35 as follows:

$$N_{pedi} = N_{pedbase} \times (CMF_{1p} \times CMF_{2p} \times CMF_{3p})$$

N_{pedbase} is calculated from Equation 12-36 using the coefficients from Table 12-27.

$$N_{pedbase} = \exp\left(a + b \times \ln(AADT_{total}) + c \times \ln\left(\frac{AADT_{low}}{AADT_{high}}\right) + d \times \ln(PedVol) + e \times n_{lanesx}\right)$$
$$= \exp\left(-6.60 + 0.05 \times \ln(40,000) + 0.24 \times \ln\left(\frac{18,000}{22,000}\right) + 0.41 \times \ln(800) + 0.09 \times 3\right)$$

= 0.045 crashes/year

The CMF values for vehicle-pedestrian collisions calculated above are $CMF_{1p} = 2.78$, $CMF_{2p} = 1.00$, and $CMF_{3p} = 1.12$.

 $N_{pedi} = 0.045 \times 2.78 \times 1.00 \times 1.12$ = 0.139 crashes/year

The SPF for vehicle-bicycle collisions for the intersection is calculated from Equation 12-38 as follows:

$$N_{bikei} = N_{bi} \times f_{bikei}$$

From Table 12-30, for a 1×2 three-leg signalized intersection, the bicycle crash adjustment factor, $f_{bikei} = 0.016$.

$$N_{bikei} = 6.811 \times 0.016$$
$$= 0.109 \text{ crashes/year}$$

Step 11—Multiply the result obtained in Step 10 by the appropriate calibration factor.

It is assumed that a calibration factor, C_i , of 1.00 has been determined for local conditions. See Part C, Appendix A.1 for further discussion on calibration of the predicted models.

Calculation of Predicted Average Crash Frequency

The predicted average crash frequency is calculated using Equation 12-7 based on the results obtained in Steps 9 through 11 as follows:

 $N_{\text{predicted int}} = C_i \times (N_{bi} + N_{pedi} + N_{bikei})$ = 1.00 × (6.811 + 0.139 + 0.109) = 7.059 crashes/year

WORKSHEETS

The step-by-step instructions above were provided to illustrate the predictive method for calculating the predicted average crash frequency for an intersection. To apply the predictive method steps to multiple intersections, a series of 8 worksheets are provided for determining the predicted average crash frequency. The 8 worksheets include:

- Worksheet SP8A (Corresponds to Worksheet C-2A)—General Information and Input Data for Intersections of One-Way Urban and Suburban Arterials
- Worksheet SP8B (Corresponds to Worksheet C-2B)— Crash Modification Factors for Intersections of One-Way Urban and Suburban Arterials
- Worksheet SP8C (Corresponds to Worksheet C-2C)—Multiple-Vehicle and Single-Vehicle Collisions by Severity Level for Intersections of One-Way Urban and Suburban Arterials
- Worksheet SP8D (Corresponds to Worksheet C-2D)— Multiple-Vehicle and Single-Vehicle Collisions by Manner of Collision for Intersections of One-Way Urban and Suburban Arterials

- Worksheet SP8F (Corresponds to Worksheet C-2F)—Crash Modification Factors for Vehicle-Pedestrian Collisions for Intersections of One-Way Urban and Suburban Arterials
- Worksheet SP8G (Corresponds to Worksheet C-2G)—Vehicle-Pedestrian Collisions for Signalized Intersections of One-Way Urban and Suburban Arterials
- Worksheet SP8H (Corresponds to Worksheet C-2H)— Vehicle-Bicycle Collisions for Intersections of One-Way Urban and Suburban Arterials
- Worksheet SP8I (Corresponds to Worksheet C-2I)— Crash Severity*Type Distribution for Intersections of One-Way Urban and Suburban Arterials
- Worksheet SP8J (Corresponds to Worksheet C-2J)— Summary Results for Intersections of One-Way Urban and Suburban Arterials

Details of these sample problem worksheets are provided below. Blank versions of the corresponding worksheets are provided in Appendix 12C (for one-way urban and suburban arterials).

Worksheet SP8A—General Information and Input Data for Intersections of One-Way Urban and Suburban Arterials

Worksheet SP8A is a summary of general information about the intersection, analysis, input data (i.e., "The Facts"), and assumptions for Sample Problem 8.

General Information	Location Information			
Analyst	Roadway			
Agency or Company	Intersection			
Date Performed	Jurisdiction			
	Analysis Year			
Input Data	Base Conditions	Site Conditions		
Intersection Category (1×2, 1×1)	_	1×2		
Intersection Type (3ST, 3SG, 4ST, 4SG)	_	38G		
Area type (urban/suburban)	_	urban		
AADT _{maj} (veh/day)		18,000		
AADT _{min} (veh/day)	_	22,000		
Intersection lighting (present/not present)	not present	not present		
Calibration factor, C _i	1.00	1.00		
Data for stop-controlled intersections only:				
Left-turn lane on a minor-road approach (present/not present)		N/A		
Data for signalized intersections only:				
Total number of lanes on major road	2	3		
Total number of lanes on minor road	2	4		
Number of approaches with right-turn-on-red prohibited	0	1		
Left-turn lane on a major-road approach (present/not present)		not present		
Channelized right-turn lane on a major-road approach (present/not present)		not present		
Channelized right-turn lane on a minor-road approach (present/not present)		not present		
Intersection red-light cameras (present/not present)	not present	not present		
Sum of all pedestrian crossing volumes (PedVol)		800		
Maximum number of lanes crossed by a pedestrian (n_{tanesx})		3		
Number of bus stops within 1000 ft of the intersection	0	1		
Schools within 1000 ft of the intersection (present/not present)	not present	not present		
Number of alcohol sales establishments within 1000 ft of the intersection	0	5		

Worksheet SP8A. General Information and Input Data for Intersections of One-Way Urban and Suburban Arterials

Worksheet SP8B—Crash Modification Factors for Intersections of One-Way Urban and Suburban Arterials

In Step 10 of the predictive method, crash modification factors are applied to account for the effects of site specific geometric design and traffic control devices. Section 12.7 presents the tables and equations necessary for determining the CMF values. Once the value for each CMF has been determined, all of the CMFs are multiplied together in Row 5 of Worksheet SP8B which indicates the combined CMF value.

	worksheet of ob. Clash would all of the sections of one-way of oan and Subdiban Arterials						
(1)	CMF for Right-Turn-on-Red	CMF _{4i}	from Equation 12-51	0.980			
(2)	CMF for Lighting	CMF _{5i}	from Equation 12-52	1.000			
(3)	CMF for Red-Light Cameras	CMF _{6i}	from Equation 12-53	1.000			
(4)	CMF for Number of Lanes	CMF _{7i}	from Equation 12-58	1.508			
(5)	Combined CMF	CMFcomb	(1)*(2)*(3)*(4)	1.478			

Worksheet SP8B. Crash Modification Factors for Intersections of One-Way Urban and Suburban Arterials

Worksheet SP8C—Multiple-Vehicle and Single-Vehicle Collisions by Severity Level for Intersections of One-Way Urban and Suburban Arterials

The SPF for multiple-vehicle and single-vehicle collisions at the intersection in Sample Problem 8 is calculated using Equation 12-33 and entered into Column 4 of Worksheet SP8C. The coefficients for the SPF and the overdispersion parameter associated with the SPF are entered into Columns 2 and 3; however, the overdispersion parameter is not needed for Sample Problem 8 (as the EB Method is not utilized). Column 5 represents the combined CMF (from Row 5 in Worksheet SP8B), and Column 6 represents the calibration factor. Column 7 calculates the predicted average crash frequency of multiple-vehicle and single-vehicle crashes using the values in Column 4, the combined CMF in Column 5, and the calibration factor in Column 6.

Worksheet SP8C. Multiple-Vehicle and Single-Vehicle Collisions by Severity Level for Intersections of One-Way Urban and Suburban Arterials

(1)	(2)				(3)	(4)	(5)	(6)	(7)
Crash Severity Level	SPF Coefficients				Overdispersion Parameter, k	\mathbf{N}_{spfint}	Combined CMF	Calibration Factor, C _i	Predicted N _{bi}
	from Table 12-24				from	from	(5) from		(4)*(5)*(6)
	а	b	с	d	Equation 12-34	Equation 12-33	Worksheet SP8B		
FI	-11.21	0.59	0.56	1.05	0.952	1.186	1.478	1.00	1.752
PDO	-7.07	0.49	0.35	1.11	0.901	3.423	1.478	1.00	5.059
Total	_	_	_	_	_	_	_	1.00	6.811

Worksheet SP8D—Multiple-Vehicle and Single-Vehicle Collisions by Manner of Collision for Intersections of One-Way Urban and Suburban Arterials

Worksheet SP8D presents the default proportions for manner of collision (from Table 12-25) by crash severity level as follows:

- Fatal-and-injury crashes (Column 2)
- Property-damage-only crashes (Column 4)

Using the default proportions, the predicted average crash frequency for multiple-vehicle and single-vehicle crashes by manner of collision is presented in Columns 3 (FI), 5 (PDO), and 6 (Total).

These proportions may be used to separate the predicted average crash frequency for multiple-vehicle and single-vehicle crashes (from Column 7, Worksheet SP8C) into components by crash severity and manner of collision.

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner(FI)	Predicted N _{bi(FI)} (crashes/year)	Proportion of Collision Manner _(PDO)	Predicted N _{bi(PDO)} (crashes/year)	Predicted N _{bi(total)} (crashes/year)
Manner of Collision	from Table 12-26	(7) _{FI} from Worksheet SP8C	from Table 12-26	(7) _{PDO} from Worksheet SP8C	(7) _{total} from Worksheet SP8C
Total	1.000	1.752	1.000	5.059	6.811
		$(2)^{*}(3)_{FI}$		$(4)^{*}(5)_{PDO}$	(3)+(5)
Rear-end collision	0.111	0.194	0.143	0.723	0.918
Head-on collision	0.000	0.000	0.000	0.000	0.000
Angle collision	0.889	1.558	0.571	2.889	4.446
Sideswipe	0.000	0.000	0.214	1.083	1.083
Other multiple-vehicle collision	0.000	0.000	0.071	0.359	0.359
Single-Vehicle Crash	0.000	0.000	0.000	0.000	0.000

Worksheet SP8D. Multiple-Vehicle and Single-Vehicle Collisions by Manner of Collision for Intersections of One-Way Urban and Suburban Arterials

Worksheet SP8F. Crash Modification Factors for Vehicle-Pedestrian Collisions for Signalized Intersections of One-Way Urban and Suburban Arterials

In Step 10 of the predictive method, crash modification factors are applied to account for the effects of site specific geometric design and traffic control devices. Section 12.7 presents the tables and equations necessary for determining the CMF values for vehicle-pedestrian collisions. Once the value for each CMF has been determined, all of the CMFs are multiplied together in Row 4 of Worksheet SP8F which indicates the combined CMF value for vehicle-pedestrian collisions.

Worksheet SP8F. Crash Modification Factors for Vehicle-Pedestrian Collisions for Signalized Intersections of One-Way Urban and Suburban Arterials

(1)	CMF for Bus Stops	CMF _{1p}	from Table 12-45	2.78
(2)	CMF for Schools	CMF_{2p}	from Table 12-46	1.00
(3)	CMF for Alcohol Sales Establishments	CMF _{3p}	from Table 12-47	1.12
(4)	Combined CMF	CMF _{comb}	(1)*(2)*(3)	3.11

Worksheet SP8G—Vehicle-Pedestrian Collisions for Signalized Intersections One-Way Urban and Suburban Arterials

The predicted number of vehicle-pedestrian collisions per year for base conditions at a signalized intersection, N_{pedbase}, is calculated using Equation 12-35 and entered into Column 4 of Worksheet SP8G. The coefficients for the SPF and the overdispersion parameter associated with the SPF are entered into Columns 2 and 3; however, the overdispersion parameter is not needed for Sample Problem 8 (as the EB Method is not utilized). Column 5 represents the combined CMF for vehicle-pedestrian collisions (from Row 4 in Worksheet SP8F), and Column 6 represents the calibration factor. Column 7 calculates the predicted average crash frequency of vehicle-pedestrian collisions using the values in Column 4, the combined CMF in Column 5, and the calibration factor in Column 6. Since all vehicle-pedestrian crashes are assumed to involve some level of injury, there are no property-damage-only crashes.

(1)	(2)					(3)	(4)	(5)	(6)	(7)
Crash	SPF Coefficients					Overdispersion Parameter, k	N _{pedbase}	Combined CMF	Calibration	Predicted N _{pedi}
Severity Level		fron	1 Table 1	Table 12-27	from from	from	from (4) from	Factor, C _i	(4)*(5)*(6)	
Level	a	b	c	d	e	Table 12-27	Equation 12-35	Worksheet SP8F		(4)*(5)*(6)
Total	-6.60	0.05	0.24	0.41	0.09	0.52	0.045	3.11	1.00	0.139
FI	_	_	_	_	_		_		1.00	0.139

Worksheet SP8G. Vehicle-Pedestrian Collisions for Signalized Intersections of One-Way Urban and Suburban Arterials

Worksheet SP8H—Vehicle-Bicycle Collisions for Intersections of One-Way Urban and Suburban Arterials

The predicted average crash frequency of multiple-vehicle and single-vehicle crashes from Worksheet SP8C is entered into Columns 2. Column 3 contains the bicycle crash adjustment factor (see Table 12-30). Column 4 presents the calibration factor. The predicted average crash frequency of vehicle-bicycle collisions (Column 5) is the product of Columns 2, 3, and 4. Since all vehicle-bicycle crashes are assumed to involve some level of injury, there are no property-damage-only crashes.

Worksheet SP8H. Vehicle-Bicycle Collisions for Intersections of One-Way Urban and Suburban Arterials

(1)	(2)	(3)	(4)	(5)
Croch Severity Level	Predicted N _{bi}	\mathbf{F}_{bikei}	Calibration Factor,	Predicted N _{pedi}
Crash Severity Level	(7) from Worksheet SP8C	from Table 12-30	\mathbf{C}_i	(2)*(3)*(4)
Total	6.812	0.016	1.00	0.109
FI	_	_	1.00	0.109

Worksheet SP8I—Crash Severity*Type Distribution for Intersections of One-Way Urban and Suburban Arterials

Worksheet SP8I provides a summary of all manners of collision by severity level. Values from Worksheets SP8D, SP8E, and SP8H are presented and summed to provide the predicted average crash frequency for each severity level as follows:

- Fatal-and-injury crashes (Column 2)
- Property-damage-only crashes (Column 3)
- Total crashes (Column 4)

(1)	(2)	(3)	(4)		
	FI	PDO	Total		
Collision Type	(3) from Worksheets SP8D; (7) from Worksheets SP8G; (5) from Worksheet SP8H	(5) from Worksheet SP8D	(6) from Worksheets SP8D; (7) from Worksheets SP8G; (5) from Worksheet SP8H		
MULTIPLE_VEHICLE					
Rear-end collision (from Worksheet SP8D)	0.194	0.723	0.918		
Head-on collision (from Worksheet SP8D)	0.000	0.000	0.000		
Angle collision (from Worksheet SP8D)	1.558	2.889	4.446		
Sideswipe (from Worksheet SP8D)	0.000	1.083	1.083		
Other multiple-vehicle collision (from Worksheet SP8D)	0.000	0.359	0.359		
Subtotal	1.752	5.054	6.811		
SINGLE_VEHICLE					
Collision with pedestrian (from Worksheet SP8G)	0.139	0.000	0.139		
Collision with bicycle (from Worksheet SP8H)	0.109	0.000	0.109		
Other single-vehicle crash (from Worksheet SP8D)	0.000	0.000	0.000		
Subtotal	0.248	0.000	0.248		
Total	2.000	5.059	7.059		

Worksheet SP8I. Crash Severity*Type Distribution for Intersections of One-Way Urban and Suburban Arterials

Worksheet SP8J—Summary Results for Intersections of One-Way Urban and Suburban Arterials Worksheet SP8J presents a summary of the results.

Worksheet SP8J. Summary Results for Intersections of One-Way Urban and Suburban Arterials

(1)	(2)
	$\label{eq:predicted} Predicted \ Average \ Crash \ Frequency, N_{predicted \ int}(crashes/year)$
Crash Severity Level	(total) from Worksheet SP8I
Total	7.059
FI	2.000
PDO	5.059

12.14.9. Sample Problem 9

The Project

A project of interest consists of four sites located on an urban arterial: a three-lane TWLTL segment; a four-lane divided segment; a three-leg intersection with minor-road stop control; and a four-leg signalized intersection. (This project is a compilation of roadway segments from Sample Problem 1 and 2 and intersections from Sample Problems 5 and 6.)

The Question

What is the expected crash frequency of the project for a particular year incorporating both the predicted average crash frequencies from Sample Problems 1, 2, 4, and 5 and the observed crash frequencies using the site-specific EB Method?

The Facts

- 2 roadway segments (3T segment, 4D segment)
- 2 intersections (3ST intersection, 4SG intersection)
- 34 observed crashes (3T segment: 7 multiple-vehicle nondriveway, 2 multiple-vehicle driveway-related, 4 single-vehicle; 4D segment: 6 multiple-vehicle nondriveway, 1 multiple-vehicle driveway-related, 3 single-vehicle; 3SG intersection: 2 multiple-vehicle, 3 single-vehicle; 4SG intersection: 6 multiple-vehicle, 0 single-vehicle)

Outline of Solution

To calculate the expected average crash frequency, site-specific observed crash frequencies are combined with predicted crash frequencies for the project using the site-specific EB Method (i.e., observed crashes are assigned to specific intersections or roadway segments) presented in Part C, Appendix A.2.4.

Results

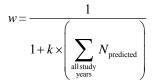
The expected average crash frequency for the project is 25.4 crashes per year (rounded to one decimal place).

WORKSHEETS

To apply the site-specific EB Method to multiple roadway segments and intersections on an urban or suburban arterial combined, three worksheets are provided for determining the expected average crash frequency. The three worksheets include:

- Worksheet SP9A (Corresponds to Worksheet A-3A)— Predicted Crashes by Collision and Site Type and Observed Crashes Using the Site-Specific EB Method for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes
- Worksheet SP9B (Corresponds to Worksheet A-3B)— Predicted Pedestrian and Bicycle Crashes for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes
- *Worksheet SP9C (Corresponds to Worksheet A-3C)* Site-Specific EB Method Summary Results for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Details of these sample problem worksheets are provided below. Blank versions of the corresponding worksheets are provided in Appendix 12A (for two-way urban and suburban arterials with five or fewer lanes).


Worksheet SP9A. Predicted Crashes by Collision and Site Type and Observed Crashes Using the Site-Specific EB Method for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes The predicted average crash frequencies by severity level and collision type determined in Sample Problems 1, 2, 5, and 6 are entered into Columns 2 through 4 of Worksheet SP9A. Column 5 presents the observed crash frequencies by site and collision type, and Column 6 presents the overdispersion parameters. The expected average crash frequency is calculated by applying the site-specific EB Method which considers both the predicted model estimate and observed crash frequencies for each roadway segment and intersection. Equation A-5 from Part C, Appendix A is used to calculate the weighted adjustment and entered into Column 7. The expected average crash frequency is calculated using Equation A-4 and entered into Column 8. Detailed calculation of Columns 7 and 8 are provided below.

Worksheet SP9A. Predicted Crashes by Collision and Site Type and Observed Crashes Using the Site-Specific EB Method for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Collision Type/ Site Type	Predicted Average Crash Frequency (crashes/year)			Observed Crashes, Nobserved	Overdispersion Parameter, k	Weighted Adjustment, w	Expected Average Crash Frequency, Nexpected (vehicle) (crashes/year)
Site Type	Npredicted (total)	Npredicted (FI)	Npredicted (PDO)	(crashes/year)	I aranicici, k	Equation A-5	Equation A-4
ROADWAY SEGN	IENTS		·				
Multiple-Vehicle N	ondriveway						
Segment 1	4.967	1.196	3.771	7	0.66	0.234	6.524
Segment 2	2.524	0.702	1.822	6	1.32	0.231	5.197
Multiple-Vehicle D	riveway-Relate	d					
Segment 1	0.734	0.179	0.555	2	1.10	0.553	1.300
Segment 2	0.149	0.042	0.107	1	1.39	0.828	0.295
Single-Vehicle							
Segment 1	1.182	0.338	0.844	4	1.37	0.382	2.924
Segment 2	0.485	0.085	0.401	3	0.86	0.706	1.224
INTERSECTIONS							
Multiple-Vehicle							
Intersection 1	1.268	0.405	0.862	2	0.80	0.496	1.637
Intersection 2	2.658	0.845	1.812	6	0.39	0.491	4.359
Single-Vehicle							
Intersection 1	0.234	0.072	0.162	3	1.14	0.789	0.818
Intersection 2	0.196	0.056	0.140	0	0.36	0.934	0.183
Combined (Sum of Column)	14.397	3.920	10.476	34	_	_	24.461

Column 7 — Weighted Adjustments

The weighted adjustment, w, to be placed on the predictive model estimate is calculated using Equation A-5 as follows:

Multiple-Vehicle Nondriveway Collisions

Segment 1

$$w = \frac{1}{1 + 0.66 \times (4.967)} = 0.234$$

Segment 2

$$w = \frac{1}{1 + 1.32 \times (2.524)} = 0.231$$

Multiple-Vehicle Driveway-Related Collisions

Segment 1

$$w = \frac{1}{1 + 1.10 \times (0.734)} = 0.553$$

Segment 2

$$w = \frac{1}{1 + 1.39 \times (0.149)} = 0.828$$

Single-Vehicle Crashes

Segment 1

$$w = \frac{1}{1 + 1.37 \times (1.182)} = 0.382$$

Segment 2

$$w = \frac{1}{1 + 0.86 \times (0.485)} = 0.706$$

Multiple-Vehicle Crashes

Intersection 1

$$w = \frac{1}{1 + 0.80 \times (1.268)} = 0.496$$

Intersection 2

$$w = \frac{1}{1 + 0.39 \times (2.658)} = 0.491$$

Single-Vehicle Crashes

Intersection 1

$$w = \frac{1}{1 + 1.149 \times (0.234)} = 0.789$$

$$w = \frac{1}{1 + 0.36 \times (0.196)} = 0.934$$

Column 8 — Expected Average Crash Frequency

The estimate of expected average crash frequency, Nexpected, is calculated using Equation A-4 as follows:

 $N_{\text{expected}} = w \times N_{\text{predicted}} + (1 - w) \times N_{\text{observed}}$

Multiple-Vehicle Nondriveway Collisions

Segment 1 $N_{\text{expected}} = 0.234 \times 4.967 + (1 - 0.234) \times 7 = 6.524$

Segment 2 $N_{\text{expected}} = 0.231 \times 2.524 + (1 - 0.231) \times 6 = 5.197$

Multiple-Vehicle Driveway-Related Collisions

Segment 1 $N_{\text{expected}} = 0.553 \times 0.734 + (1 - 0.553) \times 2 = 1.300$

Segment 2 $N_{\text{expected}} = 0.828 \times 0.149 + (1 - 0.828) \times 1 = 0.295$

Single-Vehicle Crashes

Segment 1 $N_{\text{expected}} = 0.382 \times 1.182 + (1 - 0.382) \times 4 = 2.924$

Segment 2 $N_{\text{expected}} = 0.706 \times 0.485 + (1 - 0.706) \times 3 = 1.224$

Multiple-Vehicle Crashes

Intersection 1 $N_{\text{expected}} = 0.496 \times 1.268 + (1 - 0.496) \times 2 = 1.637$

Intersection 2 $N_{\text{expected}} = 0.491 \times 2.658 + (1 - 0.491) \times 6 = 4.359$

Single-Vehicle Crashes

Intersection 1 $N_{\text{expected}} = 0.789 \times 0.234 + (1 - 0.789) \times 3 = 0.818$

Intersection 2 $N_{\text{expected}} = 0.934 \times 0.196 + (1 - 0.934) \times 0 = 0.183$

Worksheet SP9B. Predicted Pedestrian and Bicycle Crashes for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet SP9B provides a summary of the vehicle-pedestrian and vehicle-bicycle crashes determined in Sample Problems 1, 2, 5, and 6.

of i ewer Eulles		
(1)	(2)	(3)
Site Type	N _{ped}	N _{bike}
ROADWAY SEGMENTS		
Segment 1	0.089	0.048
Segment 2	0.212	0.041
INTERSECTIONS		
Intersection 1	0.032	0.024
Intersection 2	0.475	0.043
Combined (Sum of Column)	0.808	0.156

Worksheet SP9B. Predicted Pedestrian and Bicycle Crashes for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet SP9C. Site-Specific EB Method Summary Results for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet SP9C presents a summary of the results. Column 5 calculates the expected average crash frequency by severity level for vehicle crashes only by applying the proportion of predicted average crash frequency by severity level (Column 2) to the expected average crash frequency calculated using the site-specific EB Method. Column 6 calculates the total expected average crash frequency by severity level using the values in Column 3, 4, and 5.

Worksheet SP9C. Site-Specific EB Method Summary Results for Two-Way Urban and Suburban Arterials with Five	e
or Fewer Lanes	

(1)	(2)	(3)	(4)	(5)	(6)
Crash Severity Level	Npredicted	Nped	Nbike	Nexpected (vehicle)	Nexpected
Total	(2) _{comb} from Worksheet SP9A	(2) _{comb} from Worksheet SP9B	(3) _{comb} from Worksheet SP9B	(8) _{comb} from Worksheet SP9A	(3)+(4)+(5)
	14.397	0.808	0.156	24.461	25.4
FI	(3) _{comb} from Worksheet SP9A	(2) _{comb} from Worksheet SP9B	(3) _{comb} from Worksheet SP9B	(5) _{total} *(2) _{FI} /(2) _{total}	(3)+(4)+(5)
	3.920	0.808	0.156	6.660	7.6
PDO	(4) _{comb} from Worksheet SP9A	_	_	(5) _{total} *(2) _{PDO} / (2) _{total}	(3)+(4)+(5)
	10.476	0.000	0.000	17.800	17.8

12.14.10. Sample Problem 10

The Project

A project of interest consists of four sites located on an urban arterial: a three-lane TWLTL segment; a four-lane divided segment; a three-leg intersection with minor-road stop control; and a four-leg signalized intersection. (This project is a compilation of roadway segments from Sample Problem 1 and 2 and intersections from Sample Problems 5 and 6.)

The Question

What is the expected crash frequency of the project for a particular year incorporating both the predicted average crash frequencies from Sample Problems 1, 2, 4, and 5 and the observed crash frequencies using the project-level EB Method?

The Facts

- 2 roadway segments (3T segment, 4D segment)
- 2 intersections (3ST intersection, 4SG intersection)
- 34 observed crashes (but no information is available to attribute specific crashes to specific sites)

Outline of Solution

Observed crash frequencies for the project as a whole are combined with predicted average crash frequencies for the project as a whole using the project-level EB Method (i.e., observed crash data for individual roadway segments and intersections are not available, but observed crashes are assigned to a facility as a whole) presented in Part C, Appendix A.2.5.

Results

The expected average crash frequency for the project is 26.0 crashes per year (rounded to one decimal place).

WORKSHEETS

To apply the project-level EB Method to multiple roadway segments and intersections on an urban or suburban arterial combined, three worksheets are provided for determining the expected average crash frequency. The three worksheets include:

- Worksheet SP10A (Corresponds to Worksheet A-4A)— Predicted Crashes by Collision and Site Type and Observed Crashes Using the Project-Level EB Method for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes
- Worksheet SP10B (Corresponds to Worksheet A-4B)— Predicted Pedestrian and Bicycle Crashes for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes
- *Worksheet SP10C (Corresponds to Worksheet A-4C)* Project-Level EB Method Summary Results for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Details of these sample problem worksheets are provided below. Blank versions of the corresponding worksheets are provided in Appendix 12A (for two-way urban and suburban arterials with five or fewer lanes).

Worksheet SP10A. Predicted Crashes by Collision and Site Type and Observed Crashes Using the **Project-Level EB Method for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes** The predicted average crash frequencies by severity level and collision type, excluding vehicle-pedestrian and vehiclebicycle collisions, determined in Sample Problems 1, 2, 4, and 5 are entered in Columns 2 through 4 of Worksheet SP10A. Column 5 presents the total observed crash frequencies combined for all sites, and Column 6 presents the overdispersion parameters. The expected average crash frequency is calculated by applying the project-level EB Method which considers both the predicted model estimate for each roadway segment and intersection and the project observed crashes. Column 7 calculates N_{w0}, and Column 8 calculates N_{w1}. Equations A-10 through A-14 from Part C, Appendix A are used to calculate the expected average crash frequency of combined sites. The results obtained from each equation are presented in Columns 9 through 14. Part C, Appendix A.2.5 defines all the variables used in this worksheet. Detailed calculations of Columns 9 through 13 are provided below.

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Collision Type/	Predicted Avera	age Crash Frequer	ncy (crashes/year)	Observed Crashes,	Overdispersion	$\mathbf{N}_{\mathbf{predicted}\ w heta}$
Site Type	Npredicted (total)	Npredicted (FI)	Npredicted (PDO)	Nobserved (crashes/year)	Parameter, k	Equation A-8 (6)*(2) ²
ROADWAY SEG	MENTS					
Multiple-Vehicle N	Nondriveway					
Segment 1	4.967	1.196	3.771	—	0.66	16.283
Segment 2	2.524	0.702	1.822	—	1.32	8.409
Multiple-Vehicle I	Driveway-Related			· · · · ·		
Segment 1	0.734	0.179	0.555		1.10	0.593
Segment 2	0.149	0.042	0.107		1.39	0.031
Single-Vehicle						
Segment 1	1.182	0.338	0.844	—	1.37	1.914
Segment 2	0.485	0.085	0.401	—	0.86	2.202
INTERSECTION	S					
Multiple-Vehicle						
Intersection 1	1.268	0.405	0.862	_	0.80	1.286
Intersection 2	2.658	0.845	1.812	_	0.39	2.755
Single-Vehicle				· · · · · ·	I	
Intersection 1	0.234	0.072	0.162		1.14	0.062
Intersection 2	0.196	0.056	0.140	—	0.36	0.014
Combined (Sum of Column)	14.397	3.920	10.476	34	—	31.549

Worksheet SP10A. Predicted Crashes by Collision and Site Type and Observed Crashes Using the Project-Level EB Method for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)	(8)	(9)	(10)	(11)	(12)	(13)	
Collision Type/	Npredicted w1	W0	No	W1	N1	Npredicted/comb (vehicle)	
Site Type	Equation A-9 sqrt((6)*(2))	Equation A-10	Equation A-11	Equation A-12	Equation A-13	Equation A-14	
ROADWAY SEGN	MENTS						
Multiple-Vehicle N	ondriveway						
Segment 1	1.811			_	_	_	
Segment 2	1.825			_		_	
Multiple-Vehicle D	riveway-Related						
Segment 1	0.899			_	_	_	
Segment 2	0.455	—	—	—	_		
Single-Vehicle							
Segment 1	1.273	—	—	—	_		
Segment 2	0.646	—	—	—	_		
INTERSECTIONS	5						
Multiple-Vehicle							
Intersection 1	1.007			_	_	_	
Intersection 2	1.018		—	_	—	—	
Single-Vehicle		·			·		
Intersection 1	0.516			_	—	_	
Intersection 2	0.266			_	—	_	
Combined (Sum of Column)	9.716	0.313	27.864	0.597	22.297	25.080	

Worksheet SP10A. continued

 $N_{\text{predicted }w0}$ = Predicted number of total crashes assuming that crash frequencies are statistically independent

$$N_{\text{predicted }w0} = \sum_{j=1}^{5} k_{rnj} N_{rnj}^2 + \sum_{j=1}^{5} k_{rsj} N_{rsj}^2 + \sum_{j=1}^{5} k_{rdj} N_{rdj}^2 + \sum_{j=1}^{4} k_{inj} N_{inj}^2 + \sum_{j=1}^{4} k_{isj} N_{isj}^2$$
(A-8)

N_{predicted w1} = Predicted number of total crashes assuming that crash frequencies are perfectly correlated

$$N_{\text{predicted }w1} = \sum_{j=1}^{5} \sqrt{k_{rnj} N_{rmj}} + \sum_{j=1}^{5} \sqrt{k_{rsj} N_{rsj}} + \sum_{j=1}^{5} \sqrt{k_{rdj} N_{rdj}} + \sum_{j=1}^{4} \sqrt{k_{imj} N_{imj}} + \sum_{j=1}^{4} \sqrt{k_{isj} N_{isj}}$$
(A-9)

Column 9-w0

The weight placed on predicted crash frequency under the assumption that crashes frequencies for different roadway elements are statistically independent, w0, is calculated using Equation A-10 as follows:

 w_0

A-176

$$= \frac{1}{1 + \frac{N_{\text{predicted w0}}}{N_{\text{predicted (total)}}}}$$
$$= \frac{1}{1 + \frac{31.549}{14.397}}$$

= 0.313

1

Column 10-N₀

The expected crash frequency based on the assumption that different roadway elements are statistically independent, N_0 , is calculated using Equation A-11 as follows:

$$N_0 = w_0 \times N_{\text{predicted(total)}} + (1 - w_0) \times N_{\text{observed(total)}}$$
$$= 0.313 \times 14.397 + (1 - 0.313) \times 34$$
$$= 27.864$$

Column 11— w_1

The weight placed on predicted crash frequency under the assumption that crashes frequencies for different roadway elements are perfectly correlated, w_1 , is calculated using Equation A-12 as follows:

$$w_1 = \frac{1}{1 + \frac{N_{\text{predicted }wl}}{N_{\text{predicted }(total)}}}$$
$$= \frac{1}{1 + \frac{9.716}{14.397}}$$
$$= 0.597$$

Column 12-N₁

The expected crash frequency based on the assumption that different roadway elements are perfectly correlated, N_1 , is calculated using Equation A-13 as follows:

$$N_1 = w_1 \times N_{\text{predicted(total)}} + (1 - w_1) \times N_{\text{observed(total)}}$$
$$= 0.597 \times 14.397 + (1 - 0.597) \times 34$$
$$= 22.297$$

Column 13-Nexpected/comb

The expected average crash frequency based of combined sites, N_{expected/comb}, is calculated using Equation A-14 as follows:

$$N_1 = \frac{N_0 + N_1}{2}$$
$$= \frac{27.864 + 22.297}{2}$$
$$= 25.080$$

Worksheet SP10B. Predicted Pedestrian and Bicycle Crashes for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet SP10B provides a summary of the vehicle-pedestrian and vehicle-bicycle crashes determined in Sample Problems 1, 2, 4, and 5.

Worksheet SP10B. Predicted Pedestrian and Bicycle Crashes for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)	(2)	(3)
Site Type	N _{ped}	N _{bike}
ROADWAY SEGMENTS		
Segment 1	0.089	0.048
Segment 2	0.212	0.041
INTERSECTIONS		
Intersection 1	0.032	0.024
Intersection 2	0.475	0.043
Combined (Sum of Column)	0.808	0.156

Worksheet SP10C. Project-Level EB Method Summary Results for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet SP10C presents a summary of the results. Column 5 calculates the expected average crash frequency by severity level for vehicle crashes only by applying the proportion of predicted average crash frequency by severity level (Column 2) to the expected average crash frequency calculated using the project-level EB Method. Column 6 calculates the total expected average crash frequency by severity level using the values in Column 3, 4, and 5.

Worksheet SP10C. Project-Level EB Method Summary Results for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)	(2)	(3)	(4)	(5)	(6)
Crash Severity Level	Npredicted	\mathbf{N}_{ped}	N _{bike}	Nexpected/comb (vehicle)	Nexpected
Total	(2) _{comb} from Worksheet SP10A	(2) _{comb} from Worksheet SP10B	(3) _{comb} from Worksheet SP10B	(13) _{comb} from Worksheet SP10A	(3)+(4)+(5)
	14.397	0.808	0.156	25.080	26.0
FI	(3) _{comb} from Worksheet SP10A	(2) _{comb} from Worksheet SP10B	(3) _{comb} from Worksheet SP10B	(5) _{total} *(2) _{FI} /(2) _{total}	(3)+(4)+(5)
	3.920	0.808	0.156	6.829	7.8
PDO	(4) _{comb} from Worksheet SP10A	_	_	(5) _{total} *(2) _{PDO} / (2) _{total}	(3)+(4)+(5)
	10.476	0.000	0.000	18.250	18.30

12.15. REFERENCES

- (1) Bonneson, J. A., K. Zimmerman, and K. Fitzpatrick. Roadway Safety Design Synthesis. Report No. FHWA/TX-05/0-4701-P1. Texas Department of Transportation Austin, TX, November 2005.
- (2) Clark, J. E., S. Maghsoodloo, and D. B. Drown. Public Good Relative to Right-turn-on-Red in South Carolina and Alabama. In Transportation Research Record 926. TRB, National Research Council, 1983.
- (3) Elvik, R. and T. Vaa. The Handbook of Road Safety Measures. Elsevier Science, Burlington, MA, 2004.
- (4) FHWA. Interactive Highway Safety Design Model. Federal Highway Administration, U.S. Department of Transportation, Washington, DC. Available from http://www.tfhrc.gov/safety/ihsdm.htm.
- (5) FHWA. Planning Glossary. Federal Highway Administration, U.S. Department of Transportation, Washington, DC. 2088. Available from http://www.fhwa.dot.gov/planning/glossary/glossary_listing.cfm?sort=definition&TitleStart=A.
- (6) Harkey, D.L., S. Raghavan, B. Jongdea, F.M. Council, K. Eccles, N. Lefler, F. Gross, B. Persaud, C. Lyon, E. Hauer, and J. Bonneson. National Cooperative Highway Research Program Report 617: Crash Reduction Factors for Traffic Engineering and ITS Improvement. NCHRP, Transportation Research Board, Washington, DC, 2008.
- (7) Harwood, D. W., K. M. Bauer, I. B. Potts, D. J. Torbic, K. R. Richard, E. R. Kohlman Rabbani, E. Hauer, and L. Elefteriadou. Safety Effectiveness of Intersection Left- and Right-Turn Lanes, Report No. FHWA-RD-02-089. Federal Highway Administration, U.S. Department of Transportation, Washington, DC, April 2002.
- (8) Harwood, D. W., K. M. Bauer, K. R. Richard, D. K. Gilmore, J. L. Graham, I. B Potts, D. J. Torbic, and E. Hauer. National Cooperative Highway Research Program Document 129 Phase I and II: Methodology to Predict the Safety Performance of Urban and Suburban Arterials. (Web Only). NCHRP, Transportation Research Board, Washington, DC, March 2007.
- (9) Harwood, D. W., D. J. Torbic, D. K. Gilmore, C. D. Bokenkroger, J. M. Dunn, C. V. Zegeer, R. Srinivasan, D. Carter, and C. Raborn. National Cooperative Highway Research Program Document 129, Phase III: Methodology. (Web Only). NCHRP, Transportation Research Board, Washington, DC, March 2008.
- (10) Hauer, E. Left-Turn Protection, Safety, Delay and Guidelines: A Literature Review. Federal Highway Administration, U.S. Department of Transportation, October 2004.
- (11) Lord, D., K. Fitzpatrick, S. R. Geedipally, M. P. Pratt, S. H. Khazraee, E. S. Park. Safety Prediction Models for Six-Lane and One-Way Urban and Suburban Arterials. NCHRP, Transportation Research Board, Washington, DC, forthcoming.
- (12) Lyon, C., A. Haq, B. Persaud, and S.T. Kodama. Development of Safety Performance Functions for Signalized Intersections in a Large Urban Area and Application to Evaluation of Left-Turn Priority Treatment. Presented at the 84th Annual Meeting of the Transportation Research Board, Washington, DC, January 2005.
- (13) Persaud, B., F. M. Council,, C. Lyon, K. Eccles, and M. Griffith. A Multi-Jurisdictional Safety Evaluation of Red-Light Cameras. 84th Transportation Research Board Annual Meeting, TRB, Washington, DC, 2005. Pp. 1-14.
- (14) Srinivasan, R, C. V. Zegeer, F. M. Council, D. L. Harkey, and D. J. Torbic. Updates to the Highway Safety Manual Part D CMFs. Unpublished memorandum prepared as part of the FHWA Highway Safety Information System Project. Highway Safety Research Center, University of North Carolina, Chapel Hill, NC, July 2008.
- (15) Srinivasan, R., F. M. Council, and D. L. Harkey. Calibration Factors for HSM Part C Predictive Models. Unpublished memorandum prepared as part of the FHWA Highway Safety Information System Project. Highway Safety Research Center, University of North Carolina, Chapel Hill, NC, October 2008.

(16) Zegeer, C. V., and M. J. Cynecki. Determination of Cost-Effective Roadway Treatments for Utility Pole Accidents. In Transportation Research Record 970. TRB, National Research Council, Washington, DC, 1984.

APPENDIX 12A—WORKSHEETS FOR PREDICTIVE METHOD FOR TWO-WAY URBAN AND SUBURBAN ARTERIALS WITH FIVE OR FEWER LANES

Worksheet A—1A. General Information and Input Data for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

General Information	Location Information	
Analyst	Roadway	
Agency or Company	Roadway Section	
Date Performed	Jurisdiction	
	Analysis Year	
Input Data	Base Conditions	Site Conditions
Road type (2U, 3T, 4U, 4D, 5T)	_	
Length of segment, L (mi)		
AADT (veh/day)	_	
Type of on-street parking (none/parallel/angle)	none	
Proportion of curb length with on-street parking		
Median width (ft)	15	
Lighting (present / not present)	not present	
Auto speed enforcement (present/not present)	not present	
Major commercial driveways (number)	_	
Minor commercial driveways (number)	_	
Major industrial/institutional driveways (number)	_	
Minor industrial/institutional driveways (number)	_	
Major residential driveways (number)		
Minor residential driveways (number)	_	
Other driveways (number)	_	
Speed category		
Roadside fixed object density (fixed objects/mi)	not present	
Offset to roadside fixed objects (ft)	not present	
Calibration factor, C _r	1.0	

Worksheet A—1B. Crash Modification Fa	actors for Two-Way Urban and Suburban Roadway Segments with Five or
Fewer Lanes	

(1)	CMF for On-Street Parking	CMF _{1r}	from Equation 12-39	
(2)	CMF for Roadside Fixed Objects	CMF _{2r}	from Equation 12-40	
(3)	CMF for Median Width	CMF _{3r}	from Table 12-35	
(4)	CMF for Lighting	CMF _{4r}	from Equation 12-42	
(5)	CMF for Automated Speed Enforcement	CMF _{5r}	from Section 12.7.1	
(6)	Combined CMF	CMFcomb	(1)*(2)*(3)*(4)*(5)	

(1)	(C	2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
		Coefficients Overdispersion Initial Parameter, k N _{spf rs nondw}		Initial N _{spf rs nondwy}		Adjusted N _{spf rs nondwy}	Combined CMF		Predicted N _{brnondwy}
Severity Level	from Table 12-3		from	from Equation	Proportion of Total Crashes	(4) _{total} *(5)	(6) from Worksheet	Calibration Factor, C _r	(6)*(7)*(8)
	a	b	Table 12-3	12-12			A-1B		.,.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Total									
FI					$(4)_{FI}/((4)_{FI}+(4)_{PDO})$				
PDO					$(5)_{total} - (5)_{FI}$				

Worksheet A—1C. Multiple-Vehicle Nondriveway Collisions by Severity Level for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

Worksheet A-1D. Multiple-V	ehicle Nondriveway Coll	sions by Manner of	Collision for Two-Wa	ay Urban and
Suburban Roadway Segments wa	th Five or Fewer Lanes			
· · · · · · · · · · · · · · · · · · ·				

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner _(FT)	Predicted N _{brnondwy(FI)} (crashes/year)	Proportion of Collision Manner _(PDO)	Predicted N _{brnondwy} (PDO) (crashes/year)	Predicted Nornondwy(total) (crashes/year)
Manner of Collision	from Table 12-4	(9) _{FI} from Worksheet A-1C	from Table 12-4	(9) _{PDO} from Worksheet A-1C	(9) _{total} from Worksheet A-1C
Total	1.000		1.000		
		$(2)^{*}(3)_{FI}$		$(4)^{*}(5)_{PDO}$	(3)+(5)
Rear-end collision					
Head-on collision					
Angle collision					
Sideswipe, same direction					
Sideswipe, opposite direction					
Other multiple-vehicle collision					

Worksheet A—1E. Multiple-Vehicle Driveway-Related Collisions by Driveway Type for Two-Way Urban and
Suburban Roadway Segments with Five or Fewer Lanes

(1)	(2)	(3)	(4)	(5)	(6)
		Crashes per Driveway per Year, N _j	Coefficient for Traffic Adjustment, t	Initial N _{spf rs dwy}	Overdispersion Parameter, k
Manner of Collision	Number of Driveways, n _j	from Table 12-5	from Table 12-5	Equation 12-15 nj*Nj*(AADT/15,000) ^(t)	from Table 12-5
Major commercial					
Minor commercial					-
Major industrial/institutional					-
Minor industrial/institutional					
Major residential					-
Minor residential					-
Other					
Total		—	_		

Worksheet A-1F. Multiple-Vehicle Driveway-Related Collisions by Severity Level for Two-Way Urban and
Suburban

(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Initial N _{spf} rs dwy	Proportion of Total Crashes (f _{dwy})	Adjusted Nspf rs dwy	Combined CMF	Calibration	Predicted N _{brdwy}
Crash Severity Level	(5) _{total} from Worksheet SP1E	from Table 12-5	(2) _{total} *(3)	(6) from Worksheet SP1B	Factor, Cr	(4)*(5)*(6)
Total						
FI	_					
PDO	—					

Roadway Segments with Five or Fewer Lanes

Worksheet A—1G. Single-Vehicle Collisions by Severity Level for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

(1)	(2)		(2) (3) (4) (5)		(5)	(6)	(7)	(8)	(9)
Crash	SPF Coefficients from Table 12-6		Overdispersion Parameter, k	Initial N _{spf rs sv}		Adjusted N _{spf rs sv}	Combined CMF		Predicted N _{brsv}
Severity Level			from	from Equation	Proportion of Total Crashes	(4) _{total} *(5)	(6) from Worksheet	Calibration Factor, Cr	(6)*(7)*(8)
	a	b	Table 12-6	12-18			A-1B		
Total									
FI					$(4)_{FI}/((4)_{FI}+(4)_{PDO})$				
PDO					$(5)_{total} - (5)_{FI}$				

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner _(FI)	Predicted N _{brsv(FI)} (crashes/year)	Proportion of Collision Manner _(PDO)	Predicted N _{brsv} (PDO) (crashes/year)	Predicted N _{brsv(total)} (crashes/year)
Manner of Collision	from Table 12-7	(9) _{FI} from Worksheet A-1G	from Table 12-7	(9) _{PDO} from Worksheet A-1G	(9) _{total} from Worksheet A-1G
Total	1.000		1.000		
		$(2)^*(3)_{FI}$		$(4)^{*}(5)_{PDO}$	(3)+(5)
Collision with animal					
Collision with fixed object					
Collision with other object					
Other single-vehicle crash					

Worksheet A—1H. Single-Vehicle Collisions by Manner of Collision for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

Worksheet A—11. Vehicle-Pedestrian Collisions for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Crash	Predicted N _{brnondwy}	Predicted N _{brdwy} Predicted N _{brd}		Predicted N _{br}	f pedr	Calibration	Predicted N _{pedr}
Severity Level	(9) from Worksheet A-1C	(7) from Worksheet A-1F	(9) from Worksheet A-1G	(2)+(3)+(4)	from Table 12-16	Factor, Cr	(5)*(6)*(7)
Total							
FI	_			—	—		

Worksheet A—1J. Vehicle-Bicycle Collisions for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Crash	Predicted N _{brnondwy}	Predicted N _{brdwy} Predicted N _{brsv} (7) from (9) from Worksheet A-1F Worksheet A-1G		Predicted N _{br}	Fbiker	Calibration	Predicted N _{biker}
Severity Level	(9) from Worksheet A-1C			(2)+(3)+(4)	from Table 12-17	Factor, Cr	(5)*(6)*(7)
Total							
FI	—	—	—	—	—		

Worksheet A—1K. Crash Severity*Type Distribution for Two-Way Urban and Suburban Roadway Segments with Five or Fewer Lanes

(1)	(2)	(3)	(4)	
	FI	PDO	Total	
Collision Type	(3) from Worksheets A-1D and A-1H; (7) from Worksheet A-1F; and (8) from Worksheet A-1I and A-1J	(5) from Worksheet A-1D and A-1H; and (7) from Worksheet A-1F	(6) from Worksheets A-1D and A-1H; (7) from Worksheet A-1F and (8) from Worksheets A-1I and A-1J	
MULTIPLE_VEHICLE				
Rear-end collisions (from Worksheet A-1D)				
Head-on collisions (from Worksheet A-1D)				
Angle collisions (from Worksheet A-1D)				
Sideswipe, same direction (from Worksheet A-1D)				
Sideswipe, opposite direction (from Worksheet A-1D)				
Driveway-related collisions (from Worksheet A-1F)				
Other multiple-vehicle collisions (from Worksheet A-1D)				
Subtotal				
SINGLE_VEHICLE				
Collision with animal (from Worksheet A-1H)				
Collision with fixed object (from Worksheet A-1H)				
Collision with other object (from Worksheet A-1H)				
Other single-vehicle crash (from Worksheet A-1H)				
Collision with pedestrian (from Worksheet A-11)				
Collision with bicycle (from Worksheet A-1J)				
Subtotal				
Total				

Worksheet A-1L. Summary Results for Two-Way Urban and Suburban Roadway Segments with Five or Fewer
Lanes

(1)	(2)	(3)	(4)
	Predicted Average Crash Frequency, N _{predicted rs} (crashes/year)		Crash Rate (crashes/mi/year)
Crash Severity Level	(total) from Worksheet A-1K	Roadway Segment Length, L (mi)	(2)/(3)
Total			
FI			
PDO			

General Information		Location Information	Location Information		
Analyst		Roadway			
Agency or Company		Intersection			
Date Performed		Jurisdiction			
		Analysis Year			
Input Data		Base Conditions	Site Conditions		
Intersection Type (3ST, 3SG, 4ST, 4	SG)	_			
AADT _{maj} (veh/day)		_			
AADT _{min} (veh/day)					
Intersection lighting (present/not pre	sent)	not present			
Calibration factor, C _i		1.00			
Data for unsignalized intersections o	nly:				
Number of major-road approach	es with left-turn lanes (0, 1, 2)	0			
Number of major-road approach	es with right-turn lanes (0, 1, 2)	0			
Data for signalized intersections only	<i>y</i> :				
Number of approaches with left-	-turn lanes (0, 1, 2, 3, 4)	0			
Number of approaches with righ	tt-turn lanes (0, 1, 2, 3, 4)	0			
Number of approaches with left-	-turn signal phasing	_			
Number of approaches with righ	t-turn-on-red prohibited	0			
Type of left-turn signal phasing		permissive			
Intersection red-light cameras (p	present/not present)	not present			
Sum of all pedestrian crossing v	olumes (PedVol)	_			
Maximum number of lanes cross	sed by a pedestrian (n _{tanesx})	_			
Number of bus stops within 100	0 ft of the intersection	0			
Schools within 1000 ft of the int	rersection (present/not present)	not present			
Number of alcohol sales establis	shments within 1000 ft of the intersection	0			

Worksheet A—2A. General Information and Input Data for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet A—2B. Crash Modification Factors for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)	CMF for Left-Turn Lanes	CMF _{1i}	from Table 12-40
(2)	CMF for Left-Turn Signal Phasing	CMF _{2i}	from Table 12-41
(3)	CMF for Right-Turn Lanes	CMF _{3i}	from Table 12-42
(4)	CMF for Right-Turn-on-Red	CMF _{4i}	from Equation 12-51
(5)	CMF for Lighting	CMF _{5i}	from Equation 12-52
(6)	CMF for Red-Light Cameras	CMF _{6i}	from Equation 12-53
(7)	Combined CMF	CMF _{comb}	(1)*(2)*(3)*(4)*(5)*(6)

Worksheet A-2C. Multiple-Vehicle Collisions by Severity Level for Intersections of Two-Way Urban and Suburban
Arterials with Five or Fewer Lanes

(1)		(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)
Crash	SPF Coefficients		Overdispersion Parameter, k	Initial N _{spf int mv}	· Proportion of	Adjusted N _{spf int mv}	Combined CMF		Predicted N _{bimv}	
Severity Level	from Table 12-20			from	from Equation	Total Crashes	(4) _{total} *(5)	(7) from Worksheet	Calibration Factor, C _i	(6)*(7)*(8)
	a	b	c	Table 12-20	12-26			A-2B		
Total										
FI						$(4)_{FI} / ((4)_{FI} + (4)_{PDO})$				
PDO						(5) _{total} – (5) _{FI}				

Worksheet A—2D. Multiple-Vehicle Collisions by Manner of Collision for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner _(FI)	Predicted N _{bimv(FI)} (crashes/year)	Proportion of Collision Manner _(PDO)	Predicted N _{bimv(PDO)} (crashes/year)	Predicted N _{bimv(total)} (crashes/year)
Manner of Collision	from Table 12-21	(9) <i>FI</i> from Worksheet A-2C	from Table 12-21	(9) _{PDO} from Worksheet A-2C	(9) _{total} from Worksheet A-2C
Total	1.000		1.000		
		$(2)^{*}(3)_{FI}$		(4)*(5) _{PDO}	(3)+(5)
Rear-end collision					
Head-on collision					
Angle collision					
Sideswipe					
Other multiple-vehicle collision					

Worksheet A—2E. Single-Vehicle Collisions by Severity Level for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)		(2)		(3)	(4)	(5)	(6)	(7)	(8)	(9)
Crash	SPI	F Coeffici	ents	Overdispersion Parameter, k	Initial N _{spf int sv}	• Proportion of	Adjusted N _{spf int sv}	Combined CMF		Predicted N _{bisv}
Severity Level	г	from Table 12-2	22	from from Equation		Total Crashes	(4) _{total} *(5) (7) from Worksheet		Calibration Factor, C _i	(6)*(7)*(8)
	a	b	c	Table 12-22	12-29		() ()	A-2B		
Total										
FI						$(4)_{FI} / ((4)_{FI} + (4)_{PDO})$				
PDO						$(5)_{total} - (5)_{FI}$				

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner _(FI)	Predicted N _{bisv(FI)} (crashes/year)	Proportion of Collision Manner _(PDO)	Predicted N _{bisv(PDO)} (crashes/year)	Predicted N _{bisv(total)} (crashes/year)
Manner of Collision	from Table 12-23	(9) _{FI} from Worksheet A-2E	from Table 12-23	(9) _{PDO} from Worksheet A-2E	(9) _{total} from Worksheet A-2E
Total	1.000		1.000		
		$(2)^{*}(3)_{FI}$		$(4)^{*}(5)_{PDO}$	(3)+(5)
Collision with parked vehicle					
Collision with animal					
Collision with fixed object					
Collision with other object					
Other single-vehicle collision					
Single-vehicle noncollision					

Worksheet A—2F. Single-Vehicle Collisions by Manner of Collision for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet A—2G. Vehicle-Pedestrian Collisions for Stop-Controlled Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Croch Soverity	Predicted N _{bimv}	Predicted N _{bisv}	Predicted N _{bi}	f _{pedi}	Calibration	Predicted N _{pedi}
Crash Severity Level	(9) from Worksheet A-2C	(9) from Worksheet A-2E	(2)+(3)	From Table 12-29	Factor, C _i	(4)*(5)*(6)
Total						
FI				—		

Worksheet A—2H. Crash Modification Factors for Vehicle-Pedestrian Collisions for Signalized Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)	CMF for Bus Stops	CMF _{1p}	from Table 12-45	
(2)	CMF for Schools	CMF_{2p}	from Table 12-46	
(3)	CMF for Alcohol Sales Establishments	CMF _{3p}	from Table 12-47	
(4)	Combined CMF	CMF comb	(1)*(2)*(3)	

Worksheet A-21. Vehicle-Pedestrian Collisions for Signalized Intersections of Two-Way Urban and Suburban
Arterials with Five or Fewer Lanes

(1)	(2)		(3)	(4)	(5)	(6)	(7)			
Crash		SPF	Coeffici	ients		Overdispersion Parameter, k	Npedbase	Combined CMF	Calibration	Predicted N _{pedi}
Severity Level		fron	n Table 1	12-27		from	from	(4) from	Calibration Factor, C _i	(4)*(5)*(()
Level	а	b	с	d	e	Table 12-27	Equation 12-35	Worksheet A-2H		(4)*(5)*(6)
Total										
FI	_	_	_			_	_	_		

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Creach Sociarity	Predicted N _{bimv}	Predicted N _{bisv}	Predicted N _{bi}	Fbikei	Calibration	Predicted N _{bikei}
Crash Severity Level	(9) from Worksheet A-2C	(9) from Worksheet A-2E	(2)+(3)	from Table 12-30	Factor, C _i	(4)*(5)*(6)
Total						
FI		—	_			

Worksheet A—2J. Vehicle-Bicycle Collisions for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

with Five or Fewer Lanes	Worksh	eet A-2K. Crash Seve	rity*Type Distribution for	Intersections of Two-Way	Urban and Suburban Arterials
	with Five	or Fewer Lanes			

(1)	(2)	(3)	(4)
	FI	PDO	Total
Collision Type	(3) from Worksheets A-2D and A- 2F; (7) from Worksheets A-2G or A-2I; and (7) from A-2J	(5) from Worksheet A-2D and A-2F	(6) from Worksheets A-2D and A- 2F; (7) from Worksheets A-2G or A-2I; and (7) from A-2J
MULTIPLE_VEHICLE			
Rear-end collisions (from Worksheet A-2D)			
Head-on collisions (from Worksheet A-2D)			
Angle collisions (from Worksheet A-2D)			
Sideswipe (from Worksheet A-2D)			
Other multiple-vehicle collisions (from Worksheet A-2D)			
Subtotal			
SINGLE_VEHICLE			
Collision with parked vehicle (from Worksheet A-2F)			
Collision with animal (from Worksheet A-2F)			
Collision with fixed object (from Worksheet A-2F)			
Collision with other object (from Worksheet A-2F)			
Other single-vehicle collision (from Worksheet A-2F)			
Single-vehicle noncollision (from Worksheet A-2F)			
Collision with pedestrian (from Worksheet A-2G or A-2I)			
Collision with bicycle (from Worksheet A-2J)			
Subtotal			
Total			

Fewer Lanes	
(1)	(2)
	$\label{eq:predicted} \textbf{Predicted Average Crash Frequency}, N_{\text{predicted int}}(\text{crashes/year})$
Crash Severity Level	(total) from Worksheet A-2K
Total	
FI	
PDO	

Worksheet A—2L. Summary Results for Intersections of Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet A—3A. Predicted Crashes by Collision and Site Type and Observed Crashes Using the Site-Specific EB Method for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Collision Type/ Site Type	Predicted	Predicted Average Crash Frequency (crashes/year)			Overdispersion Parameter, k	Weighted Adjustment, w	Expected Average Crash Frequency, Nexpected (vehicle) (crashes/year)
She Type	Npredicted (total)	Npredicted (FI)	Npredicted (PDO)	(crashes/year)	I arankter, k	Equation A-5	Equation A-4
ROADWAY SEG	MENTS						
Multiple-Vehicle N	londriveway						
Segment 1							
Segment 2							
Segment 3							
Segment 4							
Multiple-Vehicle I	Driveway-Relate	d		1	I	1	1
Segment 1							
Segment 2							
Segment 3							
Segment 4							
Single-Vehicle					I		1
Segment 1							
Segment 2							
Segment 3							
Segment 4							
INTERSECTION	8			1	I	I	I
Multiple-Vehicle							
Intersection 1							
Intersection 2							
Intersection 3							
Intersection 4							
Single-Vehicle					<u> </u>		
Intersection 1							
Intersection 2							
Intersection 3							
Intersection 4							
Combined (Sum of Column)							

Worksheet A—3B. Predicted Pedestrian and Bicycle Crashes for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)	(2)	(3)
Site Type	N _{ped}	\mathbf{N}_{bike}
ROADWAY SEGMENTS		
Segment 1		
Segment 2		
Segment 3		
Segment 4		
INTERSECTIONS		
Intersection 1		
Intersection 2		
Intersection 3		
Intersection 4		
Combined (Sum of Column)		

Worksheet A—3C. Site-Specific EB Method Summary Results for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)	(2)	(3)	(4)	(5)	(6)
Crash Severity Level	Npredicted	\mathbf{N}_{ped}	N _{bike}	Nexpected (vehicle)	Nexpected
Total	(2) _{comb} from Worksheet A-3A	(2) _{comb} from Worksheet A-3B	(3) _{comb} from Worksheet A-3B	(8) _{comb} from Worksheet A-3A	(3)+(4)+(5)
FI	(3) _{comb} from Worksheet A-3A	(2) _{comb} from Worksheet A-3B	(3) _{comb} from Worksheet A-3B	(5) _{total} *(2) _{FI} /(2) _{total}	(3)+(4)+(5)
PDO	(4) _{comb} from Worksheet A-3A			(5) _{total} *(2) _{PDO} / (2) _{total}	(3)+(4)+(5)
100		0.000	0.000		

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Collision Type/	Predicted Avera	ge Crash Freque	ncy (crashes/year)	Observed Crashes,	Overdispersion	Npredicted w0
Site Type	Npredicted (total)	Npredicted (FI)	Npredicted (PDO)	Nobserved (crashes/year)	Parameter, k	Equation A-8 (6)*(2) ²
ROADWAY SEG	MENTS					
Multiple-Vehicle	Nondriveway					
Segment 1				—		
Segment 2						
Segment 3						
Segment 4						
Multiple-Vehicle l	Driveway-Related					
Segment 1				_		
Segment 2				_		
Segment 3				_		
Segment 4						
Single-Vehicle				·		
Segment 1				—		
Segment 2						
Segment 3				—		
Segment 4				—		
INTERSECTION	S					
Multiple-Vehicle						
Intersection 1				_		
Intersection 2						
Intersection 3				_		
Intersection 4				_		
Single-Vehicle	I		·	· · ·		
Intersection 1				_		
Intersection 2				_		
Intersection 3				_		
Intersection 4				_		
Combined (Sum of Column)						

Worksheet A—4A. Predicted Crashes by Collision and Site Type and Observed Crashes Using the Project-Level EB Method for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet A-	4A. continued						
(1)	(8)	(9)	(10)	(11)	(12)	(13)	
Collision Type/	Npredicted wI	W0	No	\mathbf{W}_1	N_1	Npredicted/comb (vehicle)	
Site Type	Equation A-9 sqrt((6)*(2))	Equation A-10	Equation A-11	Equation A-12	Equation A-13	Equation A-14	
ROADWAY SEG	MENTS						
Multiple-Vehicle N	Nondriveway						
Segment 1							
Segment 2							
Segment 3							
Segment 4							
Multiple-Vehicle I	Driveway-Related	·					
Segment 1							
Segment 2							
Segment 3							
Segment 4							
Single-Vehicle		·					
Segment 1							
Segment 2							
Segment 3							
Segment 4							
INTERSECTION	s						
Multiple-Vehicle							
Intersection 1							
Intersection 2							
Intersection 3							
Intersection 4							
Single-Vehicle	· ·			·			
Intersection 1							
Intersection 2							
Intersection 3				—			
Intersection 4							
Combined (Sum of Column)							

Worksheet A—4A. continued

(1)	(2)	(3)
Site Type	\mathbf{N}_{ped}	N _{bike}
ROADWAY SEGMENTS		
Segment 1		
Segment 2		
Segment 3		
Segment 4		
INTERSECTIONS		
Intersection 1		
Intersection 2		
Intersection 3		
Intersection 4		
Combined (Sum of Column)		

Worksheet A—4B. Predicted Pedestrian and Bicycle Crashes for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

Worksheet A—4C. Project-Level EB Method Summary Results for Two-Way Urban and Suburban Arterials with Five or Fewer Lanes

(1)	(2)	(3)	(4)	(5)	(6)
Crash Severity Level	Npredicted	Nped	Nbike	Nexpected/comb (vehicle)	Nexpected
Total	(2) _{comb} from Worksheet A-4A	(2) _{comb} from Worksheet A-4B	(3) _{comb} from Worksheet A-4B	(13) _{comb} from Worksheet A-4A	(3)+(4)+(5)
FI	(3) _{comb} from Worksheet A-4A	(2) _{comb} from Worksheet A-4B	(3) _{comb} from Worksheet A-4B	(5) _{total} *(2) _{FI} /(2) _{total}	(3)+(4)+(5)
PDO	(4) _{comb} from Worksheet A-4A			(5) _{total} *(2) _{PDO} / (2) _{total}	(3)+(4)+(5)
120		0.000	0.000		

APPENDIX 12B—WORKSHEETS FOR PREDICTIVE METHOD FOR TWO-WAY URBAN AND SUBURBAN ARTERIALS WITH SIX OR MORE LANES

Worksheet B—1A. General Information and Input Data for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

General Information	Location Information	
Analyst	Roadway	
Agency or Company	Roadway Section	
Date Performed	Jurisdiction	
	Analysis Year	
Input Data	Base Conditions	Site Conditions
Road type (6U, 6D, 7T, 8D)		
Area type (urban/suburban)		
Length of segment, L (mi)		
AADT (veh/day)		
Lane width (ft)	12	
Outside shoulder width (ft)	1.5	
Median width (ft)	15	
Median barriers (present / not present)	not present	
Highway-rail grade crossing density (crossing/mi)	0	
Auto speed enforcement (present/not present)	not present	
Major commercial driveway density (driveways/mi)	2	
Major industrial driveway density (driveways/mi)	1	
Minor driveway density (driveways/mi)	10	
Posted speed limit (mph)	_	
Roadside fixed object density (fixed objects/mi)	not present	
Offset to roadside fixed objects (ft)	not present	
Calibration factor, Cr	1.0	

				Collision	п Туре
				Multiple-Vehicle (mv)	Single-Vehicle (sv)
(1)	CMF for Roadside Fixed Objects	CMF _{2r}	from Equation 12-41	_	
(2)	CMF for Median Width	CMF _{3r}	from Table 12-35		
(3)	CMF for Automated Speed Enforcement	CMF _{5r}	from Section 12.7.1		
(4)	CMF for Lane Width	CMF _{6r}	from Equation 12-43		
(5)	CMF for Outside Shoulder Width	CMF _{7r}	from Equation 12-44		
(6)	CMF for Highway-Rail Grade Crossings	CMF _{8r}	from Equation 12-45		
(7)	CMF for Median Barriers	CMF _{9r}	from Equation 12-46		
(8)	CMF for Major Industrial Driveways	CMF _{10r}	from Equation 12-47		_
(9)	CMF for Major Commercial Driveways	CMF _{11r}	from Equation 12-48		_
(10)	CMF for Minor Driveways	CMF _{12r}	from Equation 12-49		_
(11)	Combined CMF	CMF _{comb}	(1)*(2)**(10)		

Worksheet B—1B. Crash Modification Factors for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

Worksheet B—1C. Multiple-Vehicle Collisions by Severity Level for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

(1)	(2)		(3)	(4)	(5)	(6)	(7)		
Crash SPF Coefficients		nts	Overdispersion Parameter, k	N _{spf} rs mv	Combined CMF	Calibration	Predicted N _{brmv}		
Severity Level		y from Table 12-8		from Table 12-8 from		from (11) _{mv} from		Factor, Cr	(4)*(5)*(()
Level	а	b	с	Equation 12-22	Equation 12-21	Worksheet B-1B		(4)*(5)*(6)	
FI									
PDO									
Total					_				

Worksheet B—1D. Multiple-Vehicle Collisions by Manner of Collision for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner(FI)	Predicted N _{brmv(FI)} (crashes/year)	Collision		Predicted N _{brmv(total)} (crashes/year)
Manner of Collision	from Table 12-9	(7) _{FI} from Worksheet B-1C	from Table 12-9	(7) _{PDO} from Worksheet B-1C	(7) _{total} from Worksheet B-1C
Total	1.000		1.000		
		$(2)^{*}(3)_{FI}$		$(4)^{*}(5)_{PDO}$	(3)+(5)
Rear-end collision					
Head-on collision					
Angle collision					
Sideswipe, same direction					
Sideswipe, opposite direction					
Other multiple-vehicle collision					

(1)	(2)		(3)	(4)	(5)	(6)	(7)	
Crash Severity from	Severity from T-bb 12 10		SPF Coefficients		N _{spf rs sv}	Combined CMF	Calibration	Predicted N _{brsv}
			from	from	(11) _{sv} from	Factor, Cr	(4)*(5)*(6)	
Level	a	b	c	Equation 12-22	Equation 12-23	Worksheet B-1B		(4)*(5)*(6)
FI								
PDO								
Total	_	_	_	_	_	_		

Worksheet B—1E. Single-Vehicle Collisions by Severity Level for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

Worksheet B—1F. Single-Vehicle Collisions by Manner of Collision for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner(FI)	Predicted N _{brsv(FI)} (crashes/year)	Proportion of Collision Manner _(PDO)	Predicted N _{brsv(PDO)} (crashes/year)	Predicted N _{brsv(total)} (crashes/year)
Manner of Collision	from Table 12-11	(7) _{FI} from Worksheet B-1E	from Table 12-11	(7) _{PDO} from Worksheet B-1E	(7) _{total} from Worksheet B-1E
Total	1.000		1.000		
		$(2)^{*}(3)_{FI}$		$(4)^{*}(5)_{PDO}$	(3)+(5)
Collision with fixed object – left					
Collision with fixed object - right					
Collision with other object					
Other single-vehicle crash					

Worksheet B—1G. Vehicle-Pedestrian Collisions for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Crash Severity	Predicted N _{brmv}	Predicted N _{brsv}	Predicted N _{br}	\mathbf{f}_{pedr}	Calibration	Predicted N _{pedr}
Level	(7) from Worksheet B-1C	(7) from Worksheet B-1E	(2)+(3)	From Table 12-16	Factor, Cr	(4)*(5)*(6)
Total						
FI	—	—	—	—		

Worksheet B	-1H. Vehicle-Bicycl	le Collisions for Two-	Way Urban and	Suburban Road	lway Segment	s with Six or
More Lanes						

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Crash Severity	Predicted N _{brmv}	Predicted N _{brsv}	Predicted N _{br}	\mathbf{f}_{biker}	Calibration	Predicted N _{biker}
Level	(7) from Worksheet B-1C	(7) from Worksheet B-1E	(2)+(3)	From Table 12-17	Factor, Cr	(4)*(5)*(6)
Total						
FI	_	_	—			

Worksheet B-11. Crash Severity*Type Distribution for Two-Way Urban and Suburban Roadway Segments with Six
or More Lanes

(1)	(2)	(3)	(4)	
	FI	PDO	Total	
Collision Type	(3) from Worksheets B-1D and B-1F; and (7) from Worksheet B-1G and B-1H	(5) from Worksheet B-1D and B-1F	(6) from Worksheets B-1D and B-1F; and (7) from Worksheets B-1G and B-1H	
MULTIPLE_VEHICLE				
Rear-end collision (from Worksheet B-1D)				
Head-on collision (from Worksheet B-1D)				
Angle collision (from Worksheet B-1D)				
Sideswipe, same direction (from Worksheet B-1D)				
Sideswipe, opposite direction (from Worksheet B-1D)				
Other multiple-vehicle collision (from Worksheet B-1D)				
Subtotal				
SINGLE_VEHICLE				
Collision with fixed object – left (from Worksheet B-1F)				
Collision with fixed object – right (from Worksheet B-1F)				
Collision with other object (from Worksheet B-1F)				
Other single-vehicle crash (from Worksheet B-1F)				
Collision with pedestrian (from Worksheet B-1G)				
Collision with bicycle (from Worksheet B-1H)				
Subtotal				
Total				

Worksheet B—1J. Summary Results for Two-Way Urban and Suburban Roadway Segments with Six or More Lanes

(1)	(2)	(3)	(4)
	Predicted Average Crash Frequency, Npredicted rs (crashes/year)		Crash Rate (crashes/mi/year)
Crash Severity Level	(total) from Worksheet B-11	Roadway Segment Length, L (mi)	(2)/(3)
Total			
FI			
PDO			

General Information	Location Information	
Analyst	Roadway	
Agency or Company	Intersection	
Date Performed	Jurisdiction	
	Analysis Year	
Input Data	Base Conditions	Site Conditions
Intersection Type (3ST, 3SG, 4ST, 4SG)	_	
Area type (urban/suburban)		
AADT _{maj} (veh/day)	_	
AADT _{min} (veh/day)		
Intersection lighting (present/not present)	not present	
Calibration factor, C _i	1.00	
Data for stop-controlled intersections only:		
Left-turn lane on a minor-road approach (present/not presen		
Data for signalized intersections only:		
Total number of lanes on major road	6	
Total number of lanes on minor road	2	
Number of major-road approaches with left-turn lanes (0, 1,	2) —	
Number of approaches with left-turn signal phasing		
Number of approaches with right-turn-on-red prohibited	0	
Number of approaches with U-turn prohibited	0	
Number of major road approaches with channelized right-tu	Irn lane 0	
Type of left-turn signal phasing	permissive	
Intersection red-light cameras (present/not present)	not present	
Sum of all pedestrian crossing volumes (PedVol)		
Maximum number of lanes crossed by a pedestrian (n_{lanesx})	—	
Number of bus stops within 1000 ft of the intersection	0	
Schools within 1000 ft of the intersection (present/not present	nt) not present	
Number of alcohol sales establishments within 1000 ft of the	e intersection 0	

Worksheet B—2A. General Information and Input Data for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

Worksheet B—2B. Crash Modification Factors for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

01 10	lore Edites		
(1)	CMF for Left-Turn Signal Phasing	CMF _{2i}	from Table 12-41
(2)	CMF for Right-Turn-on-Red	CMF _{4i}	from Equation 12-51
(3)	CMF for Lighting	CMF _{5i}	from Equation 12-52
(4)	CMF for Red-Light Cameras	CMF 6i	from Equation 12-53
(5)	CMF for Number of Lanes	CMF _{7i}	from Equation 12-58
(6)	CMF for Right-Turn Channelization	CMF _{8i}	from Equation 12-61
(7)	CMF for U-Turn Prohibition	CMF _{9i}	from Equation 12-62
(8)	Combined CMF	CMFcomb	(1)*(2)*(3)*(4)*(5)*(6)*(7)

(1)		(2	2)		(3)	(4)	(5)	(6)	(7)	
Crash		SPF Co	efficients		Overdispersion Parameter, k	N _{spf} int	Combined CMF		Predicted N _{bi}	
Severity Level		from Ta	ble 12-24		from	from	(8) from Factor, C _i	Calibration Factor, C _i	(4)*(5)*(6)	
	a	b	c	d	Equation 12-34	Equation 12-33	Worksheet B-2B			
FI										
PDO										
Total					_	_	_			

Worksheet B—2C. Multiple-Vehicle and Single-Vehicle Collisions by Severity Level for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

Worksheet B—2D. Multiple-Vehicle and Single-Vehicle Collisions by Collision Type for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner _(FI)	Predicted N _{bi(FI)} (crashes/year)	Proportion of Collision Manner _(PDO)	Predicted N _{bi(PDO)} (crashes/year)	Predicted N _{bi(total)} (crashes/year)
Manner of Collision	from Table 12-25	(7) _{FI} from Worksheet B-2C	from Table 12-25	(7) _{PDO} from Worksheet B-2C	(7) _{total} from Worksheet B-2C
Total	1.000		1.000		
		$(2)^{*}(3)_{FI}$		$(4)^{*}(5)_{PDO}$	(3)+(5)
Rear-end collision					
Head-on collision					
Angle collision					
Sideswipe					
Other multiple-vehicle collision					
Single-Vehicle Crash					

Worksheet B—2E. Vehicle-Pedestrian Collisions for Stop-Controlled Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

(1)	(2)	(3)	(4)	(5)
Crush Serveriter Level	Predicted N _{bi}	f _{pedi}	Calibration Factor,	Predicted N _{pedi}
Crash Severity Level	(7) from Worksheet B-2C	from Table 12-29	Ci	(2)*(3)*(4)
Total				
FI	—	—		

Worksheet B—2F. Crash Modification Factors for Vehicle-Pedestrian Collisions for Signalized Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

(1)	CMF for Bus Stops	CMF _{1p}	from Table 12-45
(2)	CMF for Schools	CMF _{2p}	from Table 12-46
(3)	CMF for Alcohol Sales Establishments	CMF _{3p}	from Table 12-47
(4)	Combined CMF	CMFcomb	(1)*(2)*(3)

(1)	(2)			(3)	(4)	(5)	(6)	(7)		
Crash Severity Level	SPF Coefficients					Overdispersion Parameter, k	$\mathbf{N}_{pedbase}$	Combined CMF Calibr (4) from Facto	Calibratian	Predicted N _{pedi}
		from Table 12-27			from	from	Factor, C _i			
	a	b	с	d	e	Table 12-27	Equation 12-35	Worksheet B-2F		(4)*(5)*(6)
Total										
FI	_	_	_	_	_	_	—			

Worksheet B—2G. Vehicle-Pedestrian Collisions for Signalized Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

Worksheet B—2H. Vehicle-Bicycle Collisions for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

(1)	(2)	(3)	(4)	(5)
Creach Sevenity Level	Predicted N _{bi}	F _{bikei}	Calibration Factor,	Predicted N _{pedi}
Crash Severity Level	(7) from Worksheet B-2C	from Table 12-30	Ci	(2)*(3)*(4)
Total				
FI	_	—		

Worksheet B—21. Crash Severity*Type Distribution for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

(1)	(2)	(3)	(4)	
	FI	PDO	Total	
Collision Type	(3) from Worksheets B-2D; (5) from Worksheets B-2E or (7) from Worksheets B-2G; (5) from Worksheet B-2H	(5) from Worksheet B-2D	(6) from Worksheets B-2D; (5) from Worksheets B-2E or (7) from Worksheets B-2G; (5) from Worksheet B-2H	
MULTIPLE_VEHICLE				
Rear-end collision (from Worksheet B-2D)				
Head-on collision (from Worksheet B-2D)				
Angle collision (from Worksheet B-2D)				
Sideswipe (from Worksheet B-2D)				
Other multiple-vehicle collision (from Worksheet B-2D)				
Subtotal				
SINGLE_VEHICLE				
Collision with pedestrian (from Worksheet B-2E or B-2G)				
Collision with bicycle (from Worksheet B-2H)				
Other single-vehicle crash (from Worksheet B-2D)				
Subtotal				
Total				

Laites	
(1)	(2)
	$\label{eq:predicted} Predicted \ Average \ Crash \ Frequency, N_{predicted \ int}(crashes/year)$
Crash Severity Level	(total) from Worksheet B-2I
Total	
FI	
PDO	

Worksheet B—2J. Summary Results for Intersections of Two-Way Urban and Suburban Arterials with Six or More Lanes

Worksheet B—3A. Predicted Crashes by Collision and Site Type and Observed Crashes Using the Site-Specific EB Method for Two-Way Urban and Suburban Arterials with Six or More Lanes

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Collision Type/ Site Type	Predicted	Average Crash (crashes/year		Observed Crashes, Nobserved	Overdispersion Parameter, k	Weighted Adjustment, w	Expected Average Crash Frequency, N _{expected (vehicle)} (crashes/year)
She Type	Npredicted (total)	Npredicted (FI)	Npredicted (PDO)	(crashes/year)	i urumeter, k	Equation A-5	Equation A-4
ROADWAY SEGM	IENTS						
Multiple-Vehicle							
Segment 1							
Segment 2							
Segment 3							
Segment 4							
Single-Vehicle	1			1	1	1	1
Segment 1							
Segment 2							
Segment 3							
Segment 4							
INTERSECTIONS							
Intersection 1							
Intersection 2							
Intersection 3							
Intersection 4							
Combined (Sum of Column)							

Worksheet B—3B. Predicted Pedestrian and Bicycle Crashes for Two-Way Urban and Suburban Arterials with Six or More Lanes

(1)	(2)	(3)
Site Type	N _{ped}	\mathbf{N}_{bike}
ROADWAY SEGMENTS		
Segment 1		
Segment 2		
Segment 3		
Segment 4		
INTERSECTIONS		
Intersection 1		
Intersection 2		
Intersection 3		
Intersection 4		
Combined (Sum of Column)		

Worksheet B—3C. Site-Specific EB Method Summary Results for Two-Way Urban and Suburban Arterials with Six or More Lanes

(1)	(2)	(3)	(4)	(5)	(6)
Crash Severity Level	Npredicted	Nped	Nbike	Nexpected (vehicle)	Nexpected
Total	(2) _{comb} from Worksheet B-3A	(2) _{comb} from Worksheet B-3B	(3) _{comb} from Worksheet B-3B	(8) _{comb} from Worksheet B-3A	(3)+(4)+(5)
FI	(3) _{comb} from Worksheet B-3A	(2) _{comb} from Worksheet B-3B	(3) _{comb} from Worksheet B-3B	(5)total*(2)FI/(2)total	(3)+(4)+(5)
PDO	(4) _{comb} from Worksheet B-3A			(5) _{total} *(2) _{PDO} / (2) _{total}	(3)+(4)+(5)
		0.000	0.000		

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Collision Type/	Predicted Avera	ige Crash Freque	ncy (crashes/year)	Observed Crashes,	Overdispersion	Npredicted w0
Site Type	Npredicted (total)	Npredicted (FI)	Npredicted (PDO)	Nobserved (crashes/year)	Parameter, k	Equation A-8 (6)*(2) ²
ROADWAY SEG	MENTS					
Multiple-Vehicle						
Segment 1				_		
Segment 2						
Segment 3						
Segment 4						
Single-Vehicle						
Segment 1				_		
Segment 2				—		
Segment 3				—		
Segment 4				_		
INTERSECTION	s					
Intersection 1				_		
Intersection 2				_		
Intersection 3						
Intersection 4				—		
Combined (Sum of Column)						

Worksheet B—4A. Predicted Crashes by Collision and Site Type and Observed Crashes Using the Project-Level EB Method for Two-Way Urban and Suburban Arterials with Six or More Lanes

(1)	(8)	(9)	(10)	(11)	(12)	(13)	
Collision Type/	Npredicted w1	W0	N ₀	W1	N_1	$\mathbf{N}_{\mathbf{predicted}/\mathit{comb}}$ (vehicle)	
Site Type	Equation A-9 sqrt((6)*(2))	Equation A-10	Equation A-11	Equation A-12	Equation A-13	Equation A-14	
ROADWAY SEGN	MENTS						
Multiple-Vehicle							
Segment 1				_			
Segment 2				_			
Segment 3				_			
Segment 4				_			
Single-Vehicle							
Segment 1				_			
Segment 2				_			
Segment 3				—			
Segment 4				—			
INTERSECTIONS	5						
Intersection 1				_			
Intersection 2				_			
Intersection 3				_			
Intersection 4				_			
Combined (Sum of Column)							

Worksheet B—4A. continued

Worksheet B—4B. Predicted Pedestrian and Bicycle Crashes for Two-Way Urban and Suburban Arterials with Six or More Lanes

(1)	(2)	(3)
Site Type	\mathbf{N}_{ped}	Nbike
ROADWAY SEGMENTS		
Segment 1		
Segment 2		
Segment 3		
Segment 4		
INTERSECTIONS		
Intersection 1		
Intersection 2		
Intersection 3		
Intersection 4		
Combined (Sum of Column)		

(1)	(2)	(3)	(4)	(5)	(6)
Crash Severity Level	Npredicted	\mathbf{N}_{ped}	N _{bike}	Nexpected/comb (vehicle)	Nexpected
Total	(2) _{comb} from Worksheet B-4A	(2) _{comb} from Worksheet B-4B	(3) _{comb} from Worksheet B-4B	(13) _{comb} from Worksheet A-4A	(3)+(4)+(5)
FI	(3) _{comb} from Worksheet B-4A	(2) _{comb} from Worksheet B-4B	(3) _{comb} from Worksheet B-4B	(5) _{total} *(2) _{FI} /(2) _{total}	(3)+(4)+(5)
	(4) _{comb} from			(5) _{total} *(2) _{PDO} / (2) _{total}	(3)+(4)+(5)
PDO	Worksheet B-4A	0.000	0.000		

Worksheet B—4C. Project-Level EB Method Summary Results for Two-Way Urban and Suburban Arterials with Six or More Lanes

APPENDIX 12C—WORKSHEETS FOR PREDICTIVE METHOD FOR ONE-WAY URBAN AND SUBURBAN ARTERIALS

Worksheet C—1A	. General Information a	and Input Data for Or	ne-Way Urban and Subur	ban Roadway Segments

General Information	Location Information	
Analyst	Roadway	
Agency or Company	Roadway Section	
Date Performed	Jurisdiction	
	Analysis Year	
Input Data	Base Conditions	Site Conditions
Road type (20, 30, 40)		
Area type (urban/suburban)		
Length of segment, L (mi)		
AADT (veh/day)		
Type of on-street parking (none/parallel/angle)	none	
Proportion of curb length with on-street parking		
Lane width (ft)		
Right shoulder width (ft)	4	
Auto speed enforcement (present/not present)	not present	
Major commercial driveway density (driveways/mi)	2	
Minor driveway density (driveways/mi)	10	
Speed category	_	
Bike lane (present/not present)	_	
Roadside fixed object density (fixed objects/mi)	not present	
Offset to roadside fixed objects (ft)	not present	
Calibration factor, Cr	1.0	

Worksheet C—1B. Crash Modification Factors for One-Way Urban and Suburban Roadway Segments

				Collision	п Туре
				Multiple-Vehicle (mv)	Single-Vehicle (sv)
(1)	CMF for On-Street Parking	CMF _{1r}	from Equation 12-39		
(2)	CMF for Roadside Fixed Objects	CMF _{2r}	from Equation 12-41	_	
(3)	CMF for Automated Speed Enforcement	CMF _{5r}	from Section 12.7.1		
(4)	CMF for Major Commercial Driveways	CMF _{11r}	from Equation 12-48		_
(5)	CMF for Minor Driveways	CMF _{12r}	from Equation 12-49		_
(6)	CMF for Right Shoulder Width	CMF _{13r}	from Equation 12-50		
(7)	Combined CMF	CMFcomb	(1)*(2)*(3)*(4)*(5)*(6)		

(1)	(2)		(3)	(4)	(5)	(6)	(7)	
Crash	SF	PF Coefficie	nts	Overdispersion Parameter, k	N _{spf rs mv}	Combined CMF	Calibration	Predicted Nbrmv
Severity Level	fr	om Table 12	2-8	from from		$(7)_{mv} \text{ from} \qquad \text{Cambration} \\ \text{Factor, } C_r$		(4)*(5)*(6)
Level	а	b	c	Equation 12-22		Worksheet C-1B		(4)*(5)*(6)
FI								
PDO								
Total	_	_	_	_	_	_		

Worksheet C—1C. Multiple-Vehicle Collisions by Severity Level for One-Way Urban and Suburban Roadway Segments

Worksheet C—1D. Multiple-Vehicle Collisions by Manner of Collision for One-Way Urban and Suburban Roadway Segments

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner(FI)	Predicted N _{brmv(FI)} (crashes/year)	Proportion of Collision Manner _(PDO)	Predicted N _{brmv(PDO)} (crashes/year)	Predicted N _{brmv(total)} (crashes/year)
Manner of Collision	from	(7) _{FI} from Worksheet C-1C	from	(7) _{PDO} from Worksheet C-1C	(7) _{total} from Worksheet C-1C
Total	1.000		1.000		
		$(2)^{*}(3)_{FI}$		$(4)^{*}(5)_{PDO}$	(3)+(5)
Rear-end collision					
Head-on collision					
Angle collision					
Sideswipe, same direction					
Sideswipe, opposite direction					
Other multiple-vehicle collision					

Worksheet C-1E. Single-Vehicle Collisions by Severity Level for One-	Way Urban and Suburban Roadway
Segments	

(1)	(2)		(3)	(4)	(5)	(6)	(7)	
Crash	SP	SPE Coefficients -		Overdispersion Parameter, k	N _{spf rs sv}	Combined CMF	Calibration	Predicted N _{brsv}
Severity Level	fro	om Table 12	-10	from	from	from (7) _{sv} from		(1)*(5)*(6)
	a	b	c	Equation 12-22	Equation 12-23	Worksheet C-1B		(4)*(5)*(6)
FI								
PDO								
Total	_			—	—	—		

Worksheet C-1F. Single-Vehicle Collisions by Manner of Collision for One-Way Urban and Subur	ban Roadway
Segments	

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner _(FI)	Predicted N _{brsv(FI)} (crashes/year)	Proportion of Collision Manner _(PDO)	Predicted N _{brsv(PDO)} (crashes/year)	Predicted N _{brsv(total)} (crashes/year)
Manner of Collision	from	(7) _{FI} from Worksheet C-1E	from	(7) _{PDO} from Worksheet C-1E	(7) _{total} from Worksheet C-1E
Total	1.000		1.000		
		$(2)^*(3)_{FI}$		$(4)^{*}(5)_{PDO}$	(3)+(5)
Collision with animal					
Collision with fixed object					
Collision with other object					
Other single-vehicle crash					

Worksheet C—1G. Vehicle-Pedestrian Collisions for One-Way Urban and Suburban Roadway Segments

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Crash Severity	Predicted N _{brmv}	Predicted N _{brsv}	Predicted N _{br}	\mathbf{f}_{pedr}	Calibration	Predicted N _{pedr}
Level	(7) from Worksheet C-1C	(7) from Worksheet C-1E	(2)+(3)	From Table 12-16	Factor, Cr	(4)*(5)*(6)
Total						
FI	—	_		—		

Worksheet C—1H. Vehicle-Bicycle Collisions for One-Way Urban and Suburban Roadway Segments
--

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Crash Severity	Predicted N _{brmv}	Predicted N _{brsv}	Predicted N _{br}	\mathbf{f}_{biker}	Calibration	Predicted N _{biker}
Level	(7) from Worksheet C-1C	(7) from Worksheet C-1E	(2)+(3)	From Table 12-17	Factor, Cr	(4)*(5)*(6)
Total						
FI	—	—	—	—		

(1)	(2)	(3)	(4)
	FI	PDO	Total
Collision Type	(3) from Worksheets C-1D and C-1F; and (7) from Worksheet C-1G and C-1H	(5) from Worksheet C-1D and C- 1F	(6) from Worksheets C-1D and C-1F; and (7) from Worksheets C-1G and C-1H
MULTIPLE_VEHICLE			
Rear-end collision (from Worksheet C-1D)			
Head-on collision (from Worksheet C -1D)			
Angle collision (from Worksheet C -1D)			
Sideswipe, same direction (from Worksheet C -1D)			
Sideswipe, opposite direction (from Worksheet C -1D)			
Other multiple-vehicle collision (from Worksheet C -1D)			
Subtotal			
SINGLE_VEHICLE			
Collision with animal (from Worksheet C -1F)			
Collision with fixed object (from Worksheet C -1F)			
Collision with other object (from Worksheet C -1F)			
Other single-vehicle crash (from Worksheet C -1F)			
Collision with pedestrian (from Worksheet C -1G)			
Collision with bicycle (from Worksheet C -1H)			
Subtotal			
Total			

Worksheet C—11. Crash Severity*Type Distribution for One-Way Urban and Suburban Roadway Segments

Worksheet C—1J. Summary Results for One-Way Urban and Suburban Roadway Segments

(1)	(2)	(3)	(4)
	Predicted Average Crash Frequency, N _{predicted rs} (crashes/year)		Crash Rate (crashes/mi/year)
Crash Severity Level	(total) from Worksheet C-1I	Roadway Segment Length, L (mi)	(2)/(3)
Total			
FI			
PDO			

General Information	Location Information	
Analyst	Roadway	
Agency or Company	Intersection	
Date Performed	Jurisdiction	
	Analysis Year	
Input Data	Base Conditions	Site Conditions
Intersection Category (1×2, 1×1)	_	
Intersection Type (3ST, 3SG, 4ST, 4SG)	_	
Area type (urban/suburban)	_	
AADT _{maj} (veh/day)	_	
AADT _{min} (veh/day)	_	
Intersection lighting (present/not present)	not present	
Calibration factor, C _i	1.00	
Data for stop-controlled intersections only:		
Left-turn lane on a minor-road approach (present/not present)		
Data for signalized intersections only:		
Total number of lanes on major road	2	
Total number of lanes on minor road	2	
Number of approaches with right-turn-on-red prohibited	0	
Left-turn lane on a major-road approach (present/not present)	—	
Channelized right-turn lane on a major-road approach (present/not present)	—	
Channelized right-turn lane on a minor-road approach (present/not present)	—	
Intersection red-light cameras (present/not present)	not present	
Sum of all pedestrian crossing volumes (PedVol)		
Maximum number of lanes crossed by a pedestrian (n_{laness})		
Number of bus stops within 1000 ft of the intersection	0	
Schools within 1000 ft of the intersection (present/not present)	not present	
Number of alcohol sales establishments within 1000 ft of the intersection	0	

Worksheet C-2A. General Information and Input Data for Intersections of One-Way Urban and Suburban Arterials

Worksheet C—2B. Crash Modification Factors for Intersections of One-Way Urban and Suburban Arterials

(1)	CMF for Right-Turn-on-Red	CMF _{4i}	from Equation 12-51	
(2)	CMF for Lighting	CMF _{5i}	from Equation 12-52	
(3)	CMF for Red-Light Cameras	CMF _{6i}	from Equation 12-53	
(4)	CMF for Number of Lanes	CMF _{7i}	from Equation 12-58	
(5)	Combined CMF	CMF comb	(1)*(2)*(3)*(4)	

(1)		(2)		(3)	(4)	(5)	(6)	(7)	
Crash	SPF Coefficients		Overdispersion Parameter, k	\mathbf{N}_{spf} int	Combined CMF		Predicted N _{bi}		
Severity Level		from Ta	ble 12-24		from	from	(5) from	Calibration Factor, C _i	(4)*(5)*(6)
	a	b	с	d	Equation 12-34	Equation 12-33	Worksheet C-2B		
FI									
PDO									
Total	—	_	—	—			_		

Worksheet C—2C. Multiple-Vehicle and Single-Vehicle Collisions by Severity Level for Intersections of One-Way Urban and Suburban Arterials

Worksheet C — 2D. Multiple-Vehicle and Single-Vehicle Collisions by Manner of Collision for Intersections of One-Way Urban and Suburban Arterials

(1)	(2)	(3)	(4)	(5)	(6)
	Proportion of Collision Manner(FI)	Predicted N _{bi(FI)} (crashes/year)	Proportion of Collision Manner _(PDO)	Predicted N _{bi(PDO)} (crashes/year)	Predicted N _{bi(total)} (crashes/year)
Manner of Collision	from Table 12-26	(7) _{FI} from Worksheet C-2C	from Table 12-26	(7) _{PDO} from Worksheet C-2C	(7) _{total} from Worksheet C-2C
Total	1.000		1.000		
		$(2)^{*}(3)_{FI}$		$(4)^{*}(5)_{PDO}$	(3)+(5)
Rear-end collision					
Head-on collision					
Angle collision					
Sideswipe					
Other multiple-vehicle collision					
Single-Vehicle Crash					

Worksheet C — 2E. Vehicle-Pedestrian Collisions for Stop-Controlled Intersections of One-Way Urban and
Suburban Arterials

(1)	(2)	(3)	(4)	(5)
Creak Severity Level	Predicted N _{bi}	f pedi	Calibration Factor,	Predicted N _{pedi}
Crash Severity Level	(7) from Worksheet C-2C	from Table 12-29	Ci	(2)*(3)*(4)
Total				
FI	—	—		

Worksheet C —2F. Crash Modification Factors for Vehicle-Pedestrian Collisions for Signalized Intersections of One-Way Urban and Suburban Arterials

(1)	CMF for Bus Stops	CMF _{1p}	from Table 12-45	
(2)	CMF for Schools	CMF_{2p}	from Table 12-46	
(3)	CMF for Alcohol Sales Establishments	CMF _{3p}	from Table 12-47	
(4)	Combined CMF	CMF _{comb}	(1)*(2)*(3)	

(1)			(2)		(3)	(4)	(5)	(6)	(7)	
Crash	SPF Coefficients		Overdispersion Parameter, k	N _{pedbase}	Combined CMF	· Calibration	Predicted N _{pedi}			
Severity Level		fron	1 Table 1	2-27		from	from	(4) from	Factor, C _i	
Level	a	b	с	d	e	Table 12-27	Equation 12-35	Worksheet C-2F		(4)*(5)*(6)
Total										
FI	_	_	_	_		_	—			

Worksheet C —2G. Vehicle-Pedestrian Collisions for Signalized Intersections of One-Way Urban and Suburban Arterials

Worksheet C —2H. Vehicle-Bicycle Collisions for Intersections of One-Way Urban and Suburban Arterials

(1)	(2)	(3)	(4)	(5)
Creat Serveriter Level	Predicted N _{bi}	\mathbf{F}_{bikei}	Calibration Factor,	Predicted N _{pedi}
Crash Severity Level	(7) from Worksheet C-2C	from Table 12-30	Ci	(2)*(3)*(4)
Total				
FI	_	—		

(1)	(2)	(3)	(4)	
	FI	PDO	Total	
Collision Type	(3) from Worksheets C-2D; (5) from Worksheets C-2E or (7) from Worksheets C-2G; (5) from Worksheet C-2H	(5) from Worksheet C-2D	(6) from Worksheets C-2D; (5) from Worksheets C-2E or (7) from Worksheets C-2G; (5) from Worksheet C-2H	
MULTIPLE_VEHICLE				
Rear-end collision (from Worksheet C-2D)				
Head-on collision (from Worksheet C-2D)				
Angle collision (from Worksheet C-2D)				
Sideswipe (from Worksheet C-2D)				
Other multiple-vehicle collision (from Worksheet C-2D)				
Subtotal				
SINGLE_VEHICLE				
Collision with pedestrian (from Worksheet C-2E or C-2G)				
Collision with bicycle (from Worksheet C-2H)				
Other single-vehicle crash (from Worksheet C-2D)				
Subtotal				
Total				

Worksheet C —21. Crash Severity*Type Distribution for Intersections of One-Way Urban and Suburban Arterials

Worksheet C —2J. Summary Results for Intersections of One-Way Urban and Suburban Arterials

(1)	(2)		
	Predicted Average Crash Frequency, Npredicted int (crashes/year)		
Crash Severity Level	(total) from Worksheet C-2I		
Total			
FI			
PDO			

Worksheet C—3A. Predicted Crashes by Collision and Site Type and Observed Crashes Using the Site-Specific
EB Method for One-Way Urban and Suburban Arterials

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Collision Type/ Site Type			quency Observed Crashes, N _{observed}	Overdispersion Parameter, k	Weighted Adjustment, w	Expected Average Crash Frequency, Nexpected (vehicle) (crashes/year)	
She Type	Npredicted (total)	Npredicted (FI)	Npredicted (PDO)	(crashes/year)	Taranicur, K	Equation A-5	Equation A-4
ROADWAY SEG	MENTS						
Multiple-Vehicle							
Segment 1							
Segment 2							
Segment 3							
Segment 4							
Single-Vehicle			1				
Segment 1							
Segment 2							
Segment 3							
Segment 4							
INTERSECTIONS	5					·	
Intersection 1							
Intersection 2							
Intersection 3							
Intersection 4							
Combined (Sum of Column)							

Worksheet C-3B. Predicted Pedestrian and Bicycle Crashes for One-Way Urban and Suburban Arterials

(1)	(2)	(3)
Site Type	N _{ped}	N _{bike}
ROADWAY SEGMENTS		
Segment 1		
Segment 2		
Segment 3		
Segment 4		
INTERSECTIONS		
Intersection 1		
Intersection 2		
Intersection 3		
Intersection 4		
Combined (Sum of Column)		

(1)	(2)	(3)	(4)	(5)	(6)
Crash Severity Level	Npredicted	Nped	Nbike	Nexpected (vehicle)	Nexpected
Total	(2) _{comb} from Worksheet C-3A	(2) _{comb} from Worksheet C-3B	(3) _{comb} from Worksheet C-3B	(8) _{comb} from Worksheet C-3A	(3)+(4)+(5)
FI	(3) _{comb} from Worksheet C-3A	(2) _{comb} from Worksheet C-3B	(3) _{comb} from Worksheet C-3B	(5)total*(2)FI/(2)total	(3)+(4)+(5)
PDO	(4) _{comb} from Worksheet C-3A			(5) _{total} *(2) _{PDO} / (2) _{total}	(3)+(4)+(5)
120		0.000	0.000		

Worksheet C-3C. Site-Specific EB Method Summary Results for One-Way Urban and Suburban Arterials

Worksheet C—4A. Predicted Crashes by Collision and Site Type and Observed Crashes Using the Project-Level EB Method for One-Way Urban and Suburban Arterials

(1)	(2)	(3)	(4)	(5)	(6)	(7)
Collision Type/	Predicted Avera	nge Crash Freque	ncy (crashes/year)	Observed Crashes,	Overdispersion	Npredicted w0
Site Type	Npredicted (total)	Npredicted (FI)	Npredicted (PDO)	N _{observed} (crashes/year)	Parameter, k	Equation A-8 (6)*(2) ²
ROADWAY SEG	MENTS					
Multiple-Vehicle						
Segment 1				—		
Segment 2						
Segment 3				—		
Segment 4				—		
Single-Vehicle						
Segment 1				—		
Segment 2				—		
Segment 3				—		
Segment 4				—		
INTERSECTION	S					
Intersection 1				_		
Intersection 2				—		
Intersection 3				—		
Intersection 4				—		
Combined (Sum of Column)						

(1)	(8)	(9)	(10)	(11)	(12)	(13)
Collision Type/	Npredicted w1	W0	No	W 1	N_1	Npredicted/comb (vehicle)
Site Type	Equation A-9 <i>sqrt</i> ((6)*(2))	Equation A-10	Equation A-11	Equation A-12	Equation A-13	Equation A-14

_

_

Worksheet C-4A. con

Multiple-Vehicle Segment 1

Segment 2

Segment 3

Segment 4

Single-Vehicle

Segment 1			
Segment 2			
Segment 3			
Segment 4			
INTERSECTIONS			
Intersection 1		—	
Intersection 2			
Intersection 3			
Intersection 4			
Combined (Sum of Column)			

Worksheet C-4B. Predicted Pedestrian and Bicycle Crashes for One-Way Urban and Suburban Arterials

(1)	(2)	(3)
Site Type	N _{ped}	N _{bike}
ROADWAY SEGMENTS		
Segment 1		
Segment 2		
Segment 3		
Segment 4		
INTERSECTIONS		
Intersection 1		
Intersection 2		
Intersection 3		
Intersection 4		
Combined (Sum of Column)		

(1)	(2)	(3)	(4)	(5)	(6)
Crash Severity Level	Npredicted	\mathbf{N}_{ped}	Nbike	Nexpected/comb (vehicle)	Nexpected
Total	(2) _{comb} from Worksheet C-4A	(2) _{comb} from Worksheet C-4B	(3) _{comb} from Worksheet C-4B	(13) _{comb} from Worksheet C-4A	(3)+(4)+(5)
FI	(3) _{comb} from Worksheet C-4A	(2) _{comb} from Worksheet C-4B	(3) _{comb} from Worksheet C-4B	(5) _{total} *(2) _{FI} /(2) _{total}	(3)+(4)+(5)
PDO	(4) _{comb} from Worksheet C-4A			(5)total*(2)PDO / (2)total	(3)+(4)+(5)
		0.000	0.000		

Worksheet C-4C. Project-Level EB Method Summary Results for One-Way Urban and Suburban Arterials

APPENDIX B. WORKSHOP SAMPLE PROBLEMS

EXERCISE 1: TWO-WAY ARTERIAL SEGMENT

Location: Six-lane divided arterial section Study year: 2016 Area type: Urban Crash data description: No crash data

INPUT DATA

Basic Roadway Data

Number of lanes: 6 Segment length: 0.30 mi Posted speed limit: 45 mph Number of highway-rail grade crossings: 0 Automated speed enforcement: no

Cross-Section Data

Lane width: 12 ft Outside shoulder width: 4 ft Inside shoulder width: 1 ft Median width: 10 ft Median type: curb

Roadside Data

Roadside fixed-object offset: 10 ft Roadside fixed-object density: 50/mile

Driveway Data

Major commercial driveways: 1 Major industrial driveways: 1 Minor driveways: 5

Traffic Data

AADT (year 2016): 56,000 veh/day

Crash Data

Not available

OUTPUT SUMMARY

What is the total predicted number of crashes?6.543

General Information	<u>Site Ir</u>	nformation_
Analyst	Street	number
Agency	Street	name
Date	•	ent number 1
Location	Analys	sis year 2016
Add to Totals worksheet	Restore equations	Reset input cells
	h frequency, crashes / ye	
F+I	PDO Total	F+I PDC
Total crashes 2.764 Multiple-vehicle crashes 2.358	3.779 6.543 3.456	Multiple-vehicle crashes 1.067 1.06 Single-vehicle crashes 1.087 1.08
Single-vehicle crashes 0.259	0.323	
Vehicle-pedestrian crashes 0.096		Severity distribution for F+I crashes
Vehicle-bicycle crashes 0.051		<u> </u>
		0.036 0.186 0.725 1.81
Input Data	<u>Value</u>	<u>Advisory Messages</u>
Basic Roadway Data	l leb ca	
Area type Segment type	Urban 6D	
Segment length, mi	0.3	•
Annual average daily traffic (AADT), veh/day	56000	
Number of highway-rail grade crossings present	0	
Posted speed limit, mi/h	45	
Automated speed enforcement present?	No	· ·
Access Data		
Driveway count Major commercial	1	3 major comm. driveways per mile.
Major industrial	1	3 major industrial driveways per mile.
Minor	5	17 minor driveways per mile.
Cross Section Data		
Lane width, ft	12	
Outside shoulder width, ft	4	
Median width, ft	10	
Median barrier present?	No	•
Roadside Data		
Roadside fixed object count	15	50 objects per mile.
Average roadside fixed object offset, ft	10	•
Calibration Factors	<u>Value</u>	Default Values
Local calibration factor (C)	1.000	1.000
Adjustment factor for pedestrians (fped)	0.015	0.015
Adjustment factor for bicyclists (f _{bike})	0.008	0.008
Severity distribution calibration factor ($C_{sdf,tws}$)	1.000	1.000
Crash Modification Factors	F+I Multiple Single	PDO Multiple Single
Lane width		.000 1.000 1.000
Outside shoulder width		.931 0.931 0.931
		.029 1.029 1.029
Median width		.000 1.000 1.000
Median width Median barrier	1.000	
		.000 1.000 1.000
Median barrier Highway-rail grade crossing Major commercial driveways	1.000 1 1.048	1.048
Median barrier Highway-rail grade crossing Major commercial driveways Major industrial driveways	1.000 1 1.048 1.025	1.048 1.025
Median barrier Highway-rail grade crossing Major commercial driveways	1.000 1 1.048 1.025 1.037	1.048

EXERCISE 1a: TWO-WAY ARTERIAL SEGMENT

Location: Six-lane divided arterial section Study year: 2014 Area type: Urban Crash data description: Data for each individual segment Crash data year: 2014

INPUT DATA

Traffic Data

AADT (year 2014): 48,000 veh/day

Crash Data

Crash Type	Count			
	Fatal-and-injury	Property-damage-only		
Multiple-vehicle	8	14		
Single-vehicle	1	1		

OUTPUT SUMMARY

 What is the total expected number of crashes?
 15.271

General Information	Site II	nformation
Analyst	Street	number
Agency	Street	name
Date	0	ent number 1
Location	Analy	sis year 2014
Add to Totals worksheet	Restore equations	Reset input cells
	h frequency, crashes / ye	
F+/	PDO Total	F+I PD
Total crashes 2.314 Multiple-vehicle crashes 1.948	3.237 5.551 2.935	Multiple-vehicle crashes 1.067 1.06 Single-vehicle crashes 1.087 1.08
Single-vehicle crashes 0.241	0.303	
Vehicle-pedestrian crashes 0.081	0.000	Severity distribution for F+I crashes
Vehicle-bicycle crashes 0.043		K A B
		0.030 0.156 0.607 1.52
Input Data	<u>Value</u>	Advisory Messages
Basic Roadway Data		
Area type	Urban	•
Segment type	6D	• •
Segment length, mi Annual average daily traffic (AADT), veh/day	0.3 48000	•
Number of highway-rail grade crossings present	00000	
Posted speed limit, mi/h	45	
Automated speed enforcement present?	No	
Access Data		
Driveway count Major commercial	1	3 major comm. driveways per mile.
Major industrial	1	3 major industrial driveways per mile.
Minor	5	17 minor driveways per mile.
Cross Section Data		
Lane width, ft	12	
Outside shoulder width, ft	4	
Median width, ft	10	
Median barrier present?	No	
Roadside Data		
Roadside fixed object count	15	50 objects per mile.
Average roadside fixed object offset, ft	10	•
Calibration Factors	<u>Value</u>	Default Values
Local calibration factor (C)	1.000	1.000
Adjustment factor for pedestrians (fped)	0.015	0.015
Adjustment factor for bicyclists (f_{bike})	0.008	0.008
Severity distribution calibration factor ($C_{sdf,tws}$)	1.000	1.000
Crash Modification Factors	F+I Multiple Single	PDO Multiple Single
Lane width		.000 1.000 1.000
Outside shoulder width		.931 0.931 0.931
Median width		.029 1.029 1.029
Median barrier		.000 1.000 1.000
Highway-rail grade crossing	1.000 1	.000 1.000 1.000
Major commercial driveways	1.048	1.048
Major industrial driveways	1.025	1.025
Minor driveways Automated speed enforcement	1.037 1.000 1	.000 <u>1.000</u> 1.000

Crash Totals Tabulation

Empirical Bayes adjustment type:	Clear tables	<u>Facility</u> MV+SV:	<u>Totals</u> 14.928
Site-specific	Sort rows	VP+VB: F+I:	
		PDO:	9.867
	Calculate	Total:	15.271

	<u>Tota</u>	al Expecte	d Crash Fi	requency,	crashes /	<u>year</u>		
	Multiple	e-vehicle	Single-	vehicle	Total-	<i>i</i> ehicle	Veh-ped	Veh-bike
Site type	F+I	PDO	F+I	PDO	F+I	PDO	F+I	F+I
Segments:	4.704	9.481	0.357	0.386	5.060	9.867	0.224	0.119
Intersections:					0.000	0.000	0.000	0.000
Total:	4.704	9.481	0.357	0.386	5.060	9.867	0.224	0.119

	Segment S	Sito Info	rmation			Predicted	crash frequ	iency, crashes / year	-	Site-sp	pecific obs	erved cras	h totals
	Segment			Multiple	-vehicle	Single-	vehicle	Vehicle-pedestrian	Vehicle-bicycle	Multiple	e-vehicle	Single	vehicle
Number	Year	Туре	Street number	F+I	PDO	F+I	PDO	F+I	F+I	F+I	PDO	F+I	PDO
1	2016	6D		1.948	2.935	0.241	0.303	0.081	0.043	8	14	1	1

	Segment S	Sito Info	rmation		E	Expected of	crash frequ	ency, crashes / yea	r		Combin	ed CMF	
<u> </u>	Segment	Sile IIIIO	mation	Multiple	Multiple-vehicle Single-ve			Vehicle-pedestrian Vehicle-bicycle		Multiple-vehicle		Single-vehicle	
Number	Year	Туре	Street number	F+I	PDO	F+I	PDO	F+I	F+I	F+I	PDO	F+I	PDO
1	2016	6D		4.704	9.481	0.357	0.386	0.224	0.119	1.067	1.067	1.087	1.087

EXERCISE 2: TWO-WAY ARTERIAL SEGMENT

Location: Six-lane arterial section with a center two-way left-turn lane (TWLTL) Study year: 2014 Area type: Suburban Crash data description: Data for each individual segment Crash data year: 2014

INPUT DATA

Basic Roadway Data

Number of lanes: 6 (plus one TWLTL) Segment length: 0.50 mi Posted speed limit: 30 mph Number of highway-rail grade crossings: 1 Automated speed enforcement: yes

Cross-Section Data

Lane width: 11 ft Outside shoulder width: 2 ft

Roadside Data

Roadside fixed-object offset: 5 ft Roadside fixed-object density: 80/mile

Driveway Data

Major commercial driveways: 2 Major industrial driveways: 1 Minor driveways: 10

Traffic Data

AADT (year 2014): 26,000 veh/day

Crash Data

Crash Type	Count Fatal-and-injury Property-damage-only 3 5					
	Fatal-and-injury	Property-damage-only				
Multiple-vehicle	3	5				
Single-vehicle	1	2				

OUTPUT SUMMARY

What is the total expected number of crashes?8.034

Safety Prediction Worksheet for General Information			Information	
Analyst			t number	
Date			t name nent number 1	
Location		0	/sis year 2014	
		-		1
Add to Totals worksheet		Restore equations	Rese	input cells
Output Summary		frequency, crashes / y	rear C	ombined CMF
Total crashes		PDO Total 3.469 5.741	Multiple-vehicle crashes	F+I PDC 1.034 1.24
Multiple-vehicle crashes		3.012	Single-vehicle crashes	1.279 1.54
Single-vehicle crashes).457		1.210 1.01
Vehicle-pedestrian crashes	0.184		Severity distribution for	F+I crashes
Vehicle-bicycle crashes	0.136		K A	В
			0.029 0.228	0.726 1.29
Input Data		<u>Value</u>	<u>Advisory Messages</u>	
Basic Roadway Data		Cy the set		
Area type Segment type		Suburban 7T	6 Ianes + two-way left	turn lanc
Segment length, mi		0.5	o ianes + two-way lell	
Annual average daily traffic (AADT), veh/dav	26000		
Number of highway-rail grade cros		1	2 crossings per mile.	
Posted speed limit, mi/h	0	30		
Automated speed enforcement pre	sent?	Yes	· ·	
Access Data				
Driveway count Major comm	nercial	2	4 major comm. drivew	ays per mile.
Major indus	trial	1	2 major industrial driv	eways per mile.
Minor		10	20 minor driveways pe	er mile.
Cross Section Data				
Lane width, ft		11		
Outside shoulder width, ft		2		
Median width, ft		10		
Median barrier present?		No	•	
Roadside Data				
Roadside fixed object count		40	80 objects per mile.	
Average roadside fixed object offse	, ft	5	•	
Calibration Factors		<u>Value</u>	<u>Default Value</u>	<u>es</u>
Local calibration factor (C)		1.000	1.000	
Adjustment factor for pedestrians	(f _{ped})	0.034	0.034	
Adjustment factor for bicyclists (f	_{vike})	0.025	0.025	
Severity distribution calibration fac	tor ($C_{sdf,tws}$)	1.000	1.000	
Crash Modification Factors		F+I Multiple Singl	PDO e Multiple S	ingle
Lane width			1.022 1.022	1.022
Outside shoulder width			0.986	0.986
Median width			1.000	1.000
Median barrier		1.000	1.000	1.000
Highway-rail grade crossing			1.081 1.081	1.081
Major commercial driveways		1.073	1.073	
Major industrial driveways		1.011	1.011	
Major industrial driveways Minor driveways		1.055	1.055	
Major industrial driveways		1.055 0.830		<u>1.000</u> 1.416

Crash Totals Tabulation

Empirical Bayes	Clear tables		<u>Facility</u>	<u>Totals</u>
adjustment type:			MV+SV:	7.586
Site-specific	0		VP+VB:	0.448
	Sort rows		F+I:	3.055
			PDO:	4.978
	Calculate		Total:	8.034
		·		

	<u>Tota</u>	al Expecte	d Crash Fi	requency.	crashes /	<u>vear</u>		
	Multiple	e-vehicle	Single-	vehicle	Total-	Veh-bike		
Site type	F+I	PDO	F+I	PDO	F+I	PDO	F+I	F+I
Segments:	2.296	4.347	0.312	0.631	2.608	4.978	0.258	0.190
Intersections:					0.000	0.000	0.000	0.000
Total:	2.296	4.347	0.312	0.631	2.608	4.978	0.258	0.190

	c	egment S	Sito Info	rmation			Predicted	crash frequ	iency, crashes / year		Site-sp	pecific obs	erved cras	h totals
	<u>.</u>	egment		mation	Multiple	e-vehicle	Single-	vehicle	Vehicle-pedestrian	Vehicle-bicycle	Multiple	e-vehicle	Single	vehicle
١	Number	Year	Туре	Street number	F+I	PDO	F+I	PDO	F+I	F+I	F+I	PDO	F+I	PDO
	1	2014	7T		1.659	3.012	0.294	0.457	0.184	0.136	3	5	1	2

	Segment	Sito Info	rmation		E	Expected of	crash frequ	iency, crashes / yea	r		Combin	ed CMF	
<u> </u>	segments			Multiple	-vehicle	Single-	vehicle	Vehicle-pedestrian	Vehicle-bicycle	Multiple	e-vehicle	Single-	vehicle
Number	Year	Туре	Street number	F+I	PDO	F+I	PDO	F+I	F+I	F+I	PDO	F+I	PDO
1	2014	7T		2.296	4.347	0.312	0.631	0.258	0.190	1.034	1.246	1.279	1.542

EXERCISE 3: TWO-WAY ARTERIAL SEGMENT

Location: Conversion of a six-lane divided section into an eight-lane divided section Study year: 2016 Area type: Urban Crash data description: No crash data

INPUT DATA (for six-lane divided section) Use data in Exercise 1

INPUT DATA (for eight-lane divided section)

Basic Roadway Data

Number of lanes: 8 Segment length: 0.30 mi Posted speed limit: 45 mph Number of highway-rail grade crossings: 0 Automated speed enforcement: no

Cross-Section Data

Lane width: 11 ft Outside shoulder width: 1 ft Inside shoulder width: 1 ft Median width: 2 ft Median type: concrete barrier

Roadside Data

Roadside fixed-object offset: 10 ft Roadside fixed-object density: 50/mile

Driveway Data

Major commercial driveways: 1 Major industrial driveways: 1 Minor driveways: 5

Traffic Data

AADT (year 2016): 56,000 veh/day

Crash Data

Not available

OUTPUT SUMMARY

What is the total predicted number of crashes for the six-lane divided section?

6.543

What is the total predicted number of crashes for the eight-lane divided section? ...

7.346

General Information	<u>Site Ir</u>	nformation_
Analyst	Street	number
Agency	Street	name
Date	•	ent number 1
Location	Analys	sis year 2016
Add to Totals worksheet	Restore equations	Reset input cells
	h frequency, crashes / ye	
F+I	PDO Total	F+I PDC
Total crashes 2.764 Multiple-vehicle crashes 2.358	3.779 6.543 3.456	Multiple-vehicle crashes 1.067 1.06 Single-vehicle crashes 1.087 1.08
Single-vehicle crashes 0.259	0.323	
Vehicle-pedestrian crashes 0.096		Severity distribution for F+I crashes
Vehicle-bicycle crashes 0.051		<u> </u>
		0.036 0.186 0.725 1.81
Input Data	<u>Value</u>	<u>Advisory Messages</u>
Basic Roadway Data	Linkan	
Area type Segment type	Urban 6D	
Segment length, mi	0.3	•
Annual average daily traffic (AADT), veh/day	56000	
Number of highway-rail grade crossings present	0	
Posted speed limit, mi/h	45	
Automated speed enforcement present?	No	· ·
Access Data		
Driveway count Major commercial	1	3 major comm. driveways per mile.
Major industrial	1	3 major industrial driveways per mile.
Minor	5	17 minor driveways per mile.
Cross Section Data		
Lane width, ft	12	
Outside shoulder width, ft	4	
Median width, ft	10	
Median barrier present?	No	•
Roadside Data		
Roadside fixed object count	15	50 objects per mile.
Average roadside fixed object offset, ft	10	•
Calibration Factors	<u>Value</u>	Default Values
Local calibration factor (C)	1.000	1.000
Adjustment factor for pedestrians (fped)	0.015	0.015
Adjustment factor for bicyclists (f _{bike})	0.008	0.008
Severity distribution calibration factor ($C_{sdf,tws}$)	1.000	1.000
Crash Modification Factors	F+I Multiple Single	PDO Multiple Single
Lane width		.000 1.000 1.000
Outside shoulder width		.931 0.931 0.931
		.029 1.029 1.029
Median width		.000 1.000 1.000
Median width Median barrier	1.000	
		.000 1.000 1.000
Median barrier Highway-rail grade crossing Major commercial driveways	1.000 1 1.048	1.048
Median barrier Highway-rail grade crossing Major commercial driveways Major industrial driveways	1.000 1 1.048 1.025	1.048 1.025
Median barrier Highway-rail grade crossing Major commercial driveways	1.000 1 1.048 1.025 1.037	1.048

Safety Prediction Worksheet for General Information	-		Site Information			
Analyst			Street number			
Agency			Street name			
Date			Segment number	1		
Location			Analysis year	2016		
Add to Totals worksheet		Restore equati	ons	Reset	t input cells	
Output Summary		sh frequency, crash	nes / year	C	ombined Cl	
Tatal and be	F+/	PDO Total	Maddin La cash i		F+/	PDO
Total crashes Multiple-vehicle crashes	2.774 1.975	4.572 7.346 3.499		icle crashes	0.746 2.493	0.746
Single-vehicle crashes	0.537	1.073	Single-veni		2.493	2.490
Vehicle-pedestrian crashes	0.163	1.075	Severity of	distribution for l	F+I crashes	
Vehicle-bicycle crashes			K		В	, C
			0.042	2 0.156	0.661	1.915
Input Data		Value	Advisory	<u>Messages</u>		
Basic Roadway Data						
Area type		Urban	•			
Segment type		8D	•			
Segment length, mi Annual average daily traffic (AAD	T) veh/dev	0.3	•			
Number of highway-rail grade cro		56000	•			
Posted speed limit, mi/h	issings preseri	45	•			
Automated speed enforcement p	resent?	-49 No	•			
		110				
Access Data						
Driveway count Major com		1		comm. drivew		
Major indu	strial	1		ndustrial driv		mile.
Minor		5	17 minor	drivewayspe	er mile.	
Cross Section Data						
Lane width, ft		11				
Outside shoulder width, ft		1				
Median width, ft		2				
Median barrier present?		Yes				
Roadside Data						
Roadside fixed object count		15	50 object	ts per mile.		
Average roadside fixed object off	set, ft	10				
Calibration Factors		<u>Value</u>		<u>Default Value</u>	<u>es</u>	
Local calibration factor (C)		1.000		1.000		
Adjustment factor for pedestrians	s (f _{ped})	0.023		0.023		
Adjustment factor for bicyclists (f _{bike})	0.014		0.014		
Severity distribution calibration fa	actor $(C_{sdf,tws})$	1.000		1.000		
Crash Modification Factors		F+1		PDO		
Lana width		Multiple	Single	· · · ·	ingle 1 022	
Lane width Outside shoulder width		1.022	<u>1.022</u> 1.014	1.022	1.022 1.014	
Median width		1.077	1.077	1.014	1.077	
Median barrier		0.600	1.967	0.600	1.967	
Highway-rail grade crossing		1.000	1.000	1.000	1.000	
Major commercial driveways		1.048		1.048		
Major industrial driveways		1.025		1.025		
Minor driveways		1.037		1.037		
innor annonayo						
Automated speed enforcement		1.000	1.000	1.000	1.000	

EXERCISE 4: ONE-WAY ARTERIAL SEGMENT

Location: Two-lane one-way arterial section Study year: 2014 Area type: Urban Crash data description: Data for each individual segment Crash data year: 2014

INPUT DATA

Basic Roadway Data

Number of lanes: 2 Segment length: 0.50 mi Posted speed limit: 30 mph Bike lanes: None Automated speed enforcement: no Parallel parking: on the left side throughout the section Angle parking: on the right side throughout the section

Cross-Section Data

Lane width: 11 ft Right shoulder width: 0 ft

Roadside Data

Roadside fixed-object offset: 5 ft Roadside fixed-object density: 16/mile

Driveway Data

Major commercial driveways: 1 Minor driveways: 10

Traffic Data

AADT (year 2014): 12,000 veh/day

Crash Data

Crash Type	Co	unt
	Fatal-and-injury	Property-damage-only
Multiple-vehicle	1	2
Single-vehicle	0	1

OUTPUT SUMMARY

General Information	<u>Site I</u>	nformation
Analyst	Street	t number
Agency	Street	t name
Date	0	ent number 1
Location	Analy	sis year 2014
Add to Totals worksheet	Restore equations	Reset input cells
	frequency, crashes / ye	
	PDO Total 6.881 9.868	F+I PDC
	5.881 9.868 5.018	Multiple-vehicle crashes 3.214 3.21 Single-vehicle crashes 3.377 3.37
	0.863	Single-vehicle clashes 3.377 3.37
Vehicle-pedestrian crashes 0.163	5.000	Severity distribution for F+I crashes
Vehicle-bicycle crashes 0.106		K A B C
		0.036 0.328 1.065 1.55
Input Data	<u>Value</u>	Advisory Messages
Basic Roadway Data		
Area type	Urban	
Segment type	20	•
Segment length, mi	0.5 No	•
Bicycle lanes present? Annual average daily traffic (AADT), veh/day	12000	•
Posted speed limit, mi/h	30	
Automated speed enforcement present?	No	
Access Data		
Driveway count Major commercial	1	2 major comm. driveways per mile.
Minor	10	20 minor driveways per mile.
Cross Section Data		
Lane width, ft	11	
Right shoulder width, ft	0	
Roadside Data		
On-street parallel parking length on right side, mi	0	· · · · · · · · · · · · · · · · · · ·
On-street angle parking length on right side, mi	0.5	•
On-street parallel parking length on left side, mi	0.5	
On-street angle parking length on left side, mi	0	16. objecto por milo
Roadside fixed object count Average roadside fixed object offset, ft	5	16 objects per mile.
Calibration Factors	Value	Default Values
Local calibration factor (C)	1.000	1.000
Adjustment factor for pedestrians (f_{ped})	0.017	0.017
Adjustment factor for bicyclists (f_{bike})	0.011	0.011
Severity distribution calibration factor ($C_{sdf,ows}$)	1.000	1.000
Probability of fatality given K+A severity ($P_{K K+A}$)	0.099	0.099
Crash Modification Factors	F+I	PDO
S 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Multiple Single	
Right shoulder width		.084 1.084 1.084
On-street parallel parking		.056 1.056 1.056
On-street angle parking Major commercial driveways	2.682 2 1.000	2.682 2.682 2.682 1.000
Minor driveways	1.047	1.047
Automated speed enforcement		.000 1.000 1.000
Roadside fixed objects		.100 1.100

Crash Totals Tabulation

Empirical Bayes	Clear tables		<u>Facility</u>	<u>Totals</u>
adjustment type:		[MV+SV:	7.039
Site-specific	Sort rows		VP+VB:	0.197
			F+I:	2.369
		1	PDO:	4.868
	Calculate		Total:	7.236
		-		

Total Expected Crash Frequency, crashes / year								
	Multiple	e-vehicle	Single-	vehicle	Total-v	<i>v</i> ehicle	Veh-ped	Veh-bike
Site type	F+I PDO		F+I	PDO	F+I	PDO	F+I	F+I
Segments:	1.833	3.981	0.339	0.886	2.172	4.868	0.120	0.077
Intersections:					0.000	0.000	0.000	0.000
Total:	1.833	3.981	0.339	0.886	2.172	4.868	0.120	0.077

	Segment	Sito Info	rmation	Predicted crash frequency, crashes / year					Site-specific observed crash totals				
<u> </u>	Segment		imation	Multiple	e-vehicle	Single	vehicle	Vehicle-pedestrian	Vehicle-bicycle	Multiple	e-vehicle	Single	vehicle
Number	Year	Туре	Street number	F+I	PDO	F+I	PDO	F+I	F+I	F+I	PDO	F+I	PDO
1	2014	20		2.291	6.018	0.427	0.863	0.163	0.106	1	2	0	1

	Segment	Sito Info	ormation	Expected crash frequency, crashes / year						Combined CMF			
<u> </u>	Segment		<u>innation</u>	Multiple	-vehicle	Single-	vehicle	Vehicle-pedestrian	Vehicle-bicycle	Multiple	e-vehicle	Single-	vehicle
Number	Year	Туре	Street number	F+I	PDO	F+I	PDO	F+I	F+I	F+I	PDO	F+I	PDO
1	2014	20		1.833	3.981	0.339	0.886	0.120	0.077	3.214	3.214	3.377	3.377

EXERCISE 5: ONE-WAY ARTERIAL SEGMENT

Location: Conversion of a two-lane one-way section with parking on both sides into a three-lane one-way section with no parking Study year: 2016 Area type: Urban Crash data description: No crash data

INPUT DATA (for two-lane one-way section) Use data in Exercise 4 Traffic Data

AADT (year 2016): 16,000 veh/day

INPUT DATA (for three-lane one-way section)

Basic Roadway Data

Number of lanes: 3 Segment length: 0.50 mi Posted speed limit: 30 mph Bike lanes: none Automated speed enforcement: no Parallel parking: no Angle parking: no

Cross-Section Data

Lane width: 11 ft Right shoulder width: 4 ft

Roadside Data

Roadside fixed-object offset: 5 ft Roadside fixed-object density: 16/mile

Driveway Data

Major commercial driveways: 1 Minor driveways: 10

Traffic Data

AADT (year 2016): 16,000 veh/day

Crash Data

Not available

OUTPUT SUMMARY

What is the total predicted number of crashes for the two-lane one-way section?

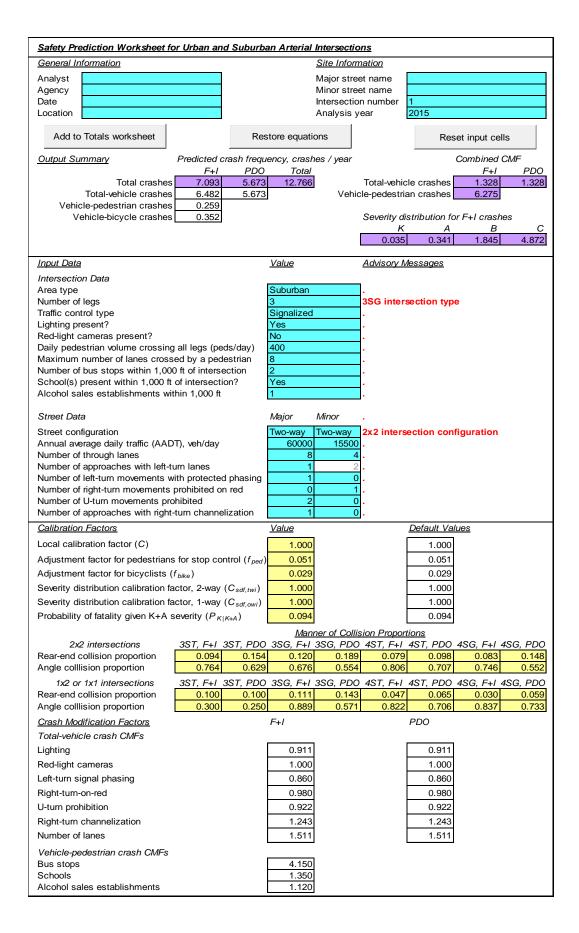
13.180

What is the total predicted number of crashes for the three-lane one-way section? ...

4.359

General Information	Site I	nformation
Analyst	Stree	t number
Agency		t name
Date	•	ient number 1
Location	Analy	sis year 2016
Add to Totals worksheet	Restore equations	Reset input cells
	h frequency, crashes / y	
F+I Total crashes 4.133	PDO Total 9.047 13.180	F+I PDC Multiple-vehicle crashes 3.214 3.214
Multiple-vehicle crashes 3.292	8.071	Multiple-vehicle crashes 3.214 3.214 Single-vehicle crashes 3.377 3.377
Single-vehicle crashes 0.482	0.977	
Vehicle-pedestrian crashes 0.218		Severity distribution for F+I crashes
Vehicle-bicycle crashes 0.141		K A B C
		0.050 0.454 1.473 2.15
Input Data	<u>Value</u>	Advisory Messages
Basic Roadway Data		
Area type	Urban	•
Segment type	20	1
Segment length, mi Bicycle lanes present?	0.5 No	•
Annual average daily traffic (AADT), veh/day	16000	•
Posted speed limit, mi/h	30	
Automated speed enforcement present?	No	
Access Data		
Driveway count Major commercial	1	2 major comm. driveways per mile.
Minor	10	20 minor driveways per mile.
Cross Section Data		
Lane width, ft	11	
Right shoulder width, ft	0	
Roadside Data		
On-street parallel parking length on right side, mi		· · · ·
On-street angle parking length on right side, mi	0.5	· ·
On-street parallel parking length on left side, mi	0.5	1
On-street angle parking length on left side, mi Roadside fixed object count	0	16 objects per mile.
Average roadside fixed object offset, ft	5	
Calibration Factors	Value	Default Values
Local calibration factor (C)	1.000	1.000
Adjustment factor for pedestrians (f_{ped})	0.017	0.017
Adjustment factor for bicyclists (<i>f</i> _{bike})	0.011	0.011
Severity distribution calibration factor ($C_{sdf,ows}$)	1.000	1.000
Probability of fatality given K+A severity ($P_{K K+A}$)		0.099
Crash Modification Factors	F+1	PDO
Diskt shared days in the	Multiple Single	
Right shoulder width		.084 1.084 1.084
On-street parallel parking On-street angle parking		.056 1.056 1.056 2.682 2.682 2.682
Major commercial driveways	1.000	1.000
Minor driveways	1.047	1.047
Automated speed enforcement		.000 1.000 1.000
Roadside fixed objects	1	.100 1.100

General Information	<u>Site</u>	Information
Analyst	Stree	et number
Agency		et name
Date	0	nent number 1
Location	Analy	ysis year 2016
Add to Totals worksheet	Restore equations	Reset input cells
Output Summary Predicted crash	h frequency, crashes / y	
F+/	PDO Total	F+I PDC
Total crashes 1.441 Multiple-vehicle crashes 1.062	2.918 4.359 2.603	Multiple-vehicle crashes 1.047 1.04 Single-vehicle crashes 1.100 1.100
Single-vehicle crashes 0.232	0.315	
Vehicle-pedestrian crashes 0.101	0.010	Severity distribution for F+I crashes
Vehicle-bicycle crashes 0.046		K A B C
		0.012 0.109 0.464 0.85
Input Data	<u>Value</u>	Advisory Messages
Basic Roadway Data		
Area type	Urban	•
Segment type	30	· · · ·
Segment length, mi	0.5	· · ·
Bicycle lanes present? Annual average daily traffic (AADT), veh/day	No 16000	•
Posted speed limit, mi/h	30	•
Automated speed enforcement present?	No	
Access Data		
Driveway count Major commercial	1	2 major comm. driveways per mile.
Minor	10	20 minor driveways per mile.
Cross Section Data		
Lane width, ft	11	
Right shoulder width, ft	4	
Roadside Data		
On-street parallel parking length on right side, mi	0	
On-street angle parking length on right side, mi	0	
On-street parallel parking length on left side, mi	0	
On-street angle parking length on left side, mi	0	
Roadside fixed object count	8	16 objects per mile.
Average roadside fixed object offset, ft	5	•
Calibration Factors	Value	Default Values
Local calibration factor (C)	1.000	1.000
Adjustment factor for pedestrians (f_{ped})	0.024	0.024
Adjustment factor for bicyclists (<i>f</i> _{bike})	0.011	0.011
Severity distribution calibration factor ($C_{sdf,ows}$)	1.000	1.000
Probability of fatality given K+A severity ($P_{K K+A}$)		0.099
Crash Modification Factors	F+1	PDO
	Multiple Sing	
Right shoulder width		1.000 1.000
On-street parallel parking		1.000 1.000
On-street angle parking		1.000 1.000
Major commercial driveways	1.000	1.000
	4 6 4 7	4 0 4 7
Minor driveways Automated speed enforcement	1.047	1.047 1.000 1.000


EXERCISE 6: TWO-WAY INTERSECTION (2×2)

Location: Three-leg signalized intersection on eight-lane divided arterialStudy period: 2015Area type: SuburbanCrash data description: No crash data

INPUT DATA

Basic Intersection Data
Intersection traffic control mode: Signal
Lighting: Present
Number of Lanes
Major Street: 8 lanes
Minor Street: 4 lanes
Left-Turn Lanes
Major Street: One approach (one lane)
Right-Turn Channelization
Major Street: Yes (one approach)
Red-light camera: No
Traffic Control
Left-Turn Operational Mode
Protected-only mode on the major continuous street: Yes
Right-Turn-On-Red Prohibition
Number of approaches: 1 (from the minor street)
U-Turn Prohibition
Number of approaches: 2 (both on the major street)
Traffic Data
Major Street
AADT (year 2015): 60,000 veh/day
Minor Street
AADT (year 2015): 15,500 veh/day
Pedestrian Data
Level of pedestrian activity: Medium
Refugee islands: None
Number of schools: 1
Number of bus stops: 2
Alcohol sales establishments: 1
Crash Data
Not available

OUTPUT SUMMARY

EXERCISE 7: TWO-WAY INTERSECTION (2×2)

Location: Four-leg stop-controlled intersection on six-lane divided arterial Study period: 2014 Area type: Suburban Crash data description: Data for each individual intersection Crash data year: 2014

INPUT DATA

Basic Intersection Data

Intersection traffic control mode: Stop control on minor street Lighting: Present Number of Lanes Major Street: 6 lanes Minor Street: 2 lanes Left-Turn Lanes

Major Street: Present (both approaches) Minor Street: None

Traffic Data

Major Street

AADT (year 2014): 40,000 veh/day

Minor Street

AADT (year 2014): 4,500 veh/day

Crash Data

Crash Type	Count				
	Fatal-and-injury Property-damage-only				
Total-vehicle	3	5			

OUTPUT SUMMARY

What is the total predicted number of crashes? 8.341

Safety Prediction Worksheet f	or Urban and Suburl	ban Arterial Inters	ections	
General Information		Site I	nformation	
Analyst			street name	
Agency			street name	
Date		Inters	ection number 1	
Location		Analy	sis year 2014	
Add to Totals worksheet	Re	estore equations	Reset input cells	
Output Summary	Predicted crash freq		ear Combined CM	1F
	F+I PDC		F+1	PDO
Total crashes Total-vehicle crashes			Total-vehicle crashes 0.913 Vehicle-pedestrian crashes 6.275	0.913
Vehicle-pedestrian crashes		<u>/</u>	venicie-pedestriari crasnes 0.275	
Vehicle-bicycle crashes			Severity distribution for F+I crashes	
			<u>К А В</u>	С
			0.012 0.265 0.980	2.092
Input Data		Value	Advisory Messages	
Intersection Data				
Area type		Suburban	·	
Number of legs Traffic control type		4 Two-way stop	4ST intersection type	
Lighting present?		Yes		
Red-light cameras present?		No		
Daily pedestrian volume crossing		400	<u> </u>	
Maximum number of lanes cross		8		
Number of bus stops within 1,00 School(s) present within 1,000 ft		2 Yes	·	
Alcohol sales establishments wi		1		
Street Data		Major Minor	#N/A	
		-		
Street configuration Annual average daily traffic (AAI	T) veb/day	Two-way Two-v 40000	vay 2x2 intersection configuration 4500.	
Number of through lanes	Ji), von/day	6	2.	
Number of approaches with left-t	urn lanes	1	0.	
Number of left-turn movements v	1 1 0		0.	
Number of right-turn movements		0	1.	
Number of U-turn movements pro Number of approaches with right		0	<mark>0</mark> .	
Calibration Factors		Value	Default Values	
Local calibration factor (C)				
	a for atom control (f	1.000 () 0.049	1.000	
Adjustment factor for pedestrian Adjustment factor for bicyclists		0.039	0.049	
			1.000	
Severity distribution calibration fa			1.000	
Severity distribution calibration for				
Probability of fatality given K+A	Sevenity $(P_{K K+A})$	0.043	0.043	
2x2 intersections	3ST, F+1 3ST, PD		<u>Collision Proportions</u> PDO 4ST, F+I 4ST, PDO 4SG, F+I 4S	
Rear-end collision proportion	0.094 0.15		0.189 0.079 0.098 0.083	0.148
Angle collision proportion	0.764 0.62	9 0.676 0	0.554 0.806 0.707 0.746	0.552
1x2 or 1x1 intersections	<u>3ST, F+I 3ST, PD</u>	0 3SG, F+I 3SG,	PDO_4ST, F+I_4ST, PDO_4SG, F+I_4S	G, PDO
Rear-end collision proportion	0.100 0.10		0.143 0.047 0.065 0.030	0.059
Angle collision proportion	0.300 0.25		0.571 0.822 0.706 0.837	0.733
<u>Crash Modification Factors</u> Total-vehicle crash CMFs		F+1	PDO	
Lighting		0.913	0.913	
Red-light cameras		1.000	1.000	
Left-turn signal phasing		1.000	1.000	
Right-turn-on-red		1.000	1.000	
U-turn prohibition				
Right-turn channelization		1.000	1.000	
Number of lanes		1.000	1.000	
		1.000	1.000	
Vehicle-pedestrian crash CMFs Bus stops		4.150		
Schools		1.350		
Alcohol sales establishments		1.120		

Crash Totals Tabulation

Empirical Bayes	Clear tables	<u>Facility</u>	<u>Totals</u>
adjustment type:		MV+SV:	7.667
Site-specific	O ant many	VP+VB:	0.675
	Sort rows	F+I:	3.592
		PDO:	4.750
	Calculate	Total:	8.341

Total Expected Crash Frequency, crashes / year								
	Multiple	Multiple-vehicle Single-vehicle			Total-	<i>r</i> ehicle	Veh-ped	Veh-bike
Site type	F+I PDO F+I PDO F+I PDO				F+I	F+I		
Segments:	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Intersections:					2.917	4.750	0.376	0.299
Total:	0.000	0.000	0.000	0.000	2.917	4.750	0.376	0.299

Intersection Site Information				Predicted crash frequency, crashes / year				Site-specific observed crash totals		
miersection Site miornation			IOIIIIaliOII	Total-v	<i>r</i> ehicle	Vehicle-pedestrian	Vehicle-bicycle	Total-	vehicle	Vehicle-pedestrian
Number	Year	Туре	Configuration	F+I	PDO	F+I	F+I	F+I	PDO	F+I
1	2014	4ST	Two-way	2.779	3.697	0.317	0.253	3	5	

Intersection Site Information			formation	Expected crash frequency, crashes / year				Combined CMF		
<u>1110</u>	mersection Site miornation			Total-\	<i>i</i> ehicle	Vehicle-pedestrian	Vehicle-bicycle	Total-v	vehicle	Vehicle-pedestrian
Number	Year	Туре	Configuration	F+I	PDO	F+I	F+I	F+I	PDO	F+I
1	2014	4ST	Two-way	2.917	4.750	0.376	0.299	0.913	0.913	6.275

EXERCISE 8: ONE-WAY INTERSECTION

Location: Conversion of a two-way minor street into one-way at a four-leg intersection on oneway arterial Study period: 2015 Crash data description: No crash data

INPUT DATA

Basic Intersection Data

Intersection traffic control mode: Signal Lighting: Present Minor Street: Two-way to one-way conversion Number of Lanes Major Street: 4 lanes Minor Street: 2 lanes Left-Turn Lanes Major Street: One approach (one lane) Right-Turn Channelization Major Street: No Minor Street: No Red-light camera: Yes Right-Turn-On-Red Prohibition Number of approaches: 0

Traffic Data

Major Street AADT (year 2015): 24,000 veh/day Minor Street AADT (year 2015): 10,500 veh/day

Pedestrian Data

Level of pedestrian activity: High Refugee islands: None Number of schools: 0 Number of bus stops: 1 Alcohol sales establishments: 2

Crash Data

Not available

OUTPUT SUMMARY

What is the total predicted number of crashes when minor street is two-way?...

4.973

What is the total predicted number of crashes when minor street is one-way?...

3.726

Safety Prediction Worksheet for Urban and Subur	ban Arterial Intersections
General Information	Site Information
Analyst	Major street name
Agency	Minor street name
Date	Intersection number 1
Location	Analysis year 2015
Add to Totals worksheet R	estore equations Reset input cells
Output Summary Predicted crash free	uency, crashes / year Combined CMF
F+I PD	
Total crashes 1.399 3.57 Total-vehicle crashes 0.818 3.57	
Vehicle-pedestrian crashes 0.528	
Vehicle-bicycle crashes 0.053	Severity distribution for F+I crashes
	K A B C
	0.003 0.061 0.335 1.000
Input Data	Value Advisory Messages
Intersection Data	
Area type Number of legs	Urban . 4 4SG intersection type
Traffic control type	4 4SG intersection type Signalized .
Lighting present?	Yes
Red-light cameras present?	Yes .
Daily pedestrian volume crossing all legs (peds/day)	3200 .
Maximum number of lanes crossed by a pedestrian Number of bus stops within 1,000 ft of intersection	4
School(s) present within 1,000 ft of intersection?	No
Alcohol sales establishments within 1,000 ft	2
Street Data	Major Minor .
Street configuration	One-way Two-way 1x2 intersection configuration
Annual average daily traffic (AADT), veh/day	24000 10500.
Number of through lanes	
Number of approaches with left-turn lanes Number of left-turn movements with protected phasing	
Number of right-turn movements prohibited on red	
Number of U-turn movements prohibited	0 0.
Number of approaches with right-turn channelization	0 0.
Calibration Factors	Value Default Values
Local calibration factor (C)	1.000
Adjustment factor for pedestrians for stop control (f_{pe}	
Adjustment factor for bicyclists (f _{bike})	0.012
Severity distribution calibration factor, 2-way (C _{sdf,twi})	
Severity distribution calibration factor, 1-way (C _{sdf,owi}	
Probability of fatality given K+A severity $(P_{K K+A})$	0.046
2x2 intersections 3ST. F+I 3ST. PD	<u>Manner of Collision Proportions</u> 0 3SG, F+I 3SG, PD0 4ST, F+I 4ST, PD0 4SG, F+I 4SG, PD0
Rear-end collision proportion 0.094 0.15	
Angle collision proportion 0.764 0.62	
1x2 or 1x1 intersections <u>3ST, F+I 3ST, PD</u>	0_3SG, F+I_3SG, PD0_4ST, F+I_4ST, PD0_4SG, F+I_4SG, PD0
Rear-end collision proportion 0.100 0.10	
Angle collision proportion 0.300 0.25	
<u>Crash Modification Factors</u> Total-vehicle crash CMFs	F+I PDO
Lighting	0.911 0.911
Red-light cameras	0.788 0.788
Left-turn signal phasing	1.000
Right-turn-on-red	1.000 1.000
U-turn prohibition	1.000 1.000
Right-turn channelization	1.000 1.000
Number of lanes	1.433
Vehicle-pedestrian crash CMFs	
Bus stops	2.780
Schools Alcohol sales establishments	1.000
	1.120

Safety Prediction Worksheet for Urban and Suburb	an Arterial Intersections
General Information	Site Information
Analyst	Major street name
Agency	Minor street name
Date	Intersection number 1 Analysis year 2015
Location	Analysis year 2015
Add to Totals worksheet Re	store equations Reset input cells
	uency, crashes / year Combined CMF
F+I PDO Total crashes 1.307 2.420	
Total-vehicle crashes 0.740 2.420	
Vehicle-pedestrian crashes 0.528	
Vehicle-bicycle crashes 0.038	Severity distribution for F+I crashes
	K A B C
	0.003 0.037 0.312 0.934
Input Data	Value Advisory Messages
Intersection Data	
Area type Number of legs	Urban . 4 4SG intersection type
Traffic control type	Signalized .
Lighting present?	Yes .
Red-light cameras present?	Yes .
Daily pedestrian volume crossing all legs (peds/day)	3200 .
Maximum number of lanes crossed by a pedestrian Number of bus stops within 1,000 ft of intersection	4
School(s) present within 1,000 ft of intersection?	No
Alcohol sales establishments within 1,000 ft	2
Street Data	Major Minor .
Street configuration	One-way One-way 1x1 intersection configuration
Annual average daily traffic (AADT), veh/day	24000 10500.
Number of through lanes	4 2.
Number of approaches with left-turn lanes	
Number of left-turn movements with protected phasing Number of right-turn movements prohibited on red	
Number of U-turn movements prohibited	0 0
Number of approaches with right-turn channelization	0 0.
Calibration Factors	Value Default Values
Local calibration factor (C)	1.000
Adjustment factor for pedestrians for stop control (fped	0.020
Adjustment factor for bicyclists (f bike)	0.012
Severity distribution calibration factor, 2-way ($C_{sdf,twi}$)	1.000
Severity distribution calibration factor, 1-way ($C_{sdf,owi}$)	1.000
Probability of fatality given K+A severity ($P_{K K+A}$)	0.046 0.046
	Manner of Collision Proportions
2x2 intersections 3ST, F+I 3ST, PDC Rear-end collision proportion 0.094 0.154	3SG, F+I 3SG, PDO 4ST, F+I 4ST, PDO 4SG, F+I 4SG, PDO 0.120 0.189 0.079 0.098 0.083 0.148
Angle collision proportion 0.764 0.629	
1x2 or 1x1 intersections <u>3ST, F+I 3ST, PDC</u>) 3SG, F+I 3SG, PDO 4ST, F+I 4ST, PDO 4SG, F+I 4SG, PDO
Rear-end collision proportion 0.100 0.100	
Angle collision proportion 0.300 0.250	
Crash Modification Factors	F+I PDO
Total-vehicle crash CMFs	
Lighting	0.911 0.911
Red-light cameras	0.788 0.788
Left-turn signal phasing	1.000 1.000
Right-turn-on-red	1.000 1.000
U-turn prohibition	1.000 1.000
Right-turn channelization	1.000 1.000
Number of lanes	1.433 1.433
Vehicle-pedestrian crash CMFs	
Bus stops	2.780
Schools Alcohol sales establishments	1.000

EXERCISE 9: TWO-WAY ARTERIAL PROJECT

Location: A two-way six-lane divided arterial street project with three homogenous segments, one four-leg signalized intersection, and one three-leg stop-controlled intersection Study year: 2016 Area type: Urban Crash data description: No crash data

INPUT DATA (Segments)

Basic Roadway Data

	Segment 1	Segment 2	Segment 3
Number of lanes	6	6	6
Segment length (mi)	0.7	0.3	0.5
Posted speed limit (mph)	45	45	45
Highway-rail grade crossings	0	0	1
Automated speed enforcement	no	no	no
Cross-Section Data			
Lane width (ft)	11	10	10
Outside shoulder width (ft)	4	3	3
Inside shoulder width (ft)	1	1	1
Median width (ft)	8	5	5
Median type	curb	curb	curb
Roadside Data			
Roadside fixed-object offset (ft)	15	10	8
Roadside fixed-object density	50/mile	80/mile	80/mile
Driveway Data			
Major commercial driveways	2	1	2
Major industrial driveways	1	0	0
Minor driveways	15	6	15
Traffic Data			
AADT (in 2016)	65,000	55,000	55,000
Crash Data			
Not available			
INPUT DATA (Intersections)			
Basic Roadway Data			
	Intersection 1	Intersection 2	
Intersection traffic control mode	signal	unsignalized	
Approaches (legs)	4	3	
Lighting	present	not present	
Number of minor-street lanes	4	2	

Traffic Control

Left-turn lanes (major street)

Left-turn lanes (minor street)

Right-turn channelization

Red-light camera

two approaches

none

On major street

no

one approach

none

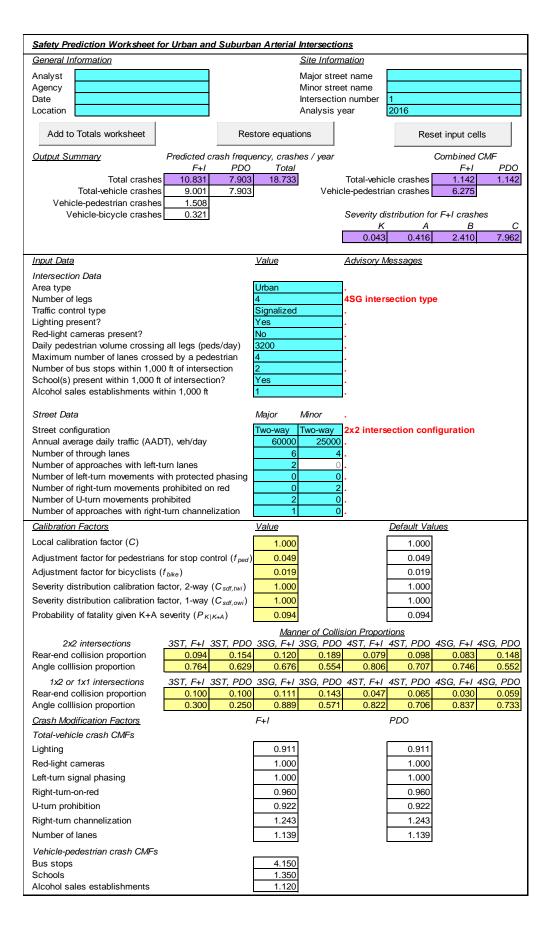
On major street

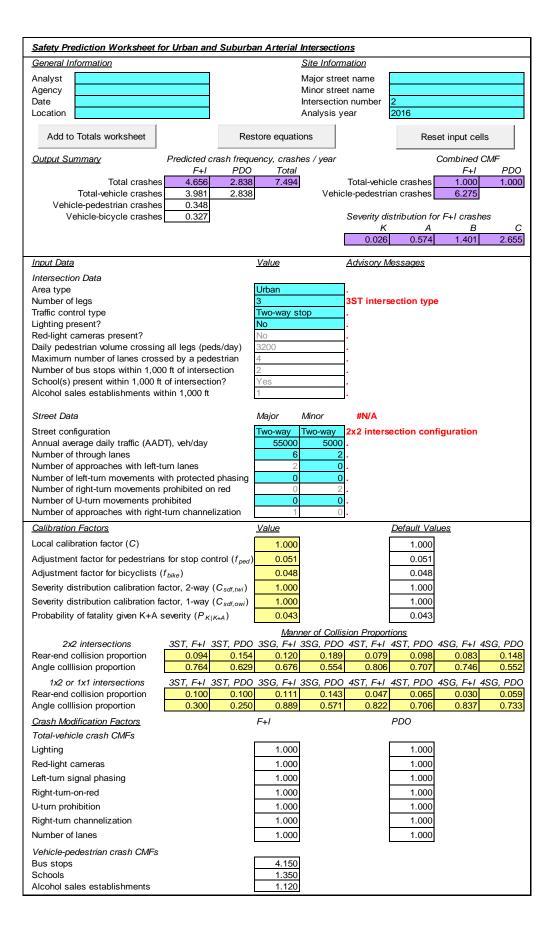
no

Left-	turn operational mode	Protected/permitted	-
Right	-turn-on-red prohibition	2 approaches	-
U-tui	rn prohibition	2 approaches	-
Traffic Data			
Minc	or-street AADT (in 2016)	25,000	5,000
Pedestrian Da	ta		
Leve	l of pedestrian activity	High	-
Num	ber of schools	1	-
Num	ber of bus stops	2	-
Alcol	nol sales establishments	1	-
Refu	ge Island	On major-street median (n _{lanesx} = 4)	-

Crash Data

Not available


OUTPUT SUMMARY


What is the total predicted number of crashes? 6

General Information	Site In	formation
Analyst	Street	number
Agency	Street	name
Date	0	ent number 1
Location	Analys	sis year 2016
Add to Totals worksheet	Restore equations	Reset input cells
Output Summary Predicted cras	sh frequency, crashes / ye	ear Combined CMF
F+1	PDO Total	F+I PDO
Total crashes 7.808	10.437 18.245	Multiple-vehicle crashes 1.091 1.09
Multiple-vehicle crashes 6.767 Single-vehicle crashes 0.631	<u>9.653</u> 0.784	Single-vehicle crashes 1.060 1.06
Single-vehicle crashes 0.631 Vehicle-pedestrian crashes 0.268	0.784	Severity distribution for F+I crashes
Vehicle-bicycle crashes 0.143		K A B (
		0.101 0.526 2.047 5.13
Input Data	Value	Advisory Messages
Basic Roadway Data		
Area type	Urban	•
Segment type	6D	· · ·
Segment length, mi Annual average daily traffic (AADT), veh/day	0.7	•
Number of highway-rail grade crossings present		•
Posted speed limit, mi/h	45	
Automated speed enforcement present?	No	
Access Data		
Driveway count Major commercial	2	3 major comm. driveways per mile.
Major industrial	1	1 major industrial driveways per mile.
Minor	15	21 minor driveways per mile.
Cross Section Data		
Lane width, ft	11	
Outside shoulder width, ft	4	
Median width, ft	8	
Median barrier present?	No	
Roadside Data		
Roadside fixed object count	35	50 objects per mile.
Average roadside fixed object offset, ft	15	•
Calibration Factors	<u>Value</u>	Default Values
ocal calibration factor (C)	1.000	1.000
Adjustment factor for pedestrians (fped)	0.015	0.015
Adjustment factor for bicyclists (f _{bike})	0.008	0.008
Severity distribution calibration factor ($C_{sdf,tws}$)	1.000	1.000
Crash Modification Factors	F+1	PDO Multiple Single
Lane width	Multiple Single	Multiple Single 022 1.022 1.022
		931 0.931 0.931
Outside shoulder width		041 1.041 1.041
	1.041 1	
Median width		.000 1.000 1.000
Median width Median barrier	1.000 1.	000 1.000 1.000 000 1.000 1.000
Median width Median barrier Highway-rail grade crossing	1.000 1.	
Median width Median barrier Highway-rail grade crossing Major commercial driveways	1.000 1. 1.000 1.	000 1.000 1.000
Median width Median barrier Highway-rail grade crossing Major commercial driveways Major industrial driveways Minor driveways	1.000 1. 1.000 1. 1.030 1. 1.005 1.064	000 1.000 1.000 1.030 1.005 1.064
Outside shoulder width Median width Median barrier Highway-rail grade crossing Major commercial driveways Major industrial driveways Minor driveways Automated speed enforcement	1.000 1. 1.000 1. 1.030 1. 1.005 1.064	000 1.000 1.000 1.030 1.005

Safety Prediction Worksheet for Two-Way Urb	an and Suburban Arte	rial Segments
General Information	Site Ir	nformation
Analyst	Street	number
Agency	Street	name
Date	Segm	ent number 2
Location	Analys	sis year 2016
Add to Totals worksheet	Restore equations	Reset input cells
	n frequency, crashes / ye	
F+1	PDO Total	F+I F
	4.064 7.033	Multiple-vehicle crashes 1.160 1
	<u>3.684</u> 0.380	Single-vehicle crashes 1.289 1
Vehicle-pedestrian crashes 0.103	0.360	Severity distribution for F+I crashes
Vehicle-bicycle crashes 0.055		K A B
		0.038 0.200 0.778 1
Input Data	Value	Advisory Messages
Basic Roadway Data		
Area type	Urban	• • •
Segment type	6D	· · ·
Segment length, mi	0.3	•
Annual average daily traffic (AADT), veh/day	55000	•
Number of highway-rail grade crossings present	0	1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A
Posted speed limit, mi/h	45	1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A
Automated speed enforcement present?	No	•
Access Data		
Driveway count Major commercial	1	3 major comm. driveways per mile.
Major industrial	0	• • • • • • • • • • • • • • • • • • •
Minor	6	20 minor driveways per mile.
Cross Section Data		
Lane width, ft	10	
Outside shoulder width, ft	3	
Median width, ft	5	
Median barrier present?	No	· · ·
Roadside Data		
Roadside fixed object count	24	80 objects per mile.
Average roadside fixed object offset, ft	10	•
Calibration Factors	Value	Default Values
Local calibration factor (C)	1.000	1.000
Adjustment factor for pedestrians (f ped)	0.015	0.015
Adjustment factor for bicyclists (f_{bike})	0.008	0.008
Severity distribution calibration factor ($C_{sdf,tws}$)	1.000	1.000
Crash Modification Factors	F+I	PDO Multiple Single
	Multiple Single	e <u>Multiple Single</u> .045 1.045 1.045
Lane width		
Lane width Outside shoulder width		958 0 958 0 958
Outside shoulder width	0.958 0	.958 0.958 0.958 059 1.059 1.059
Outside shoulder width Median width	0.958 0 1.059 1	.059 1.059 1.059
Outside shoulder width Median width Median barrier	0.958 0 1.059 1 1.000 1	.059 1.059 1.059 .000 1.000 1.000
Outside shoulder width Median width Median barrier Highway-rail grade crossing	0.958 0 1.059 1 1.000 1 1.000 1	.059 1.059 1.059 .000 1.000 1.000 .000 1.000 1.000
Outside shoulder width Median width Median barrier Highway-rail grade crossing Major commercial driveways	0.958 0 1.059 1 1.000 1 1.000 1 1.048	.059 1.059 1.059 .000 1.000 1.000 .000 1.000 1.000 .000 1.048 1.048
Outside shoulder width Median width Median barrier Highway-rail grade crossing Major commercial driveways Major industrial driveways	0.958 0 1.059 1 1.000 1 1.000 1 1.048 0.989	.059 1.059 1.059 .000 1.000 1.000 .000 1.000 1.000 .000 1.048 0.989
Outside shoulder width Median width Median barrier Highway-rail grade crossing Major commercial driveways	0.958 0 1.059 1 1.000 1 1.000 1 1.048 0.989 1.055 1	.059 1.059 1.059 .000 1.000 1.000 .000 1.000 1.000 .000 1.048 1.048

General Information	Site	e Information
Analyst	Stre	eet number
Agency	Stre	eet name
Date		ment number 3
Location	Ana	lysis year 2016
Add to Totals worksheet	Restore equations	Reset input cells
Output Summary Predicted cr	ash frequency, crashes /	' year Combined CMF
F+1	PDO Total	F+I PD
Total crashes 5.708	7.827 13.535	Multiple-vehicle crashes 1.354 1.35
Multiple-vehicle crashes 4.877	7.169	Single-vehicle crashes 1.338 1.33
Single-vehicle crashes 0.527	0.658	
Vehicle-pedestrian crashes 0.198		Severity distribution for F+I crashes
Vehicle-bicycle crashes 0.106		K A B 0.074 0.385 1.496 3.75
Input Data	Value	Advisory Messages
Basic Roadway Data		
Area type	Urban	
Segment type	6D	
Segment length, mi	0.5	
Annual average daily traffic (AADT), veh/day	55000	
Number of highway-rail grade crossings prese	nt 1	2 crossings per mile.
Posted speed limit, mi/h	45	
Automated speed enforcement present?	No	
Access Data		
Driveway count Major commercial	2	4 major comm. driveways per mile.
Major industrial	0	
Minor	15	30 minor driveways per mile.
Cross Section Data		
Lane width, ft	10	
Outside shoulder width, ft	3	
Median width, ft	5	
Median barrier present?	No	
Roadside Data		
Roadside fixed object count	24	48 objects per mile.
Average roadside fixed object offset, ft	8	· · ·
Calibration Factors	<u>Value</u>	Default Values
_ocal calibration factor (C)	1.000	1.000
Adjustment factor for pedestrians (f_{ped})	0.015	0.015
Adjustment factor for bicyclists (f bike)	0.008	0.008
Severity distribution calibration factor ($C_{sdf,tws}$) 1.000	1.000
Crash Modification Factors	F+1	PDO
	Multiple Sin	
Lane width	1.045	1.045 1.045 1.045
Outside shoulder width	0.958	0.958 0.958 0.958
Median width	1.059	1.059 1.059 1.059
Median barrier	1.000	1.000 1.000 1.000
Highway-rail grade crossing	1.081	1.081 1.081 1.081
Major commercial driveways	1.073	1.073
Major industrial driveways	0.989	0.989
Minor driveways	1.114	1.114
Automated speed enforcement	1.000	1.000 1.000 1.000

Crash Totals Tabulation

Empirical Bayes	Clear tables		Facility	<u>Totals</u>
adjustment type:			MV+SV:	61.663
None	O and many		VP+VB:	3.377
	Sort rows		F+I:	31.972
		ίC	PDO:	33.069
	Calculate		Total:	65.040

<u>Total Predicted Crash Frequency, crashes / year</u>								
	Multiple	e-vehicle	Single-	vehicle	Total-	<i>r</i> ehicle	Veh-ped	Veh-bike
Site type	F+I	PDO	F+I	PDO	F+I	PDO	F+I	F+I
Segments:	14.150	20.506	1.462	1.823	15.612	22.329	0.569	0.304
Intersections:					12.982	10.740	1.856	0.648
Total:	14.150	20.506	1.462	1.823	28.594	33.069	2.425	0.952

	Sogmont	Sito Info	rmation			Predicted crash frequency, crashes / year			
Segment Site Information			Multiple	-vehicle	Single	vehicle	Vehicle-pedestrian	Vehicle-bicycle	
Number	Year	Туре	Street number	F+I	PDO	F+I	PDO	F+I	F+I
1	2016	6D		6.767	9.653	0.631	0.784	0.268	0.143
2	2016	6D		2.506	3.684	0.304	0.380	0.103	0.055
3	2016	6D		4.877	7.169	0.527	0.658	0.198	0.106

In	Intersection Site Information			Predicted crash frequency, crashes / year				
<u>1110</u>	ersection		lomation	Total-\	<i>r</i> ehicle	Vehicle-pedestrian	Vehicle-bicycle	
Number	Year	Туре	Configuration	F+I	PDO	F+I	F+I	
1	2016	4SG	Two-way	9.001	7.903	1.508	0.321	
2	2016	3ST	Two-way	3.981	2.838	0.348	0.327	

EXERCISE 10: ONE-WAY ARTERIAL PROJECT

Location: A one-way three-lane arterial street project with three homogenous segments and two four-leg street intersections Study year: 2016 Area type: Urban Crash data description: No crash data

INPUT DATA (Segments)

Basic Roadway Data

Segment 1	Segment 2	Segment 3
3	3	3
0.2	0.1	0.3
30	30	30
present	present	none
no	no	no
10	11	10
0	0	3
no	no	no
es, left side	yes, left side	yes, left side
10	10	6
20/mile	30/mile	20/mile
1	1	2
8	4	15
25,000	23,000	21,000
	0.2 30 present no 10 0 no ves, left side 10 20/mile 1 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

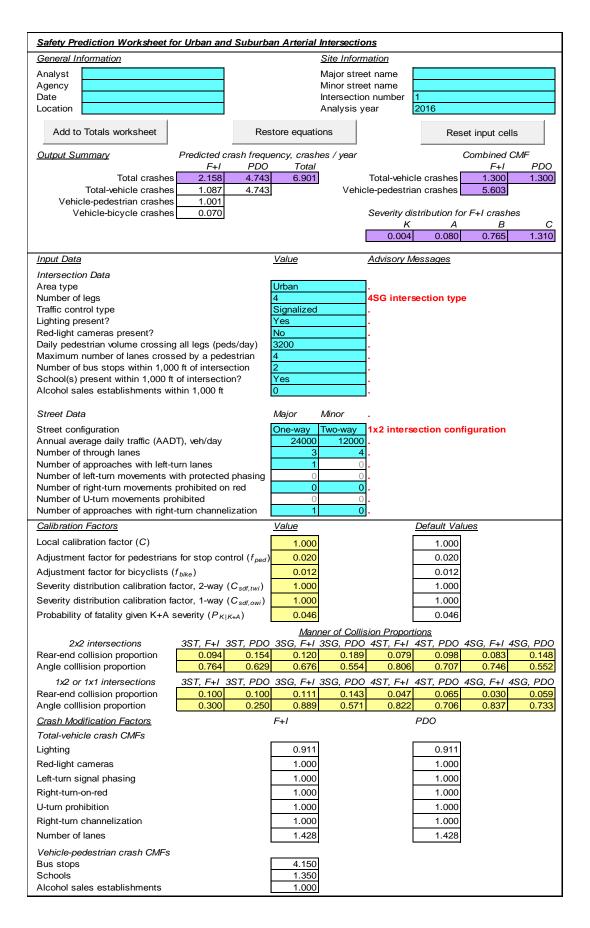
INPUT DATA (Intersections)

Basic Roadway Data

auway Data		
	Intersection 1	Intersection 2
Intersection traffic control mode	signal	signal
Legs	4	4
Lighting	present	not present
Minor street	two-way	one-way
Red-light camera	no	no
Number of minor-street lanes	4	2
Left-turn lanes (major street)	one approach	one approach
Left-turn lanes (minor street)	none	none
Right-turn channelization	on major street	on minor street
Right-turn-on-red prohibition	none	none

Traffic I	Data		
	Minor-street AADT (in 2016)	12,000	5,000
Pedestria	an Data		
	Level of pedestrian activity	High	Medium-high
	Number of schools	1	1
	Number of bus stops	2	3
	Alcohol sales establishments	0	1
	Refuge islands	None	None
		$(n_{lanesx} = 4)$	$(n_{lanesx} = 4)$
Crash Da	ata		
N	ot available		

Not available


OUTPUT SUMMARY

What is the total predicted number of crashes?	35.421

Street Segm	t number t name hent number rsis year 2016 Reset input cells ear Combined CMF F+I PDU Multiple-vehicle crashes 3.519 3.51 Single-vehicle crashes 3.134 3.13 Severity distribution for F+I crashes
Segm Analy estore equations quency, crashes / ye O Total 52 9.082 17	nent number 1 rsis year 2016 Reset input cells Reset input cells ear Combined CMF F+I PD0 Multiple-vehicle crashes 3.519 Single-vehicle crashes 3.134
Analy estore equations quency, crashes / ye O Total 52 9.082 17	rsis year 2016 Reset input cells ear Combined CMF F+I PDO Multiple-vehicle crashes 3.519 3.51 Single-vehicle crashes 3.134 3.13
estore equations quency, crashes / ye O Total 52 9.082 17	Reset input cells ear Combined CMF F+I PD0 Multiple-vehicle crashes 3.519 3.51 Single-vehicle crashes 3.134 3.13
quency, crashes / ye O Total 52 9.082 17	ear Combined CMF F+I PD0 Multiple-vehicle crashes 3.519 3.51 Single-vehicle crashes 3.134 3.13
0 Total 52 9.082 17	F+IPD0Multiple-vehicle crashes3.519Single-vehicle crashes3.1343.1343.13
52 9.082 17	Multiple-vehicle crashes3.5193.51Single-vehicle crashes3.1343.13
17	Single-vehicle crashes 3.134 3.13
	-
35	Severity distribution for E+1 crashes
	Severity distribution for F+L craches
Value	0.078 0.709 1.244 1.10
<u>Value</u>	Advisory Messages
Urhan	
No	
1	5 major comm. driveways per mile.
8	40 minor driveways per mile.
10	
0	
0	
0	
0.2	
4	20 objects per mile.
10	•
<u>Value</u>	<u>Default Values</u>
1.000	1.000
0.024	0.024
0.011	0.011
	1.000
0.099	0.099
F+1	PDO
Multiple Single	e <u>Multiple Single</u>
1.084 1	.084 1.084 1.084
1.000 1	.000 1.000 1.000
2.682 2	2.682 2.682 2.682
1.055	1.055
1.148	1.148
	.000 1.000 1.000 .078 1.078 1.078
	$ \begin{array}{c} 1\\ 8\\ 10\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$

General Information	Site	Information
Analyst	Stre	et number
Agency	Stre	et name
Date	Segi	ment number 2
Location	Anal	lysis year 2016
Add to Totals worksheet	Restore equations	Reset input cells
Output Summary Predicted crash	frequency, crashes /	
	PDO Total	<u> </u>
	.985 4.530	Multiple-vehicle crashes 3.844 3.
	.768	Single-vehicle crashes 3.248 3.2
	.217	
Vehicle-pedestrian crashes 0.105		Severity distribution for F+I crashes
Vehicle-bicycle crashes 0.048		K A B 0.035 0.319 0.632 0.4
Input Data	Value	Advisory Messages
Basic Roadway Data		
Area type	Urban	
Segment type	30	
Segment length, mi	0.1	
Bicycle lanes present?	Yes	
Annual average daily traffic (AADT), veh/day	23000	
Posted speed limit, mi/h	30	
Automated speed enforcement present?	No	• •
Access Data		
Driveway count Major commercial	1	10 major comm. driveways per mile.
Minor	4	40 minor driveways per mile.
Cross Section Data		
Lane width, ft	11	
Right shoulder width, ft	0	
Roadside Data		
On-street parallel parking length on right side, mi	0	
On-street angle parking length on right side, mi	0	
On-street parallel parking length on left side, mi	0	
On-street angle parking length on left side, mi	0.1	
Roadside fixed object count	3	30 objects per mile.
Average roadside fixed object offset, ft	10	
Calibration Factors	Value	Default Values
Local calibration factor (C)	1.000	1.000
Adjustment factor for pedestrians (f_{ped})	0.024	0.024
Adjustment factor for bicyclists (f bike)	0.011	0.011
Severity distribution calibration factor (C _{sdf,ows})	1.000	1.000
Probability of fatality given K+A severity ($P_{K K+A}$)	0.099	0.099
Crash Modification Factors	F+1	PDO Multipla Signla
Right shoulder width	Multiple Sing	
Right shoulder width	1.084	<u>1.084</u> <u>1.084</u> <u>1.084</u> <u>1.000</u>
On-street parallel parking		<u>1.000</u> <u>1.000</u> <u>1.000</u> 2.682 <u>2.682</u> <u>2.682</u>
On-street angle parking		2.682 2.682 2.682
Major commercial driveways Minor driveways	1.152	1.152
Minor driveways Automated speed enforcement	1.148	1.148 1.000 1.000
Roadside fixed objects	1.000	1.117

General Information	<u>Site I</u>	Information
Analyst	Stree	t number
Agency	Stree	t name
Date	Ũ	nent number 3
Location	Analy	vsis year 2016
Add to Totals worksheet	Restore equations	Reset input cells
	requency, crashes / y	rear Combined CMF
	DO Total	F+I PD
	622 11.505	Multiple-vehicle crashes 3.572 3.5 Single-vehicle crashes 3.048 3.0
	033 589	Single-vehicle crashes 3.048 3.0
Vehicle-pedestrian crashes 0.267	309	Severity distribution for F+I crashes
Vehicle-bicycle crashes 0.122		K A B
		0.040 0.360 1.271 2.2
Input Data	<u>Value</u>	Advisory Messages
Basic Roadway Data		
Area type	Urban	· · · · · · · · · · · · · · · · · · ·
Segment type	30	· ·
Segment length, mi	0.3	•
Bicycle lanes present?	No	•
Annual average daily traffic (AADT), veh/day Posted speed limit, mi/h	21000 30	•
Automated speed enforcement present?	No	
Access Data		
Driveway count Major commercial Minor	<u>2</u> 15	7 major comm. driveways per mile. 50 minor driveways per mile.
WINO	10	
Cross Section Data		
Lane width, ft	10	• •
Right shoulder width, ft	3	•
Roadside Data		
On-street parallel parking length on right side, mi	0	
On-street angle parking length on right side, mi	0	•
On-street parallel parking length on left side, mi	0	•
On-street angle parking length on left side, mi Roadside fixed object count	0.3	20 objects per mile.
Average roadside fixed object offset, ft	6	
Calibration Factors	Value	Default Values
Local calibration factor (C)	1.000	1.000
Adjustment factor for pedestrians (f_{ped})	0.024	0.024
Adjustment factor for bicyclists (f_{bike})	0.011	0.011
Severity distribution calibration factor ($C_{sdf,ows}$)	1.000	1.000
Probability of fatality given K+A severity ($P_{K K+A}$)	0.099	0.099
Crash Modification Factors	F+1	PDO
	Multiple Single	
Right shoulder width		1.020 1.020 1.020
On-street parallel parking		1.000 1.000
On-street angle parking		2.682 2.682 2.682
Major commercial driveways	1.086	1.086
Minor driveways	1.202	
Automated speed enforcement	1.000 1	1.000 1.000

Safety Prediction Worksheet for Urban and Suburk	ban Arterial Intersections
General Information	Site Information
Analyst	Major street name
Agency	Minor street name
Date	Intersection number 2
Location	Analysis year 2016
Add to Totals worksheet Re	estore equations Reset input cells
	uency, crashes / year Combined CMF
F+I PDC Total crashes 1.271 2.132	
Total-vehicle crashes 0.659 2.132	
Vehicle-pedestrian crashes 0.579	
Vehicle-bicycle crashes 0.033	Severity distribution for F+I crashes K A B C
	0.002 0.046 0.206 1.018
Input Data	Value Advisory Messages
Intersection Data Area type	Urban .
Number of legs	4 4SG intersection type
Traffic control type	Signalized .
Lighting present?	No .
Red-light cameras present?	No .
Daily pedestrian volume crossing all legs (peds/day) Maximum number of lanes crossed by a pedestrian	<u>1500</u> . 4 .
Number of bus stops within 1,000 ft of intersection	3
School(s) present within 1,000 ft of intersection?	Yes .
Alcohol sales establishments within 1,000 ft	1
Street Data	Major Minor .
Street configuration	One-way One-way 1x1 intersection configuration
Annual average daily traffic (AADT), veh/day	22000 5000 .
Number of through lanes Number of approaches with left-turn lanes	3 2. 1 0.
Number of left-turn movements with protected phasing	
Number of right-turn movements prohibited on red	0 0
Number of U-turn movements prohibited	0 0.
Number of approaches with right-turn channelization	0 1.
Calibration Factors	Value Default Values
Local calibration factor (C)	1.000
Adjustment factor for pedestrians for stop control (f_{ped}	
Adjustment factor for bicyclists (f bike)	0.012
Severity distribution calibration factor, 2-way ($C_{sdf,twi}$)	
Severity distribution calibration factor, 1-way (C _{sdf,owi})	
Probability of fatality given K+A severity $(P_{K K+A})$	0.046
2x2 intersections 3ST, F+I 3ST, PD0	<u>Manner of Collision Proportions</u> O 3SG, F+I 3SG, PDO 4ST, F+I 4ST, PDO 4SG, F+I 4SG, PDO
Rear-end collision proportion 0.094 0.154	
Angle collision proportion 0.764 0.62	
	0 3SG, F+I 3SG, PDO 4ST, F+I 4ST, PDO 4SG, F+I 4SG, PDO
Rear-end collision proportion 0.100 0.100 Angle collision proportion 0.300 0.250	
Angle collision proportion 0.300 0.250 <u>Crash Modification Factors</u>	0 0.889 0.571 0.822 0.706 0.837 0.733 F+I PDO
<u>Clash Modification Pactors</u> Total-vehicle crash CMFs	r+i PD0
Lighting	1.000
Red-light cameras	1.000 1.000
Left-turn signal phasing	1.000 1.000
Right-turn-on-red	1.000 1.000
U-turn prohibition	1.000 1.000
Right-turn channelization	1.000 1.000
Number of lanes	1.223 1.223
Vehicle-pedestrian crash CMFs	
Bus stops	4.150
Schools	1.350
Alcohol sales establishments	1.120

Crash Totals Tabulation

Empirical Bayes	Clear tables	Facility Totals	
adjustment type:		MV+SV: 32.88	88
None	0 /	VP+VB: 2.53	33
	Sort rows	F+I: 11.98	88
		PDO: 23.43	34
	Calculate	Total: 35.42	21

Total Predicted Crash Frequency, crashes / year								
	Multiple-vehicle Single-vehicle				Total-	<i>i</i> ehicle	Veh-ped	Veh-bike
Site type	F+I	PDO	F+I	PDO	F+I	PDO	F+I	F+I
Segments:	6.799	15.318	0.910	1.241	7.709	16.559	0.582	0.267
Intersections:					1.746	6.875	1.581	0.103
Total:	6.799	15.318	0.910	1.241	9.454	23.434	2.163	0.370

	Segment Site Information				Predicted crash frequency, crashes / year				
	Segment Site Millimation			Multiple	-vehicle	Single	vehicle	Vehicle-pedestrian	Vehicle-bicycle
Numbe	r Year	Туре	Street number	F+I	PDO	F+I	PDO	F+I	F+I
	1 2016	30		2.505	5.517	0.319	0.435	0.211	0.097
	2 2016	30		1.232	2.768	0.159	0.217	0.105	0.048
	3 2016	30		3.062	7.033	0.432	0.589	0.267	0.122

Int	Intersection Site Information				Predicted crash frequ	uency, crashes / year	
<u>1110</u>	mersection site mormation			Total-v	<i>r</i> ehicle	Vehicle-pedestrian	Vehicle-bicycle
Number	Year	Туре	Configuration	F+I	PDO	F+I	F+I
1	2016	4SG	One-way	1.087	4.743	1.001	0.070
2	2016	4SG	One-way	0.659	2.132	0.579	0.033

APPENDIX C. SPREADSHEET PROGRAM AND USER MANUAL

INTRODUCTION

The safety prediction models developed in NCHRP Project 17-58 (1, 2) apply to two-way urban and suburban arterials with six or more lanes, one-way urban and suburban arterials, and intersections on these types of arterials. These models were developed for inclusion in the next edition of the *Highway Safety Manual* (HSM) (3). Because the models are complex in form and require numerous calculations to implement, an Excel®-based spreadsheet program was developed to assist analysts in implementing the safety prediction models.

This *User Guide* provides instructions for using the spreadsheet program to implement the calculations in the draft Chapter 12 of the HSM (2). All variable names and definitions in the spreadsheet program are consistent with those in the draft Chapter 12 of the HSM. Hence, it is recommended that the analyst read the draft Chapter 12 of the HSM before using the spreadsheet program, and refer back to the Chapter when clarification is needed on variable definitions and procedures for measuring or counting variable values.

BASIC OPERATION

The spreadsheet program can be used on a computer with Microsoft Office[®] 2007 or newer versions. This User Guide provides instructions on using the spreadsheet program to analyze individual sites (arterial segments or intersections), tabulate results for a facility consisting of multiple sites, and conduct an empirical Bayes (EB) analysis.

Enabling Macro Content

The spreadsheet program uses macros for several of its calculation and organization tasks. Hence, it is essential that Excel be configured such that macros are not always disabled. Macro security settings are located in the Trust Center (see Figure 1), which is accessed by choosing the File tab on the upper-left portion of the Excel screen and choosing "Options". The spreadsheet program will not function properly if the highest macro security setting, "Disable all macros without notification", is chosen. If "Disable all macros with notification" or "Disable all macros except digitally signed macros" is chosen, the yellow bar shown in Figure 2 will appear when the program is opened. Click on the "Enable Content" button to enable macros. If the last macro security option, "Enable all macros", is chosen, the yellow bar will not appear and macros will function.

Worksheet Organization

When the spreadsheet program is opened, the Welcome screen shown in Figure 3 will appear. This screen provides a basic overview of the program and brief description of the color scheme used for the cells. The five tabs below the Welcome message are used to access the five worksheets that are provided in the program. The first of these worksheets is the Welcome screen. The next three worksheets, "Two-way segments", "One-way segments", and "Intersections", are the input data worksheets that are used to analyze individual sites on the urban or suburban arterial facility of interest. The last worksheet, "Totals", is used to obtain

crash totals for the entire facility as well as to conduct a site-specific or project-level EB analysis based on the procedures described in Appendix A of the HSM.

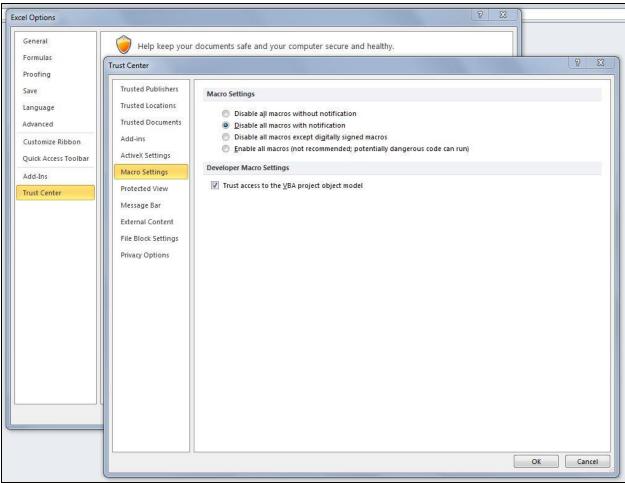


Figure 1. Macro Security Settings in Excel

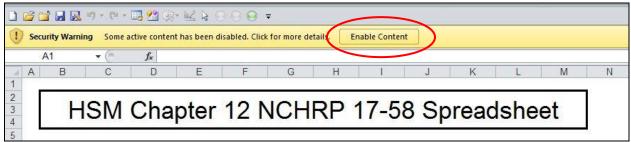


Figure 2. Enabling Macros in Excel

	Developed by: Michael P. Pratt, Srinivas R. Geedipally, Hadi Khazraee, and Dominique Lord Version 2
	FOREWORD This software can be used to assist with the assessment of the safety performance of urban and suburban arterial facilities, including segments and intersections. It is intended for use by engineers and technicians responsible for safety analysis or management of urban streets.
	This software is intended for use with the updated Chapter 12 of the Highway Safety Manual. The analyst is encouraged to read the document so that he or she will have an understanding of how best to use the software and interpret its output.
	The equations used in this software are documented in this chapter. Analysts should refer to the chapter whenever they have questions about the modeling approach, assumptions, or limitations.
	INSTRUCTIONS
	Each cell on the analysis worksheets has been color-coded to indicate the type of data entered or displayed. The following list indentifies the meaning of each cell color.
1	Blue cells represent "input data." Each time the worksheet is used, the values in these cells should be changed to represent the segment or intersection being evaluated. Input data must be provided by the analyst.
	Yellow cells represent "calibration factors." The values in these cells represent reasonable values for most situations and do not need to be changed. Calibration factors can be changed to more accurately reflect local conditions. However, field data from sites local to the agency should be the basis for this change.
	Purple cells represent "key output variables." The values are computed using the input data, calibration factors, and default values. Note: White, gray, and purple cells are locked and cannot be changed.
	DISCLAIMER
	No warranty is made by the developers or their employer as to the accuracy, completeness, or reliability of this software and its associated equations and documentation. No responsibility is assumed by the developers for incorrect results or damages resulting from the use of this software.
	COPYRIGHT © 2015
	This software is copyrighted. All rights are reserved. This product may not, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form without prior consent, in writing, from Michael P. Pratt.
	This product is subject to change without notice and does not represent a commitment on the part of Michael P. Pratt to notify any person of such revision.

Figure 3. Welcome Screen

Cell Color Scheme

In the various worksheets, color shading is used to assist the analyst in understanding which cells may be manipulated and which cannot be disrupted. The spreadsheet program uses numerous equations and macros to perform the calculations needed to implement the safety prediction models, and cells containing these calculations are locked to prevent inadvertent alteration that would lead to erroneous results.

Input Data Cells

Input data cells are shaded blue, like the "General Information" and "Site Information" cells shown in Figure 4. The analyst will routinely change the values in these cells to describe

the site being analyzed and to examine changes in predicted crash frequency that may occur if input parameters are altered. The required content for these cells is described in greater detail in the next section of this Guide.

General I	nformation	Site Information	
Analyst	MPP	Street number	SH 1
Agency	TTI	Street name	Main Street
Date	12/8/2015	Segment number	1
Location	City of Fillmore	Analysis year	2011

Figure 4. Input Data Cells – Blue Shading

Some input data cells describe characteristics that can only be described in discrete quantities. For example, area type can only be described as urban or suburban for the facilities included in the scope of the safety prediction models contained in the spreadsheet program. When the analyst selects one of these cells, a drop-down menu will appear as shown in Figure 5. The analyst may choose one of the options in the menu or type one of the allowed options into the cell. If the analyst enters a value that is not valid for the input data cell, an error message will appear as shown in Figure 6.

Basic Roadway Data	
Area type	Suburban -
Segment type	Urban
Segment length, mi	Suburban

Figure 5. Drop-Down Menus

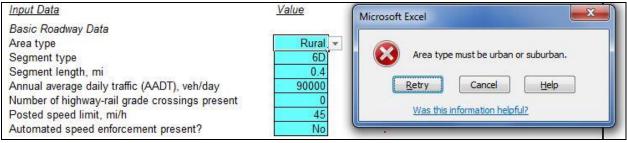


Figure 6. Input Data Cell Error Message

Some input data cells are accompanied by advisory messages that will appear in red to the right of the cell. These messages may provide clarifications on certain data inputs, warnings if model parameter ranges have been exceeded, or warnings if an invalid value has been entered into the input data cell. All three of these situations are visible in Figure 7. For the described two-way arterial segment, the segment type was entered as "8D", or eight-lane divided. The analyst indicated that the segment length is 0.4 mi and there are 18 roadside fixed objects present, so an advisory message explains that the object density is "45 objects per mile". The analyst entered a median width of 0 ft, which is not consistent with an eight-lane divided cross section, so a warning message indicates that the analyst "must enter nonzero median width". The posted speed limit is 30 mi/h, and the pedestrian and bicyclist adjustment factors (f_{ped} and

Input Data		Value	Advisory Messages
Basic Roadway Da	ta		
Area type		Suburban	
Segment type		8D	
Segment length, m	i	0.4	
Annual average dai	ily traffic (AADT), veh/day	90000	
	-rail grade crossings present	0	
Posted speed limit		30	Estimated ped/bike factors.
	enforcement present?	No	
Access Data			
Driveway count	Major commercial	0	*
1022	Major industrial	0	
	Minor	0	
Cross Section Dat	a		
Lane width, ft		11	
Outside shoulder v	vidth, ft	1.5	* manual for the second s
Median width, ft		0	Must enter nonzero median width.
Median barrier pres	sent?	Yes	•
Roadside Data			
Roadside fixed obj	ect count	18	45 objects per mile.
	ixed object offset, ft	7	

 f_{bike}) that are needed for some calculations are not available for that speed, so the advisory message indicates that the factors must be estimated ("Estimated ped/bike factors").

Figure 7. Advisory Messages for Input Data Cells

Calibration Factor Cells

Calibration factor cells are shaded yellow as shown in Figure 8. These cells contain parameters like the local calibration factor C and the pedestrian and bicyclist adjustment factors f_{ped} and f_{bike} . These calibration factors affect key calculation results in each of the input data worksheets. The analyst can change the values entered into calibration factor cells, but should do so only based on analysis of field data from the jurisdiction containing the sites of interest. The original values in the calibration factor cells are the factors and model coefficients that were derived from the research conducted in NCHRP Project 17-58. It is expected that these cells may need to be altered on occasion based on a jurisdiction's data trends, but they should not need to be altered during the course of a routine analysis exercise.

Calibration Factors	Value
Local calibration factor (C)	1.000
Adjustment factor for pedestrians (f ped)	0.029
Adjustment factor for bicyclists (f bike)	0.007
Severity distribution calibration factor (C sdf, tws)	1.000

Figure 8. Calibration Factor Cells

Key Output Variable Cells

Key output variable cells are shaded purple as shown in Figure 9. These cells contain key output quantities, such as the total predicted crash frequency, combined CMF (product of all individual CMFs), and severity distribution for fatal-and-injury crashes. These cells are locked and cannot be altered, but are shaded to denote their importance.

Output Summary	Predicted cra	ash frequen	cy, crashes / yea
	F+1	PDO	Total
Total crashes	4.145	5.039	9.184
Multiple-vehicle crashes	2.878	3.872	
Single-vehicle crashes	0.948	1.167	
Vehicle-pedestrian crashes	0.257	10	
Vehicle-bicycle crashes	0.062		

Figure 9. Key Output Variable Cells

Other Types of Cell Shading

Some cells are shaded white or gray as shown in Figure 10. These cells contain intermediate calculations that may be of interest to the analyst, but do not represent the final analysis result. The white cells in Figure 10 contain the computed values for each individual CMF on a two-way segment. The analyst may need to inspect these values to determine which site characteristics contribute most to a high or low predicted crash frequency. White cells are also visible in Figure 9, showing the tabulation of predicted crash frequency by severity (fatal-and-injury or property-damage-only) and crash type (multiple-vehicle, single-vehicle, vehicle-pedestrian, or vehicle-bicycle).

Crash Modification Factors	F+I		PDO	2010 0
	Multiple Sing	le	Multiple	Single
Lane width	1.022	1.022	1.022	1.022
Outside shoulder width	1.000	1.000	1.000	1.000
Median width	1.011	1.011	1.011	1.011
Median barrier	0.600	1.967	0.600	1.967
Highway-rail grade crossing	1.000	1.000	1.000	1.000
Major commercial driveways	0.932		0.932	
Major industrial driveways	0.989		0.989	
Minor driveways	0.947		0.947	
Automated speed enforcement	1.000	1.000	1.000	1.000
Roadside fixed objects		1.180		1.180

Figure 10. Other Cells

A small number of gray cells exist in the spreadsheet program. These cells are shaded gray to indicate that they are not applicable. For example, Figure 10 shows that the cells for single-vehicle driveway CMFs and the multiple-vehicle roadside fixed object CMF are gray. These cells are not applicable because the driveway CMFs do not apply to single-vehicle crashes and the roadside fixed object CMF does not apply to multiple-vehicle crashes.

Some input data cells are configured to be shaded different colors depending on whether they are needed. For example, as shown in Figure 11, the input data cell for average roadside fixed object offset is typically shaded blue. However, if the analyst enters 0 for roadside fixed object count, the average roadside fixed object offset cell shading turns white and its text turns gray. This change denotes the fact that an average roadside fixed object offset need not be provided if no such objects are present.

<i>Roadside Data</i> Roadside fixed object count Average roadside fixed object offset, ft	18 7
Roadside Data	
Roadside fixed object count	0
Average roadside fixed object offset, ft	7

Figure 11. Automated Cell Shading

Analysis Sequence

To conduct a safety analysis of an urban or suburban arterial facility, the analyst would complete the following steps:

- 1. Identify the facility of interest. The facility will likely consist of multiple sites, where a site is a homogeneous two-way arterial street segment, a homogeneous one-way arterial street segment, or a signalized or stop-controlled intersection of two streets.
- 2. Determine the analysis period of interest. The analysis period will consist of one or more years.
- 3. Analyze the first site on the facility using the relevant input data worksheet.
- 4. Transfer the data and calculations from the input data worksheet to the Totals worksheet.
- 5. Repeat steps 3 and 4 for each year in the analysis period (if there are multiple years).
- 6. Repeat steps 3-5 for each site on the facility (if there are multiple sites).
- 7. Enter crash count data into the Totals worksheet (if an EB adjustment is desired).
- 8. Calculate the predicted crash frequency (if EB adjustment is not applied) or expected crash frequency (if EB adjustment is applied) for the entire facility using the Totals worksheet.

The analysis procedure is described in greater detail in the next parts of this Guide, which describe the input data worksheets and the Totals worksheet.

Input Data Worksheets

The spreadsheet program contains input data worksheets for describing and analyzing individual sites. There are three worksheets, which correspond to the three facility types that were addressed in NCHRP Project 17-58. These facility types include two-way urban and suburban arterial street segments with six or more lanes, one-way urban and suburban arterial streets, and intersections on these streets.

All three input data worksheets have the three command buttons that are shown in Figure 12. These buttons serve the following purposes:

- Add to Totals worksheet: Click this button to transfer the data and calculations from the input data worksheet to the Totals worksheet. If the site has already been described for the specified year, and the data and calculations have already been transferred to the Totals worksheet, an error message will appear (see Figure 13) and the data will not transfer. The data will be added to the bottommost empty row in the relevant data table (segment or intersection) on the Totals worksheet; if this row is filled, an error message will appear (see Figure 14) to indicate that the data table is full, and the data will not transfer.
- Restore equations: Some of the input data cells and calibration factor cells contain equations, though these cells are unlocked. For example, the Date cell in the General Information input data cells contains an equation that gives today's date, but the analyst can overwrite the equation-computed date with a different date if desired. Click this button to restore the equations in the cells.
- Reset input cells: Click this button to populate the input data cells with a set of prechosen values. These values describe a fictitious site. This function is useful if the analyst is finished analyzing a site and desires to start a new analysis without retaining data describing the previous site.

Add to Totals worksheet	Restore equations	Reset input cells
-------------------------	-------------------	-------------------

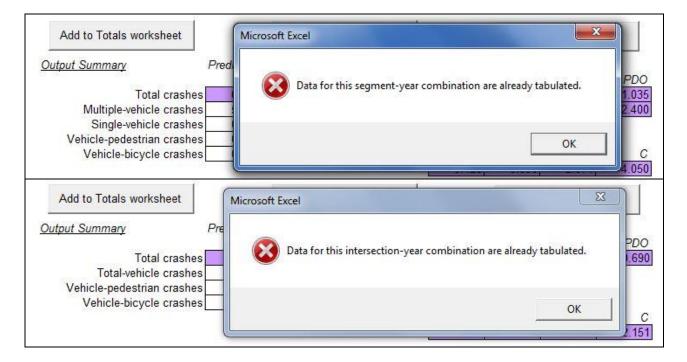
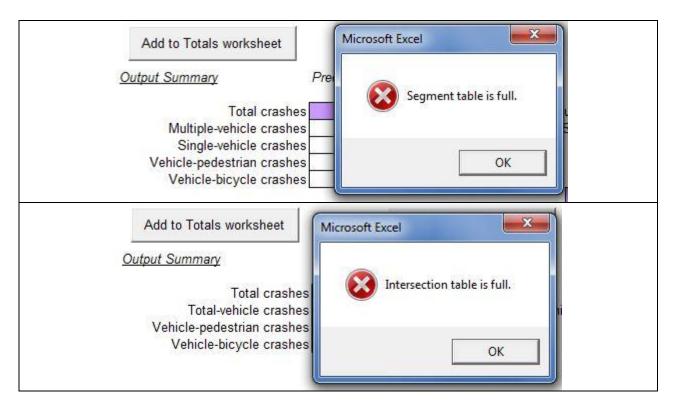



Figure 13. Data Transfer Error Messages – Duplicate Data

Each of the input data worksheets consists of a main work area that is denoted by a boldbordered box. The main work area contains all input data cells, calibration factor cells, and output cells. The worksheets also have numerous boxes containing calibration coefficients and some intermediate calculations in the space to the right of the main work area. It is not anticipated that the analyst would need to use the boxes to the right of the main work area. Some of these boxes contain cells that are shaded yellow because they are populated with calibration coefficients for the various equations. These coefficients were derived in NCHRP Project 17-58, and the analyst should not alter them without significant justification based on detailed analysis of field data from the jurisdiction of interest.

Two-Way Segments

The general information and site information input data cells are shown in the top portion of Figure 15. Cells are provided for the analyst to enter analyst's name, agency, date (this cell is populated with an equation that computes the current date), location, street number, street name, segment number, and analysis year. To avoid the error message shown in Figure 13, it is essential to change the segment number every time a new site at a facility is being analyzed, and to change the analysis year every time a new year is being analyzed.

The input data cells on the Two-Way Segments worksheet are shown in Figure 16. The analyst must provide data to describe the basic roadway characteristics, access characteristics, cross-sectional characteristics, and roadside characteristics.

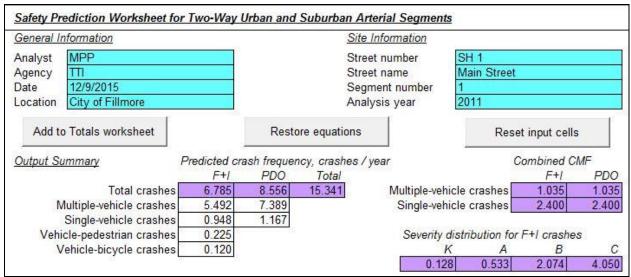


Figure 15. Two-Way Segments General Information Cells and Output Summary

Input Data		<u>Value</u>	Advisory Messages
Basic Roadway Da	ta		
Area type		Suburban	
Segment type		6D	12
Segment length, m	ni	0.4	
Annual average da	ily traffic (AADT), veh/day	90000	37
	/-rail grade crossings present	0	33
Posted speed limit	, mi/h	45	
Automated speed	enforcement present?	No	2
Access Data			
Driveway count	Major commercial	6	15 major comm. driveways per mile.
1.769	Major industrial	1	3 major industrial driveways per mile.
	Minor	7	18 minor driveways per mile.
Cross Section Dat	a		
Lane width, ft		11	
Outside shoulder v	vidth, ft	1.5	
Median width, ft		13	
Median barrier pres	sent?	Yes	
Roadside Data			
Roadside fixed obj	ect count	18	45 objects per mile.
이 집에서 이 영화된 이 없는 것이 같은 것이 없다. 이 문화 것이 없는 것이 없는 것이 없다.	ixed object offset, ft	7	

Figure 16. Two-Way Segments Input Data Cells

The following basic roadway characteristics are needed:

- Area type: Specify if the area surrounding the site is urban or suburban.
- Segment type: Select the appropriate code 6U for six-lane undivided segments, 6D for six-lane divided segments, 7T for six-lane segments with a two-way left-turn lane, or 8D for eight-lane divided segments. These codes are consistent with those used in the HSM.
- Segment length: Enter the segment length, in miles.

- Annual average daily traffic: Enter the AADT, in vehicles per day.
- Number of highway-rail grade crossings present: Enter the number of highway-rail grade crossings that are present on the segment.
- Posted speed limit: Select the posted speed limit, in miles per hour.
- Automated speed enforcement: Indicate whether automated speed enforcement is used on the segment.

The following access characteristics are needed:

- Driveway count major commercial: Enter the count of major commercial driveways on the segment.
- Driveway count major industrial: Enter the count of major industrial driveways on the segment.
- Driveway count minor: Enter the count of minor driveways (of any land use type) on the segment.

All driveway counts represent the number of full driveways, which are driveways that accommodate all entering and exiting turning movements. Driveways that are channelized to allow only right-turn entry and exit movements should be counted as half-driveway.

The following cross-sectional characteristics are needed:

- Lane width: Enter the lane width, in feet.
- Outside shoulder width: Enter the outside shoulder width, in feet. The outside shoulder is the shoulder to the right of drivers with respect to the direction of travel.
- Median width: Enter the median width, in feet. This quantity is not needed if an undivided or two-way left-turn lane segment type (6U or 7T) is specified.
- Median barrier present: Indicate whether a non-traversable median barrier is present. This quantity is not needed if an undivided or two-way left-turn lane segment type (6U or 7T) is specified.

The following roadside characteristics are needed:

- Roadside fixed object count: Enter the number of fixed objects that are present on the roadside (not including the median). Fixed objects that are located within 70 feet of one another longitudinally along the street are counted as a single object.
- Average roadside fixed object offset: Enter the average offset between travel lanes and fixed objects, in feet. The edge of the travel lanes is defined as the marked edgeline, or a line 2 feet from the face of the curb if no marked edgeline exists. This quantity is not needed if no roadside fixed objects are present.

If necessary, the analyst can enter values for the following calibration factors:

- Local calibration factor.
- Adjustment factor for pedestrians.

- Adjustment factor for bicyclists.
- Severity distribution calibration factor.

Computed values for the individual CMFs are provided in the lower portion of the worksheet (see Figure 17). The output summary on the top portion of the worksheet (see Figure 15) provides the predicted crash frequency, combined CMFs (product of individual CMFs), and severity distribution for the segment in the analysis year.

Calibration Factors	Value		Default Va	lues
Local calibration factor (C)	1.000		1.000	1
Adjustment factor for pedestrians (f ped)	0.015		0.015	
Adjustment factor for bicyclists (f bike)	0.008		0.008	
Severity distribution calibration factor (C sdf, tws)	1.000		1.000	~
Crash Modification Factors	F+I		PDO	
	Multiple S	ingle	Multiple	Single
Lane width	1.022	1.022	1.022	1.022
Outside shoulder width	1.000	1.000	1.000	1.000
Median width	1.011	1.011	1.011	1.011
Median barrier	0.600	1.967	0.600	1.967
Highway-rail grade crossing	1.000	1.000	1.000	1.000
Major commercial driveways	1.576		1.576	
Major industrial driveways	1.016		1.016	9.
Minor driveways	1.041	00100	1.041	
Automated speed enforcement	1.000	1.000	1.000	1.000
Roadside fixed objects		1.180		1.180

Figure 17. Two-Way Segments Calibration Factor Cells and CMF Calculations

One-Way Segments

The general information and site information input data cells are shown in the top portion of Figure 18. Cells are provided for the analyst to enter analyst's name, agency, date (this cell is populated with an equation that computes the current date), location, street number, street name, segment number, and analysis year. To avoid the error message shown in Figure 13, it is essential to change the segment number every time a new site at a facility is being analyzed, and to change the analysis year every time a new year is being analyzed.

The input data cells on the One-Way Segments worksheet are shown in Figure 19. The analyst must provide data to describe the basic roadway characteristics, access characteristics, cross-sectional characteristics, and roadside characteristics.

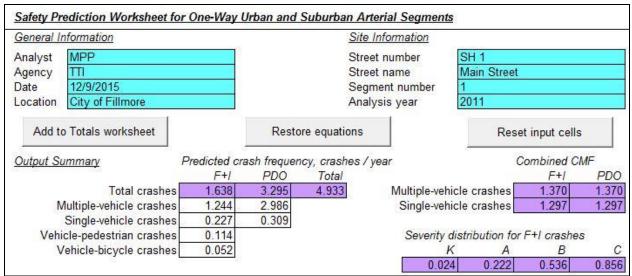


Figure 18. One-Way Segments General Information Cells and Output Summary

Input Data		Value	Advisory Messages
Basic Roadway Da	ta		
Area type		Suburban	
Segment type		30	
Segment length, m	1	0.4	
Bicycle lanes pres	ent?	No	12
Annual average da	ily traffic (AADT), veh/day	17500	14
Posted speed limit	, mi/h	30	
Automated speed	enforcement present?	No	2
Access Data			
Driveway count	Major commercial	6	15 major comm. driveways per mile.
	Minor	7	18 minor driveways per mile.
Cross Section Dat	a		
Lane width, ft		11	
Right shoulder wid	th, ft	1.5	2
Roadside Data			
On-street parallel p	parking length on right side, mi	0	-
	rking length on right side, mi	0	
	parking length on left side, mi	0	84
100 CC	rking length on left side, mi	0	14
Roadside fixed obj		18	45 objects per mile.
	ixed object offset, ft	7	

Figure 19. One-Way Segments Input Data Cells

The following basic roadway characteristics are needed:

- Area type: Specify if the area surrounding the site is urban or suburban.
- Segment type: Select the appropriate code 20, 30, or 40 for two-lane, three-lane, or four-lane segments, respectively. These codes are consistent with those used in the HSM.
- Segment length: Enter the segment length, in miles.

- Bicycle lanes present: Indicate if bicycle lanes are present on the segment.
- Annual average daily traffic: Enter the AADT, in vehicles per day.
- Posted speed limit: Select the posted speed limit, in miles per hour.
- Automated speed enforcement: Indicate whether automated speed enforcement is used on the segment.

The following access characteristics are needed:

- Driveway count major commercial: Enter the count of major commercial driveways on the segment.
- Driveway count minor: Enter the count of minor driveways (of any land use type) on the segment.

All driveway counts represent the number of full driveways, which are driveways that accommodate all entering and exiting turning movements. Driveways that are channelized to allow only right-turn entry and exit movements should be counted as half-driveway.

The following cross-sectional characteristics are needed:

- Lane width: Enter the lane width, in feet.
- Right shoulder width: Enter the right shoulder width, in feet.

The following roadside characteristics are needed:

- On-street parallel parking length on right side: Enter the length of parallel parking present on the right side of the segment in the direction of travel, in miles.
- On-street angle parking length on right side: Enter the length of angle parking present on the right side of the segment in the direction of travel, in miles.
- On-street parallel parking length on left side: Enter the length of parallel parking present on the left side of the segment in the direction of travel, in miles.
- On-street angle parking length on left side: Enter the length of angle parking present on the left side of the segment in the direction of travel, in miles.
- Roadside fixed object count: Enter the number of fixed objects that are present on the roadside (not including the median). Fixed objects that are located within 70 feet of one another longitudinally along the street are counted as a single object.
- Average roadside fixed object offset: Enter the average offset between travel lanes and fixed objects, in feet. The edge of the travel lanes is defined as the marked edgeline, or a line 2 feet from the face of the curb if no marked edgeline exists. This quantity is not needed if no roadside fixed objects are present.

If necessary, the analyst can enter values for the following calibration factors:

- Local calibration factor.
- Adjustment factor for pedestrians.
- Adjustment factor for bicyclists.

- Severity distribution calibration factor.
- Probability of fatality given a crash involving fatality or incapacitating injury has occurred.

Computed values for the individual CMFs are provided in the lower portion of the worksheet (see Figure 20). The output summary on the top portion of the worksheet (see Figure 18) provides the predicted crash frequency, combined CMFs (product of individual CMFs), and severity distribution for the segment in the analysis year.

Calibration Factors	Value		Default Values	
Local calibration factor (C)	1.000		1.000	
Adjustment factor for pedestrians (f ped)	0.024		0.024	
Adjustment factor for bicyclists (f bike)	0.011		0.011	
Severity distribution calibration factor (C sdf,ows)	1.000		1.000	
Probability of fatality given K+A severity ($P_{K K+A}$)	0.099		0.099	
Crash Modification Factors	F+I		PDO	
	Multiple Si	ingle	Multiple Singl	е
Right shoulder width	1.052	1.052	1.052	1.052
On-street parallel parking	1.000	1.000	1.000	1.000
On-street angle parking	1.000	1.000	1.000	1.000
Major commercial driveways	1.259	16	1.259	18
Minor driveways	1.035		1.035	Ĩ
Automated speed enforcement	1.000	1.000	1.000	1.000
Roadside fixed objects		1.233		1.233

Figure 20. One-Way Segments Calibration Factor Cells and CMF Calculations

Intersections

The general information and site information input data cells are shown in the top portion of Figure 21. Cells are provided for the analyst to enter analyst's name, agency, date (this cell is populated with an equation that computes the current date), location, major street name, minor street name, intersection number, and analysis year. To avoid the error message shown in Figure 13, it is essential to change the intersection number every time a new site at a facility is being analyzed, and to change the analysis year every time a new year is being analyzed.

For intersections, the major street is defined based on the following rules:

- For 2x2 intersections (intersections of two two-way streets), the major street is the street with the higher volume.
- For 1x2 or 1x1 intersections (intersections where one or both of the streets are one-way), the major street is the one-way street.
- Note that in the case of 3-leg intersections, it is possible for the major street to be the one that ends at the intersection.

General I	nformation		Site Information								
Analyst	MPP			Ma	Main Street						
Agency	ΠΙ			Mi	nor street name	Cross Stree	et				
Date	12/9/2015			Int	1						
Location	City of Fillmore			An	alysis year	2011					
Add t	o Totals worksheet		Resto	re equations		Res	et input cells	3			
Output S	ummary P	redicted cra	sh frequen	cy, crashes	/ year	-	Combined C	MF			
		F+I	PDO	Total			F+1	PDO			
	Total crashes	3.064	2.774	5.837	Total-vehi	cle crashes	0.690	0.690			
	Total-vehicle crashes	2.862	2.774		Vehicle-pedestr	ian crashes	1.000				
	icle-pedestrian crashes	0.095	1.1.1.1.1.1.1.1.1.1.1.								
Veh		0 407			Severity of	listribution fo	r F+l crashe	S			
	/ehicle-bicycle crashes	0.107									
	/ehicle-bicycle crashes	0.107			ĸ	A A	В	С			

Figure 21. Intersections General Information Cells and Output Summary

The input data cells on the Intersections worksheet are shown in Figure 22. The analyst must provide data to describe characteristics of the intersection as a whole as well as both intersecting streets.

Input Data	Value		Advisory Messages
Intersection Data			
Area type	Urban		
Number of legs	4		4SG intersection type
Traffic control type	Signalized	1	
Lighting present?	Yes		
Red-light cameras present?	No		-
Daily pedestrian volume crossing all legs (peds/day)	700		
Maximum number of lanes crossed by a pedestrian	7		
Number of bus stops within 1,000 ft of intersection	0		
School(s) present within 1,000 ft of intersection?	No		
Alcohol sales establishments within 1,000 ft	0].
Street Data	Major	Minor	
Street configuration	Two-way	Two-way	2x2 intersection configuration
Annual average daily traffic (AADT), veh/day	20000	10000	
Number of lanes	6	4	
Number of approaches with left-turn lanes	2	2	
Number of left-turn movements with protected phasing	2	0	
Number of right-turn movements prohibited on red	2	2 0	
Number of U-turn movements prohibited	C	2	
Number of approaches with right-turn channelization	C	2	

Figure 22. Intersections Input Data Cells

The following intersection characteristics are needed:

- Area type: Specify if the area surrounding the site is urban or suburban.
- Number of legs: Enter the number of street legs at the intersection (3 or 4).
- Traffic control type: Specify if the traffic control is signalized or two-way stop. Note that an advisory message will provide the intersection category code (3ST, 3SG, 4ST, or 4SG) that is used in the HSM to describe the four combinations of number of legs and traffic control.
- Lighting present: Indicate whether lighting is present at the intersection.
- Red-light cameras present: Indicate whether red-light cameras are used at the intersection. This quantity is not needed for two-way stop-controlled intersections. This quantity is not needed for a two-way stop-controlled intersection.
- Daily pedestrian volume crossing all legs: Enter the daily pedestrian volume, in pedestrians per day. Include all pedestrians crossing at all intersection legs. Note that the HSM refers to this quantity as "PedVol" and provides default values for 3SG and 4SG intersections based on qualitative general levels of pedestrian activity (high, medium-high, medium, medium-low, and low). This quantity is not needed for two-way stop-controlled intersections. This quantity is not needed for a two-way stop-controlled intersection.
- Maximum number of lanes crossed by a pedestrian: Count the total number of lanes (all through lanes plus turn lanes) at each intersection leg, and enter the highest number of lanes observed on the legs. This quantity is not needed for two-way stop-controlled intersections. This quantity is not needed for a two-way stop-controlled intersection.
- Number of bus stops within 1,000 ft of intersection: Enter the number of bus stops present within 1,000 feet of the center of the intersection, across all legs. This quantity is not needed for two-way stop-controlled intersections. This quantity is not needed for a two-way stop-controlled intersection.
- School(s) present within 1,000 ft of intersection: Indicate whether one or more schools are present within 1,000 ft of the center of the intersection. This quantity is not needed for two-way stop-controlled intersections. This quantity is not needed for a two-way stop-controlled intersection.
- Alcohol sales establishments within 1,000 ft: Enter the number of alcohol sales establishments present within 1,000 ft of the center of the intersection, across all legs. This quantity is not needed for two-way stop-controlled intersections. This quantity is not needed for a two-way stop-controlled intersection.

The following street characteristics are needed for each street:

- Street configuration: Specify the street configuration as two-way or one-way. For a 1x2 intersection, the one-way street is defined as the major street.
- Annual average daily traffic: Enter the AADT, in vehicles per day. This quantity is a two-way total, including both arriving and departing vehicles. If different AADTs are present on the two legs of a street, enter the average of the two values. For 2x2 and 1x1 intersections, the major street must have equal or greater AADT than the minor street.
- Number of lanes: Enter the number of lanes (arriving plus departing) present on the street, not including turn lanes that are added by taper in the vicinity of the intersection.

- Number of approaches with left-turn lanes: Indicate the number of approaches on the street that have left-turn lanes. Count a leg if it has one or more left-turn lanes; the number of left-turn lanes on the leg does not matter. This quantity is not needed for the minor street at a signalized intersection or the major street at a two-way stop-controlled intersection.
- Number of left-turn movements with protected phasing: Enter the number of left-turn movements on the street that have protected-only phasing. This quantity is needed only for signalized 2x2 intersections.
- Number of right-turn movements prohibited on red: Enter the number of right-turn movements on the street that are prohibited when the signal indication is red. This quantity is not needed for a two-way stop-controlled intersection.
- Number of U-turn movements prohibited: Enter the number of U-turn movements on the street that are prohibited. This quantity is needed only for signalized 2x2 intersections.
- Number of approaches with right-turn channelization: Enter the number of approaches on the street that have right-turn channelization, or provision of free or yield-controlled right-turn movement. This quantity is not needed for a two-way stop-controlled intersection.

If necessary, the analyst can enter values for the following calibration factors:

- Local calibration factor.
- Adjustment factor for pedestrians for stop-controlled intersections.
- Adjustment factor for bicyclists.
- Severity distribution calibration factors for 2x2 intersections.
- Severity distribution calibration factors for 1x2 and 1x1 intersections.
- Probability of fatality given a crash involving fatality or incapacitating injury has occurred.

Computed values for the individual CMFs are provided in the lower portion of the worksheet (see Figure 23). The output summary on the top portion of the worksheet (see Figure 21) provides the predicted crash frequency, combined CMFs (product of individual CMFs), and severity distribution for the segment in the analysis year.

Totals Worksheet

After the analyst uses the input data worksheets to describe each site on the facility of interest, the Totals worksheet is available to tabulate the predicted crash frequency for the overall facility and also to conduct a site-specific or project-level EB analysis. The analyst transfers data from the input data worksheets to the Totals worksheet by clicking the "Add to Totals worksheet" button near the top of each input data worksheet.

Calibration Factors			Value			Default Va	lues	
Local calibration factor (C)		1	1.000		5	1.000		
Adjustment factor for pedestrians	for stop contr	ol (f_{ped})	0.049			0.049		
Adjustment factor for bicyclists (i	f _{bike})		0.019		2	0.019		
Severity distribution calibration fa	1.000		16	1.000				
Severity distribution calibration fa	ctor, 1-way (C	1.000		8	1.000			
Probability of fatality given K+A s	everity (P _{KIK+} ,)	0.094			0.094		
			Manı	ner of Collis	ion Proport	ions		
2x2 intersections	3ST, F+1 3S	T, PDO	CONTRACTOR OF THE OWNER OF THE OWNER	and the second sec		A DECEMBER OF A	4SG, F+1 4	SG, PDO
Rear-end collision proportion	0.094	0.154		0.189	0.079	0.098	0.083	0.148
Angle collision proportion	0.764	0.629	0.676	0.554	0.806	0.707	0.746	0.552
1x2 or 1x1 intersections	3ST, F+1 3S							
Rear-end collision proportion	0.100	0.100		0.143	0.047	0.065	0.030	0.059
Angle colllision proportion	0.300	0.250	0.889	0.571	0.822	0.706	0.837	0.733
Crash Modification Factors			F+I			PDO		
Total-vehicle crash CMFs		3			5			
Lighting			0.911			0.911		
Red-light cameras			1.000		20 5	1.000		
Left-turn signal phasing			0.740			0.740		
Right-turn-on-red		Ĩ	0.960			0.960		
U-turn prohibition		8	0.922		8	0.922		
Right-turn channelization		Ĩ	1.000		Ĩ	1.000		
Number of lanes		8	1.158		8	1.158		
Vehicle-pedestrian crash CMFs		28 30			10			
Bus stops			1.000					
Schools		2	1.000					
Alcohol sales establishments		Ĵ.	1.000					

Figure 23. Intersections Calibration Factor Cells and CMF Calculations

Worksheet Organization

The Totals worksheet is organized with two large data tables like the one shown in Figure 24. The top table is labeled "Segment Site Information" and accommodates up to 15 segment-year combinations. The bottom table is labeled "Intersection Site Information" and accommodates up to 15 intersection-year combinations. For example, if the facility of interest consists of five segments and five intersections, and the analysis period is three years, all 15 rows in each table would be filled. Each table contains the following data:

- Site identification information like site number, analysis year, and site type.
- Predicted crash frequency, which was obtained from the relevant input data worksheet. These cells are shaded white.
- Site-specific observed crash totals. These cells are grayed out if no EB analysis or a project-level EB analysis is conducted, and are shaded blue if a site-specific EB analysis is conducted.
- Predicted or expected crash frequency. These cells are labeled with "Predicted crash frequency" and shown with purple shading in Figure 24 for the case of no EB analysis being conducted. The cells are shaded purple and labeled with "Expected crash

frequency" if a site-specific EB analysis is chosen, and grayed out if a project-level EB analysis is chosen.

- Combined CMF (not shown in Figure 24).
- Site location information (not shown in Figure 24).

,	Soomor	nt Site Infi	ormation	Predicted crash frequency, crashes / year						Site-specific observed crash totals				Predicted crash frequency, crashes / year					
82	Jeymer	it one init	ormation	Multipl	e-vehicle	Single	-vehicle	Vehicle-pedestrian	Vehicle-bicycle	Multiple-vehicle		e Single-vehicle		Multiple-vehicle		Single-vehicle		Vehicle-pedestrian	Vehicle-bicycle
Number	Year	Туре	Street number	F+I	PDO	F+I	PDO	F+I	F+I	F+I	PDO	F+I	PDO	F+I	PDO	F+I	PDO	F+I	E+I
1	20	11 6D	SH 1	5.492	7.389	0.94	1.167	0.225	0.120	. 7	9	5	2 3						
1	20	11 30	SH 1	1.244	2.986	0.22	0.309	0.114	0.052	2	3	3	1 -						
			2	-															
			8					· ·											
										Î									
			8																
														1					
									-1										
														1					
			8	0										1					
			8			2		1.5		1									

Figure 24. Totals Worksheet, Segments Data Table

The controls for the Totals worksheet are shown in Figure 25. The blue cell contains a drop-down menu where the analyst specifies the type of EB analysis to be conducted (none, site-specific, or project-level). Both EB analysis options can be applied to past periods for which crash counts are available. A site-specific EB analysis requires crashes to be assigned to the appropriate site and year, while a project-level EB analysis allows a facility-wide crash total across all analysis years to be provided. The site-specific EB analysis is more precise but requires more detailed crash data.

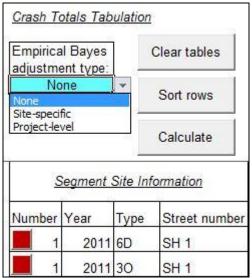


Figure 25. Totals Worksheet Controls

The following three command buttons are provided near the upper-left corner of the Totals worksheet (see Figure 25):

- Clear tables: Click this button to clear all data from the Totals worksheet.
- Sort rows: Click this button to sort the rows in each data table by year, site number, and site type code. This function is particularly useful when the data table is mostly full but has an empty row in the middle of the table that must be reclaimed because the bottom row was filled (see the error message in Figure 14).
- Calculate: Click this button to perform the calculations needed to aggregate crash totals and perform an EB analysis (if chosen).

Each row in the data tables has a square red button in the leftmost cell of the row. Clicking these buttons allows the analyst to (1) return the data in that table row to its origin worksheet (Two-way segments, One-way segments, or Intersections) and/or (2) delete the data in that row of the table.

The Totals worksheet consists of the main data tables that were discussed above; a second set of tables to the right of the main data tables, which contain intermediate calculations; two boxes that contain inverse dispersion parameters that are used for the EB analysis calculations and were derived along with the model coefficients in NCHRP Project 17-58; and an archived data area that contains all relevant site data in case the analyst needs to return these data to the input data worksheets for revision. The boxes for the inverse dispersion parameters contain yellow-shaded cells, as these parameters can be changed, but they should not be changed without significant justification based on detailed analysis of field data from the jurisdiction of interest.

Analysis Options

The Totals worksheet can perform three different types of analysis, which are described in the following paragraphs.

No Empirical Bayes Analysis. This option is denoted as "None" in the drop-down menu shown in Figure 25. With this analysis option, the Totals worksheet provides the predicted crash frequency for the facility as a simple summation of the predicted crash frequencies across the sites. The analyst need not provide crash counts. The crash totals tables on the top of the Totals worksheet will be populated with crash summations as shown in Figure 26. The "Facility Totals" table provides the total crash frequency for the facility, and aggregated by crash type (multiple-vehicle + single-vehicle, vehicle-pedestrian + vehicle-bicycle), severity (fatal-andinjury, property-damage-only). The "Total Predicted Crash Frequency" table provides a more detailed aggregation of crash frequency, broken down by site type (segment or intersection) in addition to crash type and severity. The "Project-Level Observed Crash Totals" table is not used when an EB analysis is not conducted.

Site-Specific Empirical Bayes Analysis. This option is denoted as "Site-specific" in the drop-down menu shown in Figure 25. With this analysis option, the Totals worksheet provides the expected crash frequency for each site-year combination, and also computes the total

expected crash frequency for the facility as a summation across all sites and analysis years. The analyst must provide crash counts for every site, as indicated by the blue cells for the columns in the middle portion of the data tables (see Figure 27). Vehicle-pedestrian crash counts need not be provided for stop-controlled intersections because the pedestrian-vehicle crash frequency model applies only to signalized intersections, so the relevant cells for these crash counts are shaded white accordingly. The crash totals tables on the top of the Totals worksheet will be populated with EB-adjusted crash totals, and the "Total Expected Crash Frequency" table will be populated with a more detailed aggregation of crash frequency. The "Project-Level Observed Crash Totals" table is not used when a site-specific EB analysis is conducted.

Facility Totals	Project-Level Observed Crash Totals	1 [Total Predicted Crash Frequency, crashes / year										
MV+SV: 32.422	Crash type	F+I	PDO	I T	Multiple-vehicle			Single	vehicle	Total-vehicle		Veh-ped	Veh-bike
VP+VB: 1.425	Multiple-vehicle crashes on segments:	3	9 12		Site type	F+I	PDO	F+I	PDO	F+I	PDO	F+I	F+1
F+I: 14.989	Single-vehicle crashes on segments:		3 4	1	Segments:	6.737	10.375	1.175	1.476	7.912	11.850	0.339	0.172
PDO: 18.858	Total-vehicle crashes at all intersections:		7 9	1 1	Intersections:			No. Constant		5.653	7.007	0.505	0.408
Total: 33.846	Vehicle-pedestrian crashes at signalized intersections:	1	2		Total:	6.737	10.375	1.175	1.476	13.564	18.858	0.844	0.580

Figure 26. Crash Totals Tables - No Empirical Bayes Analysis

Facility Totals Project-Level Observed Crash Totals										Total Expected Crash Frequency, crashes / year										
MV+SV:	38.068		Crash type				F+I	PDO			1000	Multiple-vehicle		Single-vehicle		Total-vehicle		Veh-ped	Veh-bike	
VP+VB:	2.176		Multiple-vehicle crashes on segment			segments	:	9	12		Site type	F+I	PDO	F+I	PDO	F+I	PDO	F+I	F+I	
F+I:	18.079		Single-vehicle crashes on se			segments	:	3	4	1	Segments	7.845	11.560	1.597	2.061	9.442	13.621	0.391	0.200	
PDO:	22.165		Total-vehicle crashes at all inters			ersections	:	7	9	2	Intersections	1				6.461	8.544	1.106	0.478	
Total:	40.243		Vehi	cle-pedestrian crashe	s at signalized inte	ersections	:	2	-	2	Total	7.845	11.560	1.597	2.061	15.903	22.165	1.498	0.678	
1		Dradicted	crach fragi	iency, crashes / year		Sito	pacific ab	convod cr	ash totals	Ĩ		Expected	crach frog		chae / vo	ar		1	Combine	
		1	-vehicle Vehicle-pedestrian Vehicle-bicycle			Multiple-vehicle Single-vehi				Mu	ultiple-vehicle	Single-vehicle		Vehicle-pedestrian		Vehicle-bicycle		Multiple	e-vehicle	
F+I	PDO	F+I	PDO	F+I	F+I	F+I	PDO	F+I	PDO	F+I	PDO	F+I	PDO	F	+	F	+	F+I	PDO	
	7.389	0.948	1.167	0.225	0.120		7	9	2	3 6	6.455 8.569	1.312	1.686	0.:	270	0.1	44	1.035	1.035	
5.492																				

Figure 27. Crash Totals Tables – Site-Specific Empirical Bayes Analysis

Project-Level Empirical Bayes Analysis. This option is denoted as "Project-level" in the drop-down menu shown in Figure 25. With this analysis option, the Totals worksheet provides the expected crash frequency for the facility across all analysis years. The analyst must provide crash counts for the facility, as indicated by the blue cells in the "Project-Level Observed Crash Totals" table (see Figure 28). These crash counts are aggregated by crash type and severity and summed across all analysis years. The crash totals tables on the top of the Totals worksheet will be populated with EB-adjusted crash totals. The "Total Predicted Crash Frequency" table is not used when an EB analysis is not conducted.

Figure 28. Crash Totals Tables – Project-Level Empirical Bayes Analysis

REFERENCES

- Lord, D., S. Geedipally, M. P. Pratt, E. S. Park, S. H. Khazraee, and K. Fitzpatrick. Safety Prediction Models for Six-Lane and One-Way Urban and Suburban Arterials. NCHRP Report 17-58. Transportation Research Board, National Academy of Sciences, Washington, D.C., 2016 (forthcoming).
- 2. Draft Chapter 12 of the Highway Safety Manual. NCHRP Project 17-58.
- 3. *Highway Safety Manual, 1st Edition.* Volume 2. American Association of State Highway and Transportation Officials, Washington, D.C., 2010.