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CHAPTER 1: INTRODUCTION 

PROBLEM STATEMENT 

Crash prediction models can be used to predict the number of crashes and evaluate roadway 
safety. Part C of the first edition of the Highway Safety Manual (HSM) (AASHTO, 2010) 
provides crash prediction models, or what is often referred to as safety performance functions 
(SPFs), for roadway segments and intersections of four facility types: rural two-lane roads, rural 
multilane highways, urban and suburban arterials, and more recently freeways and interchanges. 
HSM prediction models were fitted and validated with data collected from a few selected 
numbers of states. Consequently, since crash frequency and its dispersion vary substantially from 
one jurisdiction to next, it is essential to calibrate SPFs when they are applied to a new 
jurisdiction. In other words, calibration is a tool to account for the differences in factors that were 
not considered or cannot be considered in the development of SPFs, such as weather, driver 
behavior, and reportability criteria between jurisdictions into predictive models. The 
characteristics of the SPF calibration procedure are presented in Appendix A of Part C of HSM. 
In this procedure, the calibration factor (C-factor) is eventually calculated as a ratio of the total 
number of observed crashes (Nobs) to the total number of predicted crashes (Npre) (Equation 1), 
and is applied to the facility SPF as a scalar term: 

 C = ∑Nobs
∑Npre

 (1) 

The first version of the HSM recommends a one‐size‐fits-all sample size for calibration 
procedures that require crash data collected from randomly selected sites with a minimum 
number of approximately 100 crashes per year. However, this recommended sample size is not 
fully supported by documented studies and several agencies that have initiated SPF calibration 
efforts. Independent of the level of crash data history, the HSM still recommends using between 
30 and 50 sites with at least 100 crashes. For sites with low crash history, this could be difficult 
to collect (Xie et al., 2011). On the other hand, for most facilities, this recommendation sounds to 
be too general and may not provide desirable results (Banihashemi, 2012; Alluri et al., 2016). 
The later issue, in addition to the fact that no documented study supported the initial HSM 
sample size recommendation, inspired researchers to investigate the quality of the C-factors 
estimated based on the HSM recommendation. Sensitivity analyses on C-factors derived from 
different sample sizes were documented in several studies to assess the HSM one-size-fits-all 
sample size recommendation. It has been reported that not only the HSM one-size-fits-all 
recommendation is inappropriate but is also insufficient to acquire the desirable accuracy in most 
cases.  
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Despite efforts that were put into proposing new sample size guidelines to recalibrate the SPFs, 
two shortcomings were identified in previous studies. First, it was assumed that the C-factor 
derived from the dataset in hand is the ideal (true) calibration factor. However, the ideal 
calibration factor is not known beforehand based on empirical data due to limitations with the 
data collection process. Consequently, the corresponding sample size guidelines could involve 
potential biases. This issue will be overcome in this study by conducting extensive simulation 
analyses. Using simulation, a true calibration factor can be determined, and then assess if the 
proposed sample size is large enough to achieve a calibration factor that is close to the true one. 
Second, sample size recommendations that were proposed in previous studies are based on a 
specific dataset usually collected at the state level. Therefore, given the fact that the 
characteristics of different roadways vary substantially, it is likely that these recommendations 
do not emerge to desirable results when applied to a new jurisdiction. In order to overcome this 
problem, the current study proposes its recommendations based on the crash data characteristics 
(i.e., the coefficient of variation [CV], which is the ratio of the standard deviation to the mean of 
the crashes). Therefore, agencies would be able to select a sample size that represents the 
characteristics of crash data for the type of facility analyzed. 

Although easier than fitting a new model, calibrating crash prediction models is a time 
consuming task especially due to the energy or resources needed for collecting enough data 
(Lord and Bonneson, 2005; Xie et al., 2011; Brimley et al., 2012). Therefore, the agency may be 
interested to know when or how often predictive models should be recalibrated. This study 
addresses this issue by providing recalibration guidelines. The agency should examine the 
guidelines periodically. If the guidelines are met, the model should be considered for 
recalibration. The proposed procedure is based on the general characteristics of data at hand (i.e., 
(1) total number of crashes, (2) the mean value of average daily traffic [ADT] or the mean value 
of annual average daily traffic [AADT] in vehicles per day, and (3) the total segment length or 
the number of intersections). 

States, or even large urban cities, may experience different numbers of crashes in different 
regions or parts of the city. This can be attributed to differences in terrain, population, weather, 
and other unobserved characteristics. Hence, it can impact the calibration procedure and 
consequently the C-factor when it is used for a very large area. This study first investigated 
whether or not having region-specific calibration factors are required and justified for large 
states, such as Texas. Next, region-specific guidelines are proposed to determine whether or not 
a region-specific C-factor is recommended for the type of facility under analysis. If the region-
specific guidelines are met, the agency should derive a region-specific C-factor using region-
specific data. Otherwise, the common statewide factor can be used. The proposed region-specific 
guidelines are similar to the one that will be proposed for when or how often recalibration of the 
models is recommended. The guidelines are also based on the general data at hand: (1) the total 
number of crashes, (2) the mean value of ADT/AADT, and (3) the total segment length (or the 
number of intersections). 
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Lastly, this research project evaluates the recent C-factor that was proposed to calibrate freeways 
and interchanges severity distribution functions (SDFs) in the HSM. Similar to SPFs, SDF 
models in HSM Chapters 18 and 19 were also fitted and validated using observed data from a 
few states. There is, therefore, a need to calibrate the models for local conditions. In this 
research, the validation of the C-factor that was proposed in the HSM is investigated using a 
simulation analysis. Then, different scenarios are examined to determine the calibration sample 
size for different conditions. The sample size guidelines are proposed based on the data that are 
used for calibration (i.e., the average CV of crash severities).  

STUDY OBJECTIVES 

The objectives of this research are to (1) review and document issues with the existing 
calibrating method in the HSM, (2) identify factors that influence the selection of the sample size 
for the SPFs calibration, (3) determine how frequently or when an agency should update their 
calibration factors, (4) determine whether or not having region-specific C-factors are justified 
and when they are needed, and (5) identify factors that influence the selection of the sample size 
for the SDFs calibration.  

The study objectives will be accomplished using simulated and observed data. The guidelines 
will include a discussion on (1) the sample size that is required to calibrate SPFs; (2) when the 
models should be recalibrated; (3) when the region-specific C-factors are recommended; and (4) 
the sample size that is required to calibrate SDFs. 

OUTLINE OF REPORT 

The research conducted in this project is described in seven chapters. Chapter 2 provides a 
review of the most recent and important studies on the SPFs calibration in the literature. Chapter 
3 examines the required sample size requirements for calibrating SPFs using a simulation 
protocol. Chapter 4 describes the guidelines for when the recalibration of predictive models is 
recommended. Chapter 5 documents guidelines on when region specific C-factors are needed. 
Chapter 6 describes the SDF calibration procedure and examines the required sample size to 
derive a reliable calibration factor using a simulation protocol. Chapter 7 summarizes the 
research conducted in this study and the proposed guidelines.  
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CHAPTER 2: LITERATURE REVIEW 

This chapter provides a summary of the studies on the calibration of predictive models. Some of 
the most recent and important documents in the literature are described and reviewed in this 
chapter.  

The chapter is divided into two sections. The first section describes the characteristics of the 
calibration method documented in Part C of the HSM (AASHTO, 2010). The second section 
provides a review of documented studies on the calibration procedure and the effects of sample 
size on the calibration process.  

HIGHWAY SAFETY MANUAL CALIBRATION PROCEDURE 

Crash prediction models are essential to predict the number of crashes and evaluate roadway 
safety. Part C of the first edition of the HSM provides crash prediction models or what is often 
referred to as SPFs for roadway segments and intersections for three facility types: rural two-lane 
roads, rural multilane highways, and urban and suburban arterials. HSM prediction models were 
fitted and validated with data collected from a few selected numbers of states. Consequently, 
since crash frequency varies substantially from one jurisdiction to another, it is essential to 
calibrate SPFs when they are applied to a new jurisdiction. In other words, calibration is a tool to 
account the differences in factors, such as climate, driver behavior, between jurisdictions into 
predictive models.  

The SPF calibration procedure is presented in greater details in Appendix A of Part C of the 
HSM. The general steps of the procedure are as follows: 

• Step 1—Identifying the predictive model. The SPF models are provided in Chapters 10 
to 12 of Part C of the HSM. These chapters cover rural two-lane roads, rural multilane 
highways, and urban and suburban arterials, respectively. (Note: the same calibration 
procedure is used for the models documented in HSM Chapters 18 and 19.) 

• Step 2—Sampling the sites. The HSM recommends deriving the calibration factors 
using a randomly selected sample that includes 30–50 sites with total of at least 100 
crashes per year. For the cases where the required data are readily available for a larger 
number of sites, however, the larger set is recommended to be used to derive the 
calibration factor.  

• Step 3—Obtaining the required data. The data collection consists of two components: 
(1) the total number of observed crashes obtained from randomly selected sites, and (2) 
the site characteristics data required to predict the number of crashes using the predictive 
model. The site characteristics data are classified into two groups: (1) the required data 
and (2) the desired data. While the required data are essential to predict the crashes, the 
desired data can enhance the prediction accuracy. 
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• Step 4—Finding the predicted number of crashes using the predictive model. Once 
the roadway characteristics data are collected and compiled, they are applied to the 
particular SPF to calculate the number of predicted crashes for the facility type. 

• Step 5—Calculating the calibration factor. The calibration factor is calculated by the 
ratio of the number of observed crashes to the number of predicted crashes as follows:  

 C = ∑Nobs
∑Npre

 (2) 

where: 

• Nobs= observed number of crashes. 
• Npre= predicted number of crashes. 

The calibration factor is then multiplied to the facility SPF as a scalar term. 

PREVIOUS STUDIES 

This section describes some of the most recent studies on the calibration of predictive models. 
This section is divided into two subsections. First, studies that provided a review and critique of 
the HSM one-size-fits-all sample size recommendation are summarized. Next, several case 
studies are reviewed, and some of the issues and challenges researchers have encountered with 
the HSM calibration process are discussed. In addition, recent studies that have attempted to 
propose, improve, or compare alternative calibration procedures are briefly covered. 

Studies on Calibration Sample Size  

As a general guideline, the HSM recommends estimating the calibration factors using a 
randomly selected sample that includes 30 to 50 sites with a total of at least 100 crashes per year. 
However, the one-size-fits-all sample size recommendation should be reviewed given the fact 
that different roadway types have different levels of homogeneity and the minimum sample size 
is a function of the population homogeneity (Alluri et al., 2016). Taking this fact into account, 
several researchers have tried to evaluate the HSM recommendation and propose new guidelines.  

Banihashemi (2012) reviewed the HSM sample size requirements by performing a sensitivity 
analysis on C-factors derived from samples with different sizes. The author used a dataset 
collected in Washington State and performed a sensitivity analysis for three types of facilities: 
rural two lane roads, rural multilane highways, and urban and suburban arterials. This study first 
found the calibration factor that is derived from the dataset in hand and referred to it as the ideal 
(true) calibration factor. Then, for each given sample size, 10 samples were generated randomly 
and their corresponding C-factors calculated. Next, assuming that the estimated measures follow 
the normal distribution, the quality of each sample size was quantified by measuring the 
probability that the calibration factor lied within 5 percent or 10 percent (depending on the 
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desired accuracy) of the ideal calibration factor. The sample size that ensures the estimated 
calibration factor lies within 10 percent of the ideal calibration factor with a reasonable 
probability was recommended in new guidelines. The study showed that the HSM 30–50 sites 
criterion is too small to derive a reliable C-factor for most roadway types.  

Alluri et al. (2016) used data collected in Florida to determine the minimum sample size that 
results in a reliable calibration factor for the same three types of facilities described above. A 
similar procedure as the one proposed by Banhashemi (2012) was used here as well to assess the 
accuracy of the C-factors and estimate the minimum sample size. In this study, for each given 
sample size, 30 subsets of data were generated and the corresponding C-factors calculated. 
Assuming a normal distribution, the minimum sample size is selected when, with a high 
probability, the estimated C-factors lie within 10 percent of the ideal C-factor. The analysis 
showed that not only the HSM generalized one-size-fits-all sample size is not appropriate, but 
also this criterion is insufficient to acquire the desired accuracy. The recommendations provided 
in the paper are based on the criterion that, with a high probability, the calibration factors lie 
within 10 percent of the ideal factor. However, for cases where sufficient data are available and a 
higher accuracy is sought, the recommendations based on 5 percent of the ideal factor were 
provided as well. The recommended minimum sample size for reaching the 5 percent accuracy 
almost doubles compared to the recommendations of achieving the 10 percent accuracy. 

Trieu et al. (2014) performed a sensitivity analysis on the calibration sample size requirement to 
evaluate and critique the accuracy of the HSM sample size guideline for two-lane two-way 
undivided urban arterial roadways. Given different percentages of a complete dataset, the 
samples were generated from the complete dataset for 500 iterations (Note: albeit this paper 
referred its method as a Monte Carlo simulation, it seems that the samples were obtained directly 
from the original dataset. Monte Carlo simulation, however, is referred to as parametric sampling 
methods which samples are generated from parametric distributions). Then, C-factors for each 
size-group were classified based on their errors from the ideal C-factor in 5 percent increments. 
As the sample size increased, C-factor observations with high error range decreased. For samples 
generated from 50 percent (or more) of the complete dataset, all C-factors lied within 10 percent 
of the ideal C-factor. The paper concluded that the current HSM sample size criterion may not 
yield a reliable C-factor. The authors analyzed the AADT distribution for a group of C-factors 
that were generated with a sample size of 37 sites (the sample size that satisfies the HSM 
criterion). The results showed that the AADT distribution could influence the C-factor reliability. 

Bahar (2014) recently introduced a procedure to evaluate the required sample size based on data 
at hand and the desired accuracy for the C-factor variance (note: the work done in this research 
was initially performed in parallel and independently from the work of Bahar). The procedure is 
anticipated to be incorporated into the second edition of the HSM. The proposed procedure is 
based on Dr. Ezra Hauer’s work that was documented in the appendices of the report. First, it 
was assumed that the source of the dispersion for the C-factor comes only from the crash data. 
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Based on this assumption, the variance of the C-factor was derived and presented in different 
alternative equations. Next, five different approaches were recommended to assess the required 
sample size. In fact, these alternative approaches are only different based on the accuracy they 
provide or the information that is required to calculate the C-factor variance. Alternative 1 
assumes no over-dispersion in the data, and can be used only as an initial estimate for the sample 
size. This alternative requires a decent guess about the C-factor. Alternative 5 provides a rough 
approximation about the sample size based on the average AADT, average segment length, a 
decent guess about the C-factor and the desired accuracy for the C-factor variance. Alternatives 
2, 3, and 4, on the other hand, can be used when a better estimate for the required sample size is 
sought. Alternative 2 can be used when the observed crash data, AADT, and the segment length 
are available or known. On the other hand, alternatives 3 and 4 can be used once either the 
AADT or crash data are missing but instead the analyst can have a good guess about the C-
factor. To use alternatives 2, 3, or 4, the safety analyst needs to begin with a sample size (for 
example 50 sites), then calculate the C-factor and its variance. If the desired variance for the C-
factor is not achieved, the analyst should increase the sample size and collect more data. This 
trial and error procedure continues until the desired accuracy is fulfilled. 

Bahar (2014) method can be reviewed as follows: 

• First, to calculate the variance of the C-factor, it was assumed that the over-dispersion 
parameter is fixed, based on the models documented in the HSM, and does not change 
from one jurisdiction to another; however, this may not be the case as the characteristics 
of the crash data vary significantly between different jurisdictions, including the level of 
the dispersion (Lord and Bonneson, 2005). This can lead to a significant bias. 

• Second, the method requires the analyst to make an assumption about the desired C-
factor variance. The author suggests using 0.1 × 𝐶𝐶 as the desired variance for the C-
factor. However, this recommendation can be problematic since the desired accuracy 
itself can change from one round of trial and error to the next. In other words, the C-
factor will change as more sites are added; hence, the estimated variance will change too.  

• Third, the analyst needs at least three out of the four sources of information (i.e., AADT, 
crash data, segment length, or a decent guess about the C-factor) to use the methodology. 
In our viewpoint, however, once it is assumed the crash data are the only source of the C-
factor dispersion (as was the case in Hauer’s derivation of the equations), crash data are 
the only information that is needed to estimate the required sample size. The issue is 
explained in greater details in Chapter 3. 

• Fourth, there are no clear guidelines on how many more sites the analyst needs to collect 
in the next round of trial and error if the desired accuracy for the variance was not 
achieved in the current trial.  

• Fifth, the procedure described in the report can be a tedious and time consuming task, 
since several of the alternatives require a trial and error approach and the next trial 
depends on calibration results itself. 
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The proposed method in this current study overcomes the issues described above. First, we 
account for the effect of the over-dispersion parameter that is based on the data to be used for the 
calibration process. Second, the desired accuracy and data collection process are not related to 
calibration results itself. Third, the only information required to collect data can be derived from 
crash data (even for segments, the segment length is not needed). Fourth, we provide clear 
guidelines on how many sites the analyst needs to collect in each scenario for the calibration 
process. Fifth, the procedure is straightforward. Once the analyst derived the information from 
the crash data, he or she can use the guidelines to select the required sample size.  

Studies on Calibration Procedure  

Upon the release of the HSM, several states have tried to develop state-specific calibration 
factors. Oregon (Xie et al., 2011) was one of the pioneering states that developed state-specific 
calibration factors. In recent years, calibration factors were generated for other states, such as 
Utah (Brimley et al., 2012), Illinois (Williamson and Zhou, 2012), Alabama (Mehta and Lou, 
2013), Missouri (Brown et al., 2014), and Maryland (Shin et al., 2014). This section briefly 
reviews some of the documents that use the HSM calibration method to calibrate SPFs to local 
conditions and covers some of the issues and challenges researchers have encountered. In 
addition, some of the studies that tried to improve, propose, or compare alternative calibration 
procedures are addressed. 

Although the methodology described in HSM is straightforward, Xie et al. (2011) indicated 
several issues and limitations in calibrating the SPFs for Oregon roadway facilities. The 
researchers noted that the methodology necessitates detailed data and is a time-consuming task 
for collecting and compiling all the necessary data. In particular, they reported that pedestrian 
volume at urban intersections and the traffic volume (vehicles/day) of minor roads at rural 
locations were the most difficult data to collect. Moreover, meeting the HSM sample size 
guideline was not applicable for some roadway types with low level of historical crash data. In 
this case, the authors decided to use all possible and available data instead. Due to a small crash 
rate in Oregon, the calibration factor for most facilities in this state was less than one. 

Brimley et al. (2012) used three years of crash data that occurred on 157 rural two-lane two-way 
roadway segments in Utah to calibrate the HSM SPF for this facility type. The calibration factor 
was estimated to be 1.16, which indicated that the HSM SPF underestimates the number of 
crashes. Then, the researchers tried to develop a jurisdiction-specific model. For this purpose, a 
negative binomial regression model was applied to the same dataset, but considered additional 
variables that were assumed to be associated with crashes. Four jurisdiction-specific models, two 
conventional and two models with traffic flow to a power (the natural log of the AADT) were 
developed and compared based on the Bayesian information criterion (BIC). The model with 
traffic flow to a power had the lowest BIC and was selected as the preferred model among the 
four proposed models. The modeling results showed that AADT, segment length, speed limit, 

https://www.google.com/search?rlz=1T4GGHP_enIR523US595&biw=1536&bih=744&q=define+necessitate&sa=X&ei=4QqeVNTrOIT4yQSS2YKoDw&sqi=2&ved=0CC4Q_SowAA
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and the percentage of multiunit trucks were seen to be significantly associated with the number 
of crashes.  

Mehta and Lou (2013) used the HSM recommended methodology to calibrate the SPF for two 
facility types: two-lane two-way rural roads and 4-lane divided highways in Alabama. Then, they 
proposed a new approach to find or calculate the calibration factor. This approach treated the 
calibration factor as a constant in the negative binomial regression model. Next, for each facility 
type, four state-specific models were developed with the negative binomial regression error 
structure. The authors used several performance measures and a validation dataset to compare 
different approaches. While the new calibration method did not emerge as a better method 
compared to the one recommended by HSM, one of the state-specific models outperformed all 
approaches including the HSM calibration procedure. 

Brown et al. (2014) documented the calibration of the HSM SPFs for Missouri and addressed 
some practical solutions to some challenges encountered in the process. Addressing the HSM 
sample size guidelines and data requirement, balancing the minimum length and homogeneity of 
segments, and inconsistency with the crash data were some of the challenges the researchers 
encountered.  

Martinelli et al. (2009) analyzed the transferability of the HSM calibration procedure to data 
collected outside North America. They calibrated the HSM SPF for the rural two-lane highways 
in the Italian province of Arezzo, a region with different roadway characteristics than those built 
in the US. Four different models and three calibration strategies were assumed to develop 12 
district C-factors. The applied calibration strategies were as follows: 

• The ratio of the number of observed crashes to the number of predicted crashes (the HSM 
calibration procedure). 

• The ratio of the densities of the observed crashes to predicted crashes. 
• The ratio of the weighted average over the length of the observed crashes to the predicted 

crashes.  

The SPF model that incorporated Crash Modification Factors (CMFs) and was applied to the 
stratified classes defined by the HSM procedure and calibrated by the weighted average over the 
length C-factor provided the best results. 

Since roadway and vehicle characteristics, and the driver behavior continuously change over 
time, crash prediction models can quickly become outdated. Because fitting a new model 
requires significant data and is a time-consuming and expensive task, it is essential to find an 
efficient approach for updating outdated models. Similar to calibrating predictive models to local 
conditions, calibration can be used to update the predictive models as well. Connors et al. (2013) 
documented several methodological issues that arise from updating predictive models initially 
developed in England through both scalar calibration and the re-fitting of models. One issue that 
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was documented was related to selecting the scalar factor based on goodness-of-fit (GOF) 
criteria. The researchers noted that the selection of scalar factors was dependent on the GOF 
criteria. In the end, they nonetheless suggested to use the HSM recalibration procedure.  

Wood et al. (2013) analyzed two issues regarding the updating of the same crash prediction 
models addressed in Connors et al. (2013) study. First, they looked at the temporal transferability 
of the model as a function of its complexity. The researchers concluded that the more complex 
the model is, the better its temporal transferability. Then, the authors investigated two general 
approaches in updating the predictive models: (1) refitting the old model considering the same 
variables but with new data sources, and (2) calibration through a scalar factor. Both methods are 
more practical and more efficient compared to fitting a new crash prediction model and both 
emerged to desired results in their study. Moreover, they analyzed the original model, which had 
a term for capturing time trend. The authors stated that since the pattern may not remain stable 
over time, the model with a trend term can lead to a significant bias in estimations. Therefore, 
simpler calibration procedures, such as refitting or scalar calibration, were more reliable. 

The C-factor might be different within a large region because attributes within that region are not 
uniform across the entire area. For example, the HSM recommends finding separate C-factors for 
large jurisdictions that are characterized by different topographical or weather conditions 
(AASHTO, 2010). Unfortunately, the HSM does not provide guidelines for determining the 
detailed conditions when separate C-factors are warranted or justified. Bahar (2014) studied this 
issue and suggested two approaches: 

• First, Bahar studied how much bias can affect the prediction results of the C-factor. The 
hypothesis is that there is no need to be more precise with the C-factor than for the base 
model or the product of CMFs. Based on this hypothesis, a conservative guideline was 
provided, “…the coefficient variation of the C-factor does not need to be less than, say, 
half of the coefficient of variation of the product of the CMFs.” However, the document 
does not provide clear guidelines on what the typical CV of the product of the CMFs 
should be. Hence, calculation of the CV of the product of CMFs was left to the user.  

• Second, it was suggested to group data based on different variables and conditions, such 
as AADT, segment length or crash severities. If a major difference in C-factors was 
observed, a separate C-factor is suggested. This method is not necessarily for a region or 
terrain but can be used to consider the effect of the different variables more accurately. 
For example, different C-factors can be recommended for different ranges of AADTs. 

The method proposed by Bahar (2014) is based on the availability of detailed data that are used 
for the calibration process. More specifically, it is assumed that the analyst first collects all data 
that are required for the calibration, and then the analyst goes through grouping the variables to 
determine whether or not a separate C-factor is needed, for example, for different AADT ranges 
or a region. This method may not be efficient since the analyst may need to know if a separate C-
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factor is desired (specifically for a region) in advance before the calibration procedure begins in 
order to collect enough data for the required sample size. In this research, we address this issue 
in Chapter 5. 

Several studies were also conducted to improve the accuracy of SPFs. Kim and Lee (2013) 
proposed an iterative four steps procedure to develop SPFs that reflect the categorical impact of 
exposure variables varying with freeway segments. First, freeway segments were classified into 
three similar groups where in each group the dispersion of exposure variables is minimized. In 
the second step, several distributions (Poisson and negative binomial, geometric, and discrete 
uniform) were assumed and tested using the Kolmogorov-Smirnov GOF test. All categories 
showed a good fit with the negative binomial distribution. In the third step, several SPF models 
were estimated using the negative binomial regression model. The model with log transformation 
of AADT and segment length provided the best results (although the later may not be 
theoretically sound, see Lord et al. [2005]). In step four, the validity of differences among the 
clustered groups was tested. This four-step procedure produced more accurate results. 

In summary, several studies have noted that the calibration of predictive models is a time-
consuming task in addition to problems associated with the collection, readiness, and 
completeness of the data. Moreover, independent of the level of crash data history for different 
types of facilities, the HSM still recommends using between 30 and 50 sites with at least 100 
crashes. The small sample size proposed by HSM inspired researchers to investigate the quality 
of C-factors. Sensitivity analyses on C-factors derived from different sample sizes were 
conducted by several researchers to assess the HSM one-size-fits-all sample size 
recommendation. Not only is the HSM one-size-fits-all recommendation inappropriate, but it is 
also insufficient to acquire the desirable accuracy in most cases. In these studies, it was assumed 
that the C-factor that is derived from the full dataset is the true C-factor. Then, the quality of 
each given sample size was quantified by comparing the C-factor obtained from that sample size 
with the true C-factor. For instance, if the C-factor lied within 10 percent of the true C-factor 
with a high probability, the sample size would be classified as a reliable option. 
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CHAPTER 3: SAFETY PERFORMANCE FUNCTION SAMPLE 
SIZE REQUIREMENTS 

This chapter documents the analyses used for determining the required sample size needed to 
calibrate predictive models. A simulation protocol is proposed to simulate a wide range of 
scenarios and evaluate the required sample size for each case. Then, the sample size guidelines 
are provided and validated. The guidelines are based on the characteristics of crash data used for 
calibration. 

This chapter is divided into four sections. The first section describes the simulation protocol used 
in this research. In the second section, the simulation results are presented and discussed for a 
range of scenarios. Next, in the third section, the sample size guidelines are provided and 
discussed. The fourth section presents the results related to the evaluation and validation of the 
sample size guidelines using two observed datasets. 

SIMULATION PROTOCOL 

This section presents the Monte Carlo simulation protocol that was used in the research. Before 
describing the simulation protocol, recall that the calibration factor (C-factor) for each facility 
can be estimated as follows: 

 C = ∑Nobs
∑Npre

 (3) 

where: 

• C= calibration factor. 
• Nobs= the observed number of crashes. 
• Npre= the predicted number of crashes. 

A simulation scenario, in this study, was specified by the specified mean for the predicted 
number of crashes, a calibration factor, and an inverse dispersion parameter (a measure of 
dispersion). The first step of the simulation began with generating the AADT variable from a 
lognormal distribution. To simplify the simulation process, a flow-only crash prediction model 
was selected and its intercept was modified until the specified mean of the predicted number of 
crashes in the selected scenario was achieved. Next, given the modified model, for each site, the 
predicted number of crashes was calculated. The observed number of crashes was then generated 
from a negative binomial distribution with the identified mean and inverse dispersion parameter. 
Last, for each given sample size (n), n sites were randomly selected and the sample’s calibration 
factor (Cn) was calculated. This step was repeated for 1,000 iterations. The quality of the each 
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given sample size was quantified with a method similar to the one that was proposed by 
Banihashemi (2012), which is described as follows: 

1. Calculate the mean (Avg(Cn)) and standard deviation (sd(Cn)) of the generated 
calibration factors. 

2. Assume the calibration factors, which are generated from 1,000 simulated iterations, 
follow a normal distribution and calculate following two statistics: 

 Zmin = 0.9×C𝑁𝑁−Avg(Cn)
sd(Cn)

 (4) 

 Zmax = 1.1×C𝑁𝑁−Avg(Cn)
sd(Cn)

 (5) 

where 𝐶𝐶𝑁𝑁 is the calibration factor that is derived from the simulated dataset (Note: the 
size of the dataset was set to 5,000 observations or sites) and is referred to as the true 
calibration factor. 

3. Find the probability that the calibration factor lies within 10 percent of the true 
calibration factor as follows:  

 P = Φ(Zmax) −Φ(Zmin) (6) 

where Φ(.) indicates the cumulative density function (CDF) of the normal distribution, 
and the probability P indicates the probability that the sample size calibration factor lies 
within 10 percent of the true calibration factor.  

The simulation procedure is summarized in the following steps.  

Step 1 – Initialization 

1.1 Set the scenario by specifying the desired mean for the predicted number of crashes (µpre), a 
calibration factor (C) and an inverse dispersion parameter (φ). 

1.2 Set the size of the simulation dataset (N). 

1.3 For each site, generate the AADT variable from a log-normal distribution with a given mean 
and standard deviation. 

Step 2 – Simulating the Dataset  

2.1 Take a crash prediction model and modify its intercept in a way that the mean of the 
predicted number of crashes is matched to the scenario. 

2.2 Generate the crash prediction mean (Npre) at each site using the modified functional form. 
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2.3 Generate the observed number of crashes (Nobs) in each site from a negative binomial 
distribution with a mean equal to NPre × C and the given inverse dispersion parameter (φ). 

Find the calibration factor for the simulated dataset as follows and referred to it as the true 
calibration factor:  

 C𝑁𝑁 = ∑ Nobs𝑁𝑁
∑ Npre𝑁𝑁

 (7) 

Note that C𝑁𝑁 shall be close to the assumed calibration factor (C). 

Step 3 – Test the Quality of Each Given Sample Size 

3.1 Repeat the following steps for 1,000 iterations: 

3.1.1 For a given sample size (n), randomly select (n) sites. 

3.1.2 Calculate the sample’s calibration factor as follows (Eq. 7): 

 𝐶𝐶𝑛𝑛 = ∑ Nobs𝑛𝑛
∑ Npre𝑛𝑛

 

3.2 Measure the quality of each given sample size using Equations 4 to 6. 

SIMULATION RESULTS  

For all simulation runs, the size of the simulation dataset was set to 5,000 observations. The 
simulation scenarios were generated considering a range for the mean of the predicted number of 
crashes, calibration factors, and inverse dispersion parameters. The range of these factors varied 
as follows: 

Predicted mean (𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝) = {0.5, 2.5, 5} 

Inverse dispersion parameter (φ) = {0.5, 1, 5}  

Calibration factor (C) = {0.5, 1.0, 1.5, 2.0} 

The inverse dispersion parameters of 0.5, 1, and 5, respectively, represent a high, medium, and 
small dispersion values. The calibration factors that were evaluated include C < 1, C = 1, and C > 
1. In order to test the quality of each sample size (n), the sample size range varied from 50 to 500 
in 25 increments, from 500 to 1,000 in 50 increments, and from 1,000 to 1,500 in 100 
increments.  
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The simulation process was performed for a segment-type crash prediction model that was fitted 
and validated for six-lane divided rural roadways using Texas and California data. The data were 
collected for an on-going national research project. The model is shown as follows: 

 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑏𝑏0 × 𝐿𝐿 × 𝑒𝑒1.2359×ln (AADT) (8) 

The variable L indicates the segment length and is set to 0.2 mile for all sites in the simulation 
runs. The AADT variable was simulated from a lognormal distribution with a mean and standard 
deviation of 38,329 veh/day and 15,510 veh/day, respectively, based on the characteristics of the 
data that were used to develop the model. For each simulation run, the intercept (b0) was 
manipulated until the mean of the predicted number of crashes identified by the specified 
scenario is achieved.  

For each scenario, a dataset with a size of 5,000 sites was simulated. Next, for each given sample 
size, 1,000 C-factors were randomly generated based on the simulation protocol. The quality of 
the given sample size is quantified using Equations 4 to 6. As an example, Table 1 shows the 
simulation results for a scenario in which the predicted mean, calibration factor, and inverse 
dispersion parameter are equal to 2.5, 1.5, and 1, respectively. For each given sample size, Table 
1 shows the probability that the calibration factor lies within 10 percent of the true calibration 
factor. As expected, the confidence level is increased as the sample size increases. 

Table 1. Simulation Results for a Scenario with a Predicted Mean of 2.5, Calibration 
Factor of 1.5, and Inverse Dispersion Parameter of 1. 

Sample Size Confidence Probability Sample Size Confidence Probability 
50 0.4433 475 0.9454 
75 0.5184 500 0.9476 
100 0.5931 550 0.9535 
125 0.6353 600 0.9634 
150 0.6987 650 0.9761 
175 0.7105 700 0.9755 
200 0.7403 750 0.9847 
225 0.8064 800 0.9886 
250 0.8232 850 0.9916 
275 0.8501 900 0.9917 
300 0.8568 950 0.9958 
325 0.8710 1,000 0.9956 
350 0.8874 1,100 0.9979 
375 0.9022 1,200 0.9991 
400 0.9043 1,300 0.9993 
425 0.9162 1,400 0.9997 
450 0.9422 1,500 0.9997 
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For a range of predicted means, calibration factors, and inverse dispersion parameters, Table 2 
shows the recommended sample size to fulfill a 90 percent, 80 percent, and 70 percent 
confidence level where the calibration factor lies within 10 percent of the actual calibration 
factor. Note that, for instance, with a 80 percent confidence interval, there is a 20 percent chance 
that the calibration factor does not lie within 10 percent of the true calibration factor. As 
indicated in this table, generally, as the observed mean of crashes increases, the required sample 
size to attain a certain level of confidence (such as 90 percent confidence) is decreased. 
Likewise, as the inverse dispersion parameter increases (which represents smaller dispersion or 
variation in the dataset), a smaller sample size is needed to reach a certain level of confidence. 
Furthermore, as indicated by the simulation results shown in Table 2, not only the HSM one-
size-fits-all recommended sample size of 30–50 sites is not appropriate, but is also insufficient to 
attain a 90 percent or 80 percent of confidence in all surveyed scenarios. The simulation protocol 
was also applied to an intersection model and similar sample size requirements were required for 
comparable scenarios. Appendix A shows the results for the intersection model. 
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Table 2. Sample Size Requirements to Fulfill 90 Percent, 80 Percent, and 70 Percent 
Confidence Level. 

Predicted 
Crash Mean 

Calibration 
Factor 

Observed 
Crash Mean* 

Inverse Dispersion Parameter 

0.5 1 5 

0.5 

0.5 0.25 
1,300 (90%)** 

900 (80%) 
650 (70%) 

1,100 (90%) 
700 (80%) 
500 (70%) 

950 (90%) 
650 (80%) 
400 (70%) 

1.0 0.50 
950 (90%) 
650 (80%) 
450 (70%) 

750 (90%) 
475 (80%) 
325 (70%) 

550 (90%) 
375 (80%) 
250 (70%) 

1.5 0.75 
900 (90%) 
600 (80%) 
400 (70%) 

650 (90%) 
400 (80%) 
250 (70%) 

375 (90%) 
250 (80%) 
175 (70%) 

2.0 1.00 
800 (90%) 
500 (80%) 
350 (70%) 

550 (90%) 
325 (80%) 
225 (70%) 

325 (90%) 
200 (80%) 
150 (70%) 

2.5 

0.5 1.25 
750 (90%) 
475 (80%) 
350 (70%) 

550 (90%) 
300 (80%) 
225 (70%) 

300 (90%) 
175 (80%) 
125 (70%) 

1.0 2.50 
750 (90%) 
475 (80%) 
300 (70%) 

450 (90%) 
300 (80%) 
200 (70%) 

175 (90%) 
125 (80%) 
75 (70%) 

1.5 3.75 
650 (90%) 
400 (80%) 
300 (70%) 

375 (90%) 
225 (80%) 
175 (70%) 

150 (90%) 
100 (80%) 
75 (70%) 

2.0 5.00 
650 (90%) 
400 (80%) 
300 (70%) 

350 (90%) 
225 (80%) 
175 (70%) 

125 (90%) 
75 (80%) 
50 (70%) 

5.0 

0.5 2.50 
750 (90%) 
475 (80%) 
300 (70%) 

450 (90%) 
300 (80%) 
200 (70%) 

175 (90%) 
125 (80%) 
75 (70%) 

1.0 5.00 
650 (90%) 
425 (80%) 
300 (70%) 

350 (90%) 
225 (80%) 
175 (70%) 

125 (90%) 
75 (80%) 
50 (70%) 

1.5 7.50 
650 (90%) 
400 (80%) 
250 (70%) 

350 (90%) 
225 (80%) 
150 (70%) 

125 (90%) 
75 (80%) 
50 (70%) 

2.0 10.00 
650 (90%) 
400 (80%) 
300 (70%) 

350 (90%) 
225 (80%) 
150 (70%) 

100 (90%) 
75 (80%) 
50 (70%) 

*The observed crash mean might be slightly different for different runs of simulations due to 
randomness. However, this table shows only the rounded values. 
**The numbers in parenthesis show the confidence level. 

In order to further investigate the reason behind the two characteristics described in the previous 
paragraph (i.e., the required sample size to fulfill a certain confidence level is decreased by 
increasing the mean of the observed number of crashes and increasing the inverse dispersion 
parameter), it is advised to approximate Equation 3 with Equation 9 as a ratio of the mean of the 
observed number of crashes (N�obs) to the mean of the predicted number of crashes (N�pre): 
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 C𝑁𝑁 = N�obs
N�pre

 (9) 

A reliable sample size can be approximated with a sample that can sufficiently estimate the mean 
of the observed number of crashes. (Note that in this analysis, the effect of the variation of N�pre 
is considered to be negligible compared to N�obs.) As the deviation of data around its mean 
decreases, smaller sample size is required to estimate its mean. 

Once the inverse dispersion parameter increases, data will be less dispersed. Therefore, the 
corresponding observed mean of crash data can adequately be estimated with a smaller sample 
size. Likewise, once the observed mean of crash data increases, even though the standard 
deviation of dataset increases, the deviation of data around the mean will be reduced. Therefore, 
the observed mean can be estimated with a smaller sample size. The theoretical derivation of 
these factors, which supports the simulation study and how they affect the sample size 
calculations, can be found in Appendix B.  

Taking these observations into account, the simulation results were sorted based on the ratio of 
the standard deviation to the mean of the observed number of crashes that is referred to as the 
CV. CV of the observed crash data is defined as follows: 

 𝐶𝐶𝐶𝐶 = 𝑠𝑠𝑠𝑠(𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜)
N�obs

 (10) 

where N�obs and 𝑠𝑠𝑠𝑠(𝑁𝑁𝑜𝑜𝑜𝑜𝑠𝑠), respectively, denote the mean and the standard deviation of the 
observed number of crashes. Table 3 shows the relationship of CV of the crash data versus the 
sample size that is required to fulfill certain levels of accuracies. As indicated in this table, the 
required sample size to attain certain levels of confidences (such as 90 percent) increases as the 
crash CV increases. For scenarios in which the CVs are approximately the same, the simulation 
results show that almost the same sample size is needed to fulfill certain levels of accuracies. For 
instance, Table 3 shows that a scenario with an observed mean of 10.36 and standard deviation 
of 17.83 has the same CV as the one with an observed mean of 3.91 and standard deviation of 
6.72. For both scenarios, the CV is equal to 1.72, so a same sample size is required.  
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Table 3. CV of Crash Data vs. the Calibration Sample Size. 

Crash 
CV. 

Crash 
Mean 

Crash  
Sd. 

Sample Size* 

90%  
Confidence 

80%  
Confidence 

70%  
Confidence 

2.62 0.26 0.67 1,300 (0.904) 900 (0.810) 650 (0.714) 
2.27 0.25 0.57 1,100 (0.918) 700 (0.811) 500 (0.702) 
2.16 0.51 1.10 950 (0.902) 650 (0.811) 450 (0.719) 
2.09 0.26 0.53 950 (0.919) 650 (0.805) 400 (0.703) 
2.04 0.77 1.58 900 (0.907) 600 (0.807) 400 (0.710) 
1.89 1.01 1.91 800 (0.900) 500 (0.808) 350 (0.723) 
1.88 1.28 2.41 750 (0.907) 475 (0.818) 350 (0.734) 
1.84 0.49 0.91 750 (0.900) 475 (0.803) 325 (0.704) 
1.80 2.63 4.73 750 (0.921) 475 (0.817) 300 (0.712) 
1.72 10.36 17.83 650 (0.913) 400 (0.800) 300 (0.730) 
1.72 3.91 6.72 650 (0.903) 400 (0.807) 300 (0.700) 
1.70 5.15 8.75 650 (0.902) 400 (0.800) 300 (0.716) 
1.68 7.35 12.34 650 (0.911) 400 (0.823) 250 (0.703) 
1.66 0.75 1.24 650 (0.915) 400 (0.829) 250 (0.704) 
1.59 0.49 0.77 550 (0.905) 375 (0.834) 250 (0.716) 
1.56 1.00 1.55 550 (0.900) 325 (0.801) 225 (0.714) 
1.55 1.24 1.93 550 (0.924) 300 (0.808) 225 (0.709) 
1.41 2.52 3.55 450 (0.915) 300 (0.831) 200 (0.737) 
1.36 0.74 1.00 375 (0.907) 250 (0.803) 175 (0.711) 
1.32 3.73 4.93 375 (0.902) 225 (0.806) 175 (0.710) 
1.30 4.99 6.47 350 (0.909) 225 (0.800) 175 (0.735) 
1.27 10.21 13.00 350 (0.906) 225 (0.823) 150 (0.727) 
1.26 7.59 9.60 350 (0.906) 225 (0.800) 150 (0.713) 
1.21 0.99 1.20 325 (0.914) 200 (0.809) 150 (0.740) 
1.13 1.25 1.42 300 (0.928) 175 (0.811) 125 (0.760) 
0.96 2.51 2.42 175 (0.917) 125 (0.827) 75 (0.732) 
0.90 3.77 3.38 150 (0.913) 100 (0.842) 75 (0.759) 
0.86 5.01 4.29 125 (0.909) 75 (0.810) 50 (0.702) 
0.81 7.54 6.09 125 (0.928) 75 (0.853) 50 (0.759) 
0.80 10.09 8.03 100 (0.910) 75 (0.848) 50 (0.744) 

*The numbers in parenthesis show the confidence probability with each sample size. 

Our methodology can be compared with Bahar (2014) by looking at the Equation B.7 in 
Appendix B of the Bahar (2014) manuscript to derive the variance of the C-factor. It is described 
as follows:  

 𝐶𝐶𝑉𝑉𝑉𝑉��̂�𝐶� =  𝐶𝐶2

∑𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜
+ 𝐶𝐶2 ∑𝐾𝐾𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜

2

(∑𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜)2
 (11) 

where K denote the over-dispersion parameter (i.e., 1 /φ). 

If we divide both sides of the above equation by 𝐶𝐶2, then we have: 
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 𝐶𝐶𝐶𝐶2��̂�𝐶� = 𝑉𝑉𝑉𝑉𝑝𝑝(�̂�𝐶)
𝐶𝐶2

=  1
∑𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜

+ ∑𝐾𝐾𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜
2

(∑𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜)2
 (12) 

Now, instead of calculating the variance of the C-factor, the goal can be focused on minimizing 
the variation of the estimated C-factor around its true value (the left hand side of the equation) to 
the sought level of accuracy. This is similar to the goal that we seek in step 3 of our simulation 
protocol. In addition, all information we need to minimize the CV of the C-factor to the required 
accuracy level is on the right hand side of the equation and this only depends on crash data. As 
stated in the background section (the third issue with Bahar [2014] methodology), once the crash 
data were assumed to be the only source of the C-factor dispersion or variation, the only 
information needed to select a reliable sample size can be derived from the crash dataset itself. 

SAMPLE SIZE GUIDELINES 

Based on simulation results, Table 4 shows the sample size guidelines to fulfill a confidence 
level of 90 percent, 80 percent, and 70 percent for a range of CVs. The guidelines can be used for 
all types of facilities and for both segment and intersection models. In order to use the sample 
size guidelines, the agency is required to secure the facility crash mean and standard deviation to 
calculate the CV of the crash data. Then, given the CV, a sample size that fulfills the desired 
level of accuracy can be selected from the table. The sample size guidelines show the minimum 
sample size to meet a given level of accuracy. In cases when more data are readily available, the 
agency is advised to use the full dataset. On the other hand, for cases when the agency cannot 
meet the minimum sample size guidelines, the agency is advised to develop a state-specific crash 
prediction model. 
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Table 4. SPF Sample Size Guidelines. 

CV. 
Confidence Level 

90% 80% 70% 
3.0† 1,500 1,100 700 
2.8 1,400 1,000 650 
2.6 1,300 900 600 
2.4 1,200 800 550 
2.2 1,000 650 450 
2.0 900 550 400 
1.8 750 450 300 
1.6 600 350 250 
1.4 450 300 200 
1.2 300 200 150 
1.0 200 125 75 
0.8 100 75 50 

≤ 0.6  50 30 30 
†Values larger than 3.0 are would require even larger sample sizes, 
which may not be practical to collect, so they are not presented in 
this table. Agencies may need to revise the datasets for 
recalibrating the models. 

VALIDATION OF THE SAMPLE SIZE GUIDELINES WITH OBSERVED DATA  

In this section, the sample size guidelines are validated using two observed datasets, each 
characterized by a different CV. For the purpose of the analysis and since the dataset is large 
enough, the full dataset calibration factor is considered to be the ideal (true) calibration factor 
(C𝑁𝑁). Then, the recommended sample size is validated by generating 1,000 C-factors and 
measuring the confidence level using Equations 4 to 6. 

The sample size guidelines are first validated for the 4-lane divided urban arterial facility with 
multivehicle non-driveway crashes collected in Texas from 2012 to 2014 at 4,265 locations. The 
facility SPF is provided in Chapter 12 of the HSM. Except for the median width, all sites in the 
dataset meet the base conditions. For the median width, the CMF was calculated and applied to 
the model before calculating the calibration factor. The CV of crash data is 2.86 (with a mean 
and standard deviation of 2.36 and 6.75, respectively). For this case, the guidelines 
approximately recommend collecting 1,400, 1,000, and 650 sites to achieve a confidence level of 
90 percent, 80 percent, and 70 percent, respectively. The results show that the sample size of 
1,400, 750, and 650 can attain a 94 percent, 88 percent, and 76 percent of accuracy, respectively, 
which even though a little bit conservative, fulfill the desired levels of accuracies. Figure 1 
shows a normal distribution given by generated C-factors (1,000 observations) based on a sample 
size of 1,400 (solid line), 1,000 (dashed line), and 650 (dotted line). The 10 percent error interval 
around the true calibration is marked with dotted lines. As shown in this figure, the normal 
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distribution becomes more concentrated around the true calibration factor as the sample size 
increases and can better estimate the true C-factor.  

 
Figure 1. Accuracy of the Estimation of Calibration Factor by Sample Size of 1,400 (Solid 

Line), 1,000 (Dashed Line), and 650 (Dotted Line) for Texas 4-Lane Divided Urban Arterial 
Facility. 

For this facility type, based on Florida data, Alluri et al. (2016) recommended collecting 500 
sites to fulfill a 90 percent confidence that the calibration factor lies within 10 percent of the true 
factor. However, for the Texas dataset, which is characterized by a different crash frequency and 
dispersion than the one in Florida, the sample size of 500 only satisfies 68 percent of the 
confidence level. As previously stated, guidelines that are prepared with data from a specific 
state can be criticized for two reasons. First, while preparing the guidelines, it is assumed that the 
C-factor derived from the available dataset is the ideal (true) calibration factor. However, the true 
calibration factor is not known beforehand based on empirical data due to limitations with the 
data collection process. Second, since the characteristics of different roadways vary substantially, 
it is likely that these recommendations do not emerge to desirable results when applied to a new 
jurisdiction.  

The simulation results are also verified with the crash data collected in 1995 from 868 4-legged 
signalized intersections located in Toronto, Ontario; the dataset has been used extensively by 
others (Miaou and Lord, 2003; Lord et al., 2008; Miranda-Moreno and Fu, 2007). The CV of 
crash data for this dataset is 0.87 (with a crash mean and standard deviation of 11.56 and 10.01, 
respectively). For this case, the guidelines approximately recommend collecting 100, 75, and 50 
sites to fulfill a confidence level of 90 percent, 80 percent, and 70 percent, respectively. The 
results show that the sample size of 100, 75, and 50, respectively, can attain a 91 percent, 
85 percent, and 74 percent levels of confidence, which are comparable to each given desired 
level of accuracy. Similar to the previous figure, Figure 2 shows a normal distribution given by 
generated C-factors (1,000 observations) based on a sample size of 100 (solid line), 75 (dashed 
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line), and 50 (dotted line). As the sample size increases, the normal distribution becomes more 
concentrated around the true calibration factor and can have a better estimate.  

 
Figure 2. Accuracy of the Estimation of the Calibration Factor by a Sample Size of 100 

(Solid Line), 75 (Dashed Line), and 50 (Dotted Line) for 4-Legged Signalized Intersections 
in Toronto, Ontario. 
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CHAPTER 4: SAFETY PERFORMANCE FUNCTION 
RECALIBRATION GUIDELINES 

This chapter documents the proposed guidelines on when the predictive models are 
recommended for recalibration. The proposed guidelines are evaluated for different observed 
datasets in Texas and are based on the general characteristics of the data at hand: (1) the total 
numbers of crashes, (2) the ADT/AADT average, and (3) the total segment length (or the total 
number of intersections). 

The chapter is divided into two sections. First, the recalibration guidelines are developed and 
discussed. Next, the guidelines are validated using two observed datasets in Texas.  

SAFETY PERFORMANCE FUNCTION RECALIBRATION  

As stated in Chapter 1, crash prediction models are crucial to predict the number of crashes and 
evaluate roadway safety. However, developing a new model demands a great deal of time, 
energy, and money. Although more efficient than fitting a new model, the recalibration of 
prediction models could still be a time-consuming and expensive task due to limitations with the 
data collection and completeness. Taking this issue into account, the agency may need to know 
when or how often SPFs should be recalibrated.  

Recalibration Guidelines 

In this section, recalibration guidelines are developed and discussed. The proposed guidelines are 
based on the general characteristics of data at hand: (1) the total number of crashes, (2) the 
ADT/AADT average, and (3) the total segment length. It is assumed that if the fluctuation in 
number of crashes is due to a comparable change in ADT/AADT, the agency may not need to 
conduct the recalibration. Otherwise, recalibration is advised.  

Recall that the calibration factor can be calculated for a facility as the following: 

 𝐶𝐶 = ∑ 𝑁𝑁𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖
∑ 𝑁𝑁𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖

 (13) 

where: 

• 𝐶𝐶= Calibration factor (C-factor). 
• 𝑁𝑁𝑖𝑖,𝑜𝑜𝑜𝑜𝑠𝑠= the observed number of crashes at site 𝑖𝑖. 
• 𝑁𝑁𝑖𝑖,𝑝𝑝𝑝𝑝𝑝𝑝=the predicted number of crashes at site 𝑖𝑖. 

The typical HSM base model to predict the number of crashes on roadway segments is as 
follows: 
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 𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 = 𝑒𝑒𝑜𝑜0+𝑜𝑜1ln (𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖)+ln (𝐿𝐿𝑖𝑖) (14) 

where 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 and 𝐿𝐿𝑖𝑖, respectively, denote the ADT and the segment length at site 𝑖𝑖. Moreover, the 
coefficients 𝑏𝑏0 and 𝑏𝑏1, respectively, denote the SPF intercept and the ADT coefficient. Given 
Equation 14, Equation 13 can be written as: 

 𝐶𝐶 = ∑ 𝑁𝑁𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖

∑ ∏ 𝑝𝑝𝑜𝑜0+𝑜𝑜1 ln�𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖�+ln�𝐿𝐿𝑖𝑖�×𝐶𝐶𝑀𝑀𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 (15) 

where 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 denote the jth CMF at site 𝑖𝑖.  

Now, let us assume the functional form in Equation 14 remains the same, all the sites meet base 
conditions (thus CMFs can be ignored) and the average ADT is used instead of the ADT at each 
site; consequently, the parameter �̃�𝐶 (referred to as the C-factor proxy in this study) can be 
calculated as follows: 

 �̃�𝐶 ≈ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜
𝐴𝐴

𝑝𝑝𝑜𝑜0+𝑜𝑜1ln (𝐴𝐴𝐴𝐴𝐴𝐴�������)×𝐿𝐿𝐴𝐴
 (16) 

where: 

• 𝑁𝑁𝑜𝑜𝑜𝑜𝑠𝑠𝐴𝐴  = the total number of crashes in the sample. 
• 𝐴𝐴𝐴𝐴𝐴𝐴������ = the average ADT of all sites. 
• 𝐿𝐿𝐴𝐴= the total combined length of all sites. 

The only variables that are required to calculate the �̃�𝐶 are (1) the total number of crashes, (2) the 
average AADT/ADT, and (3) total segment length. Now, it can be argued that if the number of 
crashes increases or decreases in line with ADT fluctuations (i.e., same direction and 
magnitude), the transportation agency may not need to go out of its way to recalibrate the 
predictive model (i.e., find a new calibration factor).  

In order to use the guidelines, the agency is required to calculate the �̃�𝐶 periodically and compare 
it with the �̃�𝐶 that was estimated in the reference year (Note: the latest year that the predictive 
model was recalibrated is referred to as the reference year. In addition, the parameter �̃�𝐶, which 
was calculated in the reference year, is denoted as �̃�𝐶𝑅𝑅𝑅𝑅𝑆𝑆.) If the relative difference between the 
current �̃�𝐶 and �̃�𝐶𝑅𝑅𝑅𝑅𝑆𝑆 is less than a certain threshold (say 10 percent), the agency can ignore the 
recalibration and keep the current model; otherwise, the transportation agency is recommended 
to recalibrate the predictive model.  

Procedure to Use the Guidelines 

This section summarizes the procedure on how to calculate the �̃�𝐶 and its use in the recalibration 
guidelines for roadway segment and intersection models. Before starting the steps, it is important 
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to note that the proposed procedure serves only as guidelines. There might be other factors that 
affect the recalibration decision. For example, if significant systematic safety improvements 
happened in the jurisdiction analyzed, the agency would be required to update the models 
regardless of what the recalibration guidelines state. In addition, the agency is advised to 
recalibrate the model whenever possible and adequate resources are available.  

Segment Models 

The general steps to calculate the �̃�𝐶 and its use in the recalibration guidelines for roadway 
segment models are as follows:  

Step 1. Find the total number of crashes (𝑁𝑁𝑜𝑜𝑜𝑜𝑠𝑠𝐴𝐴 ) and the total segment length (𝐿𝐿𝐴𝐴) on the network 
facility.  

Step 2. Find the average ADT (𝐴𝐴𝐴𝐴𝐴𝐴������) (or AADT) on the facility. 

Note that if the ADT is not available to the agency on all sites, randomly collect ADT for a 
limited number of sites that provide the overall representation of the network.  

Step 3. Consider the base SPF model (i.e., the model without CMFs) from the HSM. Let 𝑏𝑏0 and 
𝑏𝑏1 denote the intercept and the coefficient of ADT, respectively. Estimate the approximate 
average predicted number of crashes (𝑁𝑁�𝑝𝑝𝑝𝑝𝑝𝑝) using the following functional form:  

 𝑁𝑁�𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑒𝑒𝑜𝑜0+𝑜𝑜1×ln (𝐴𝐴𝐴𝐴𝐴𝐴������) (17) 

Step 4. Find the �̃�𝐶 using the following equation: 

 �̃�𝐶 = 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜
𝐴𝐴

𝑁𝑁�𝑝𝑝𝑝𝑝𝑝𝑝×𝐿𝐿𝐴𝐴
 (18) 

Step 5. Find the variable �̃�𝑒 as follows: 

 �̃�𝑒 = |�̃�𝐶−�̃�𝐶𝑅𝑅𝑅𝑅𝑅𝑅|
�̃�𝐶𝑅𝑅𝑅𝑅𝑅𝑅

× 100 (19) 

where �̃�𝐶𝑅𝑅𝑅𝑅𝑆𝑆 denote the �̃�𝐶 that was calculated in the reference year.  

Step 6. If �̃�𝑒 > 10%, the model needs to be recalibrated; calibrate the model and set the current �̃�𝐶 
as the new �̃�𝐶𝑅𝑅𝑅𝑅𝑆𝑆. Otherwise, keep the current �̃�𝐶𝑅𝑅𝑅𝑅𝑆𝑆 and use the calibration factor that was 
estimated in the reference year.  
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Intersection Models 

A similar procedure with small modifications can be proposed to investigate whether or not the 
intersection models are required to be recalibrated. The general steps to calculate the �̃�𝐶 and its 
use in the recalibration guideline for intersection models are as follows:  

Step 1. Find the total number of crashes (𝑁𝑁𝑜𝑜𝑜𝑜𝑠𝑠𝐴𝐴 ) and the total number of intersections (N) on the 
network facility. 

Step 2. Find the average traffic flow on major street (𝐶𝐶�𝑚𝑚𝑉𝑉𝑖𝑖𝑜𝑜𝑝𝑝) and minor street (𝐶𝐶�𝑚𝑚𝑖𝑖𝑛𝑛𝑜𝑜𝑝𝑝). 

Note: If the traffic flows are not available to the agency at all intersections, randomly collect 
ADT for a limited number of intersections that provide the overall representation of the 
intersection type the agency is interested in.  

Step 3. Consider a base SPF model from the HSM. Let 𝑏𝑏0, 𝑏𝑏1, and 𝑏𝑏2 denote the intercept, the 
coefficient of the traffic flow on major street, and the coefficient of the traffic flow on minor 
street, respectively. Find the approximate average predicted number of crashes (𝑁𝑁�𝑝𝑝𝑝𝑝𝑝𝑝) as:  

 𝑁𝑁�𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑒𝑒𝑜𝑜0+𝑜𝑜1×ln (𝑆𝑆�𝑚𝑚𝑚𝑚𝑖𝑖𝑜𝑜𝑝𝑝)+𝑜𝑜1×ln (𝑆𝑆�𝑚𝑚𝑖𝑖𝑛𝑛𝑜𝑜𝑝𝑝) (20) 

Step 4. Find the �̃�𝐶 using the Equation 18. Note: for this case, in Equation 18, the total length 
variable (𝐿𝐿𝐴𝐴) should be replaced with the total number of intersections (N). 

Step 5. Find �̃�𝑒 using the Equation 19. 

Step 6. If �̃�𝑒 > 10%, the model needs to be recalibrated; calibrate the model and set the current �̃�𝐶 
as the new �̃�𝐶𝑅𝑅𝑅𝑅𝑆𝑆. Otherwise, keep the current �̃�𝐶𝑅𝑅𝑅𝑅𝑆𝑆 and use the calibration factor that was 
estimated in the reference year.  

VALIDATING THE GUIDELINES WITH OBSERVED DATASETS 

In this section, the guidelines are evaluated for two different types of facilities. First, the 
guidelines are applied to the Texas urban 4-lane divided arterials. The data for this facility were 
collected in one- and three-year frequencies from 2007 to 2014. All variables in the dataset met 
the base conditions except the median width. Therefore, the model includes one CMF for the 
median width. Next, the same guidelines are examined for Texas multilane divided rural 
segments. The dataset was divided in three-year frequency from 2007 to 2014. For this dataset, 
the SPF included three CMFs: lane width, right shoulder width, and the median width. Table 5 
shows the results for the Texas urban 4-lane divided arterials using three-year frequency data. 
First, it is assumed that the agency calibrated the model using data collected from 2007 to 2009. 
Although the calibration will be conducted after year 2009 is completed, for convenience 
purpose, the calibration year is referred to as 2009. Also, we refer this year to as the reference 
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year and set the �̃�𝐶 that was estimated in 2009 (�̃�𝐶2009) as �̃�𝐶𝑅𝑅𝑅𝑅𝑆𝑆 (i.e., �̃�𝐶𝑅𝑅𝑅𝑅𝑆𝑆=1.055). Next, in 2010, 
the data from 2008 to 2010 are used to calculate the �̃�𝐶 (�̃�𝐶2010). The relative difference between 
�̃�𝐶2010 and �̃�𝐶𝑅𝑅𝑅𝑅𝑆𝑆 is equal to 4.95 percent. Since the change in �̃�𝐶 is less than 10 percent, the 
recalibration is not needed. The relative difference between the actual calibration factor in 2010 
from the reference is equal to 3.48 percent and is relatively small; so the actual results adequately 
confirm the decision of not to conduct the recalibration. In 2011, the agency could use the three 
years data from 2009 to 2011 to calculate the �̃�𝐶2011. The �̃�𝐶2011 is compared to the �̃�𝐶𝑅𝑅𝑅𝑅𝑆𝑆. (Note: 
since we did not calibrate the model in 2010, the reference year is still 2009 and �̃�𝐶𝑅𝑅𝑅𝑅𝑆𝑆 = 1.055.) 
Since the �̃�𝐶 is changed by more than 10 percent, the model should be recalibrated. After the 
recalibration, the reference year and �̃�𝐶𝑅𝑅𝑅𝑅𝑆𝑆 are modified accordingly. In 2012, the �̃�𝐶 is changed by 
almost 10 percent; so recalibration is advised. The actual calibration factor is also increased by 
about 10 percent, so the decision based on the guidelines developed is justified. The model is 
recalibrated and the reference year is set to 2011 and �̃�𝐶2011 is set as the �̃�𝐶𝑅𝑅𝑅𝑅𝑆𝑆. The same 
procedure is repeated for subsequent years. As indicated in Table 5, the model, again, is needed 
for recalibration in 2014 once the analyst observes almost a 18 percent change in �̃�𝐶.  

Table 5. Recalibration for Urban 4-Lane Divided Arterials (Three-Year Frequency). 
Year 2007–2009 2008–2010 2009–2011 2010–2012 2011–2013 2012–2014 

Total Crashes  8573 8140 7613 8613 9114 10072 
Avg. Predicted Crashes 7.74 7.66 7.65 7.71 7.61 7.64 

Total Length (Mile) 1050.3 1060.2 1083.2 1105.9 1105.9 1105.2 
𝑪𝑪� 1.055 1.002 0.919 1.011 1.083 1.192 

 𝑪𝑪�𝑹𝑹𝑹𝑹𝑹𝑹*  - 1.055 (2009) 1.055 (2009) 0.919 (2011) 1.011 (2012) 1.011 (2012) 
Change in 𝑪𝑪� (%) - 4.95 12.87† 10.0 7.20 17.99 

𝑪𝑪 1.011 0.976 0.887 0.978 1.039 1.116 
Change in 𝑪𝑪 (%) - 3.45 12.28 10.21 6.301 14.12 

* The number in parenthesis indicates the reference year (the time that the model was recalibrated). In addition, 
the time that the reference year was changed for the first time is marked in bold. † Underlined values: C ≥ 10%. 

Table 6 shows the recalibration results for the same facility described above (Texas urban 4-lane 
divided arterials); however, this time, one-year crash frequency data are used. It is assumed that 
the model was recalibrated using data collected in 2007. We set the �̃�𝐶2007 as �̃�𝐶𝑅𝑅𝑅𝑅𝑆𝑆. Later on, the 
�̃�𝐶2008 is calculated using the 2008 data. The change in �̃�𝐶 is less than 10 percent, so recalibration 
is not recommended. Next, using 2009 data, the �̃�𝐶2009 is calculated and compared with �̃�𝐶𝑅𝑅𝑅𝑅𝑆𝑆. 
Since the change is more than 10 percent, the model is recommended for recalibration. The 
model is recalibrated, and the reference year and the �̃�𝐶𝑅𝑅𝑅𝑅𝑆𝑆 are modified accordingly. Later, for 
two years (in 2010 and 2011), the change in �̃�𝐶 remain less than 10 percent. Therefore, for two 
years, no recalibration is advised. With 2012 data, however, the �̃�𝐶 is increased by 23.21 percent. 
Since it is more than 10 percent, the model is recommended for recalibration. With 2012 data, 
the actual C-factor is also increased by 21.37 percent, which validates the recalibration decision 
made by the C-factor proxy. 
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Table 6. Recalibration for the Texas Urban 4-Lane Divided Arterials (One-Year 
Frequency). 

Year 2007 2008 2009 2010 2011 2012 2013 
Total Crashes 2714 3023 2591 2580 2560 3307 3304 

Avg. Predicted 
Crashes 2.82 2.58 2.55 2.55 2.57 2.54 2.55 

Total Length (Mile) 881.8 1050.3 1060.1 1083.2 1105.9 1105.9 1105.2 

𝑪𝑪� 1.09 1.12 0.96 0.93 0.90 1.18 1.17 

𝑪𝑪�𝑹𝑹𝑹𝑹𝑹𝑹* - 1.09 (2007) 1.09 (2007) 0.96 (2009) 0.96 (2009) 0.96 (2009) 1.18 (2012) 

Change in 𝑪𝑪� (%) - 2.31 12.22† 2.40 5.85 23.21 0.49 

𝑪𝑪 1.012 1.07 0.93 0.90 0.87 1.13 1.10 

Change in 𝑪𝑪 (%) - 5.75 7.86 3.24 6.48 21.37 2.95 

* The number in parenthesis show the reference year (the time that the model was recalibrated). In addition, the time 
that the reference year was changed for the first time is marked in bold. † Underlined values: C ≥ 10%. 

In order to evaluate the guideline for datasets with more CMFs, the guidelines are applied to 
Texas multilane divided rural segments data collected from 2007 to 2014 in three-year intervals. 
The SPF included three CMFs: the lane width, right shoulder width, and the median width. Table 
7 shows the recalibration results for this dataset. Let us first assume the model was calibrated in 
2009. Then, as it is indicated in Table 7, until 2013 all corresponding changes in �̃�𝐶 remain below 
than 10 percent, so the model is not advised for recalibration for four years. The small change in 
actual calibration factor also validates the decision made by the C-factor proxy. In 2013, 
however, the �̃�𝐶 is increased by 10.04 percent compared to the �̃�𝐶𝑅𝑅𝑅𝑅𝑆𝑆, so the model is 
recommended for recalibration. The significant increase (10.07 percent) in actual calibration 
factor also validates the decision made by the recalibration guidelines. In 2014, since the 
difference between the C-factor proxy in 2014 and the reference year is more than 10 percent, 
the model is recommended for recalibration again. 

Table 7. Recalibration for the Texas Multilane Divided Rural Segments (Three-Year 
Frequency). 

Year 2007–2009 2008–2010 2009–2011 2010–2012 2011–2013 2012–2014 
Total Crashes 1974 1993 1988 2175 2118 2511.000 

Avg. Predicted Crashes 4.53 4.35 4.32 4.42 4.20 4.23 
Total Length (Mile) 489.6 511.1 518.5 539.2 514.1 535.8 

𝑪𝑪� 0.891 0.897 0.888 0.912 0.980 1.109 

𝑪𝑪�𝑹𝑹𝑹𝑹𝑹𝑹* - 0.891 (2009) 0.891 (2009) 0.891 (2009) 0.891 (2009) 0.980 (2013) 
Change in 𝑪𝑪� (%) - 0.67 0.27 2.41 10.04† 13.15 

𝑪𝑪 0.961 0.961 0.946 0.994 1.058 1.120 

Change in 𝑪𝑪 (%) - 0.02 1.59 3.41 10.07 5.91 
* The number in parenthesis show the reference year (the time that the model was recalibrated). In addition, the 
time that the reference year was changed for the first time is marked in bold. † Underlined values: C ≥ 10%. 
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CHAPTER 5: REGION SPECIFIC CALIBRATION GUIDELINES 

This chapter documents the application of region-specific calibration factors for large areas and 
when they are justified. More specifically, guidelines are proposed on when region-specific C-
factors are recommended. These guidelines are similar to the ones that were proposed to 
recalibrate the predictive models in Chapter 4, but with some minor modifications. The proposed 
guidelines are validated using two observed datasets. A region can be defined by administrative 
boundaries, topography, or weather among others. 

This chapter is divided into three sections. The first section describes when having region 
specific calibration factors is justified. The second section presents the guidelines for using 
region-specific C-factors. The last section covers how the guidelines were validated using two 
observed datasets. 

DEVELOPING REGION SPECIFIC CALIBRATION FACTORS 

This section documents when having region-specific calibration factors for large states, such as 
Texas is justified. The empirical data from two facility types, one in Texas and the other one in 
Michigan, are used to accomplish the task.  

First, the region-specific C-factors are estimated for Texas urban 4-lane divided arterials (the 
same dataset was used in previous chapter to validate the recalibration guidelines). The dataset is 
collected in both one- and three-year frequencies. Texas is divided into four regions: north, 
south, east, and west. The division of the state is based on administrative boundaries used by the 
Texas Department of Transportation. Table 8 and  

Table 9 summarize the calibration factors calculated for each region using the one- and three-
year frequency data, respectively. As indicated in these tables, regardless of which frequency of 
data (one year or three year) are used, the difference between the C-factors calculated in different 
regions are significant. For instance,  

Table 9 indicates that, in 2007, the difference between the C-factor in north region and the one in 
west region is about 35 percent. This observation validates the need for region-specific C-factors 
for large states, such as Texas.  
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Table 8. Region Specific Calibration Factors for Texas Urban 4-Lane Divided Arterials 
(One-Year Frequency). 

Region District Numbers 
Calibration Factor 

2007 2008 2009 2010 2011 2012 2013 

North 1,2 ,3,9,10,18,19,23 0.890 1.070 0.820 0.855 0.713 0.928 0.922 

South 13,14,15,16,21,22 1.056 0.978 0.848 0.817 0.945 1.234 1.091 

East 11,12,17,20 1.048 1.081 1.137 0.980 0.997 1.268 1.378 

West 4 ,5,6,7, 8, 24, 25 1.258 1.339 1.185 1.197 0.981 1.286 1.156 

Total All 1.012 1.070 0.932 0.902 0.872 1.131 1.098 
 

Table 9. Region Specific Calibration Factors for Texas Urban 4-Lane Divided Arterials 
(Three-Year Frequency). 

Region District Numbers 
Calibration Factor  

07-09 08-10 09-11 10-12 11 -13 12-14 

North 1,2 ,3,9,10,18,19,23 0.947 0.894 0.814 0.809 0.854 0.928 

South 13,14,15,16,21,22 0.950 0.904 0.826 1.038 1.120 1.089 

East 11,12,17,20 1.081 1.102 1.001 1.103 1.208 1.407 

West 4 ,5,6,7, 8, 24, 25 1.284 1.248 1.129 1.165 1.114 1.247 

Total All 1.011 0.976 0.887 0.978 1.039 1.116 

 
Figure 3 shows the region-specific C-factors for the urban 4-lane divided arterials in different 
regions of Texas in 2014 using the three years frequency data from 2012 to 2014. 
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Figure 3. Region Specific Calibration Factors for Texas Urban 4-Lane Divided Arterials 

(Three-Year Frequency) in 2014. 

In order to further investigate and validate the observation documented above for Texas urban 4-
lane divided arterials, the region-specific C-factors were developed for Michigan 4-legged 
signalized intersections as well. This dataset consisted of one-year crash frequency. The state of 
Michigan is divided into seven regions, which is based on administrative boundaries. The 
regions were indicated by numbers from one to seven in Table 10. As shown in Table 10, the 
calibration factors are significantly dissimilar for different regions. For instance, in 2008, the 
difference between the C-factor in region 1 is almost 2.5 times larger than the C-factor in region 
7. Having region-specific C-factors for Michigan 4-legged signalized intersections is also highly 
recommended. 

It is worth pointing out that, for each year, there are about 50 sites in each region that can be used 
to find the region-specific C-factors. The CV of crash data for different regions in Michigan 4-
legged signalized intersections data varies between 0.8 and 1.0. Based on sample size guidelines 
in Chapter 3, using 50 sites provide only 70 percent confidence that the C-factor lies within the 
10 percent of the true factor; that is, the C-factor derived for different regions might still provide 
a biased or erroneous estimate. However, the effect of the sample size bias on the observed trend 
is rather negligible (considering the huge difference in C-factors derived), especially since the 
same trend repeated for all five years analyzed. In fact, to minimize the effect of the sample size 
bias, Table 10 included the five years average of the calibration factors too. This table shows that 
the five year average C-factors for different regions are also significantly different, so the region-
specific C-factors are advised. 
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Table 10. Region Specific Calibration Factors for Michigan 4-Legged Signalized 
Intersections (One-Year Frequency). 

Region Region Name 
Calibration Factor 

2008 2009 2010 2011 2012 Avg. 

1 Superior 2.62 2.43 2.44 2.19 2.49 2.43 

2 North 2.44 2.35 2.44 2.36 2.21 2.36 

3 Grand 1.66 1.67 1.75 2.07 1.78 1.79 

4 Bay 2.09 2.25 2.13 2.01 2.01 2.10 

5 Southwest 2.63 2.73 2.70 2.71 2.48 2.65 

6 University 1.99 1.79 1.83 1.86 1.98 1.89 

7 Metro 1.14 1.07 1.10 1.07 1.08 1.09 

Total 1.83 1.80 1.82 1.84 1.78 1.81 

 
In summary, based on these observations, it is justified to find and use region-specific C-factors 
instead of a state-wide C-factor for large states, such as Texas or Michigan. However, important 
questions should first be asked before segmenting a state or large region into sub-regions. When 
are the region-factors required? Can we get any intuition about its requirement before doing the 
recalibration process? For instance, the analyst may want to know if the sample should be 
collected into different regions or statewide level. The next section addresses this issue by 
providing the region-specific guidelines. The guidelines are based on the general characteristics 
of data at hand and can be used to inform the agency (or the analyst) whether or not having the 
region-specific C-factor is required. 

REGION-SPECIFIC GUIDELINES  

This section documents the proposed guidelines for determining when region-specific calibration 
factors are recommended. Similar guidelines to the ones proposed for recalibration of predictive 
models in Chapter 4 are used here as well to investigate the need for region-specific factors. 
First, the C-factor proxy similar to the one shown in Equation 16 is estimated for each region 
(�̃�𝐶𝑝𝑝). Next, the �̃�𝐶𝑝𝑝 is compared with the statewide �̃�𝐶 (�̃�𝐶𝑠𝑠). If the relative difference (�̃�𝑒𝑝𝑝) is more 
than a certain threshold, the agency is recommended to calculate and use the region-specific C-
factor. Otherwise, the statewide C-factor can be used. It is recommended to set the threshold to 
10–20 percent. (We used a 10 percent threshold in this study.) The proposed procedure can be 
used for both segment and intersection models. The procedure for each roadway type is 
described below. 

Segment Models 

The general steps to calculate the �̃�𝐶𝑝𝑝 and �̃�𝐶𝑠𝑠, and how to use the region-specific guidelines for 
segment roadway models are as follows:  
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Step 1. Find the total number of crashes and the total segment length in the state (𝑁𝑁𝑠𝑠,𝑜𝑜𝑜𝑜𝑠𝑠
𝐴𝐴  and 𝐿𝐿𝑠𝑠𝐴𝐴) 

and in the region (𝑁𝑁𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠
𝐴𝐴  and 𝐿𝐿𝑝𝑝𝐴𝐴).  

Step 2. Find the average ADT in the state (𝐴𝐴𝐴𝐴𝐴𝐴������𝑠𝑠) and in the region ( 𝐴𝐴𝐴𝐴𝐴𝐴������𝑝𝑝). 

Step 3. Take the base SPF (i.e., the model without CMFs) from the HSM. Let 𝑏𝑏0 and 𝑏𝑏1, 
respectively, denote the intercept and the coefficient of ADT. Find the approximate average 
predicted number of crashes in the state (𝑁𝑁�𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝) and in the region ( 𝑁𝑁�𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝) as follows:  

 𝑁𝑁�𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑒𝑒𝑜𝑜0+𝑜𝑜1×ln (𝐴𝐴𝐴𝐴𝐴𝐴������𝑜𝑜) (21) 

 𝑁𝑁�𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑒𝑒𝑜𝑜0+𝑜𝑜1×ln (𝐴𝐴𝐴𝐴𝐴𝐴������𝑝𝑝) (22) 

Step 4. Find the parameter �̃�𝐶 in the state (�̃�𝐶𝑠𝑠) and in the region (�̃�𝐶𝑝𝑝) as follows: 

 �̃�𝐶𝑠𝑠 = 𝑁𝑁𝑜𝑜,𝑜𝑜𝑜𝑜𝑜𝑜
𝐴𝐴

𝑁𝑁�𝑜𝑜,𝑝𝑝𝑝𝑝𝑝𝑝×𝐿𝐿𝑜𝑜𝐴𝐴
 (23) 

 �̃�𝐶𝑝𝑝 = 𝑁𝑁𝑝𝑝,𝑜𝑜𝑜𝑜𝑜𝑜
𝐴𝐴

𝑁𝑁�𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝×𝐿𝐿𝑝𝑝𝐴𝐴
 (24) 

Step 5. Find �̃�𝑒𝑝𝑝 as follows: 

 �̃�𝑒𝑝𝑝 = |�̃�𝐶𝑝𝑝−�̃�𝐶𝑜𝑜|
�̃�𝐶𝑜𝑜

× 100 (25) 

Step 6. If �̃�𝑒𝑝𝑝 > 10%, calculate and use the region-specific calibration factor. Otherwise, use the 
statewide calibration factor.  

Intersection Models 

A similar procedure with some modifications can be proposed for intersection models. The 
general steps to calculate the �̃�𝐶𝑝𝑝 and �̃�𝐶𝑠𝑠, and how to use the region-specific guidelines for 
intersection models are as follows: 

Step 1. Find the total number of crashes and the total number of intersections in the state (𝑁𝑁𝑠𝑠,𝑜𝑜𝑜𝑜𝑠𝑠
𝐴𝐴  

and 𝑁𝑁𝑠𝑠) and in the region (𝑁𝑁𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠
𝐴𝐴  and 𝑁𝑁𝑝𝑝). 

Step 2. Find the average traffic flow on the state major (𝐶𝐶�𝑠𝑠,𝑚𝑚𝑉𝑉𝑖𝑖𝑜𝑜𝑝𝑝) and minor (𝐶𝐶�𝑠𝑠,𝑚𝑚𝑖𝑖𝑛𝑛𝑜𝑜𝑝𝑝) streets 
and on the region major (𝐶𝐶�𝑝𝑝,𝑚𝑚𝑉𝑉𝑖𝑖𝑜𝑜𝑝𝑝) and minor (𝐶𝐶�𝑝𝑝,𝑚𝑚𝑖𝑖𝑛𝑛𝑜𝑜𝑝𝑝) streets. 

Step 3. Take the SPF (only the base model without CMFs) from the HSM. Let 𝑏𝑏0, 𝑏𝑏1, and 𝑏𝑏2, 
respectively, denote the intercept, the coefficient of traffic flow on the major street, and the 
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coefficient of the traffic flow on the minor street. Find the approximate average predicted 
number of crashes in the state (𝑁𝑁�𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝) and in the region (𝑁𝑁�𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝) as:  

 𝑁𝑁�𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑒𝑒𝑜𝑜0+𝑜𝑜1×ln (𝑆𝑆�𝑜𝑜,𝑚𝑚𝑚𝑚𝑖𝑖𝑜𝑜𝑝𝑝)+𝑜𝑜2×ln (𝑆𝑆�𝑜𝑜,𝑚𝑚𝑖𝑖𝑛𝑛𝑜𝑜𝑝𝑝) (26) 

 𝑁𝑁�𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑒𝑒𝑜𝑜0+𝑜𝑜1×ln�𝑆𝑆�𝑝𝑝,𝑚𝑚𝑚𝑚𝑖𝑖𝑜𝑜𝑝𝑝�+𝑜𝑜2×ln�𝑆𝑆�𝑝𝑝,𝑚𝑚𝑖𝑖𝑛𝑛𝑜𝑜𝑝𝑝� (27) 

Step 4. Find the parameter �̃�𝐶 in the state (�̃�𝐶𝑠𝑠) and in the region (�̃�𝐶𝑝𝑝) using Equations 23 and 24, 
respectively. Note: the variables 𝐿𝐿𝑠𝑠𝐴𝐴 and 𝐿𝐿𝑝𝑝𝐴𝐴 should be replaced with 𝑁𝑁𝑠𝑠 and 𝑁𝑁𝑝𝑝, respectively. 

Step 5. Find �̃�𝑒𝑝𝑝 using Equation 25. 

Step 6. If �̃�𝑒𝑝𝑝 > 10%, calculate and use the region-specific C-factor. Otherwise, use the statewide 
calibration factor.  

VALIDATING THE REGION-SPECIFIC GUIDELINES  

In this section, the region specific guidelines are validated using two observed datasets. First, the 
guidelines are examined with Texas urban 4-lane divided arterials data from 2012 to 2014. Next, 
the guidelines are evaluated with Michigan 4-legged signalized intersections dataset collected in 
2008.  

Table 11 shows the application of the region-specific guidelines to the Texas urban 4-lane 
arterials dataset collected from 2012 to 2014. As indicated in the table, for the north region, the 
difference between �̃�𝐶𝑁𝑁𝑜𝑜𝑝𝑝𝑁𝑁ℎ and �̃�𝐶𝑠𝑠 is almost 15 percent, so a region-specific calibration factor for 
that region is recommended. The difference between the actual north and statewide C-factors is 
16.85 percent, which validates the decision based on the guidelines. The guidelines, however, 
does not recommend considering a region-specific C-factor for the south region 
(�̃�𝑒𝑆𝑆𝑜𝑜𝑆𝑆𝑁𝑁ℎ=2.94 percent). The difference between south region and statewide C-factors is also 
negligible (𝑒𝑒𝑆𝑆𝑜𝑜𝑆𝑆𝑁𝑁ℎ= 2.42 percent). Next, the region-specific C-factor is also recommended for the 
east region (𝑒𝑒𝑅𝑅𝑉𝑉𝑠𝑠𝑁𝑁=23.63 percent). Here too the actual difference between C-factors is significant 
(𝑒𝑒𝑅𝑅𝑉𝑉𝑠𝑠𝑁𝑁= 26.08 percent), which confirms the decision based on the guidelines. For the west region, 
the �̃�𝑒𝑊𝑊𝑝𝑝𝑠𝑠𝑁𝑁 is equal to 13.75 percent, which is greater than 10 percent, so the region-specific factor 
is also recommended.  
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Table 11. Region-Specific Guidelines – Texas Urban 4-Lane Divided Arterials (Three-Year 
Frequency Data from 2012 to 2014). 

Region North South East West Statewide 
Total Crashes 3214 2851 2902 1105 10072 

Avg. Predicted Crashes 8.40 8.50 8.16 4.13 7.64 
Total Length (Mile) 376.7 289.8 241.3 197.4 1105.2 

𝑪𝑪� 1.015 1.157 1.474 1.356 1.192 
Change in 𝑪𝑪� (%) 14.85† 2.94 23.63 13.75 - 

𝑪𝑪 0.928 1.089 1.407 1.247 1.116 
Change in 𝑪𝑪 (%) 16.85 2.42 26.08 11.74 - 

† Underlined values: C ≥ 10%. 
 
Table 12 indicates the results for application of the region-specific guidelines for Michigan 4-
legged signalized intersections dataset collected in 2008. As shown in this table, the region-
specific factor was recommended for all regions, except for region 6. For all these regions, the 
difference between the actual region and statewide C-factors is also very large. For region 6, the 
region-specific factor is not recommended. The actual C-factor also affirms the decision based 
on the guidelines. 

Table 12. Region Specific Guidelines - Michigan 4-Legged Signalized Intersections (One-
Year Frequency Data in 2008). 

Region 1 2 3 4 5 6 7 State-
wide 

Total Crashes 250 372 454 344 483 374 578 2855 
Avg. Predicted Crashes 3.02 4.28 7.61 4.65 4.95 5.16 13.06 6.08 

No. of Intersections 46 50 51 50 52 50 50 349 
𝑪𝑪� 1.80 1.74 1.17 1.48 1.88 1.45 0.89 1.35 

Change in 𝑪𝑪� (%) 33.85† 29.19 13.15 9.97 39.44 7.71 34.25 - 
𝑪𝑪 2.62 2.44 1.66 2.09 2.63 1.99 1.14 1.83 

Change in 𝑪𝑪 (%) 43.17 33.33 9.29 14.21 43.72 8.74 37.70 - 
† Underlined values: C ≥ 10%. 
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CHAPTER 6: SEVERITY DISTRIBUTION FUNCTION 
CALIBRATION FACTORS 

This chapter documents the development of the methodology for calibrating the HSM SDFs and 
sample size guidelines to calculate the calibration factor. The chapter is divided into five 
sections. The first section describes the characteristics of the SDFs documented in Chapters 18 
and 19 of the HSM. The second section provides a description of the calibration methodology 
and investigates the principles behind the equation that was proposed to derive the C-factor. The 
third section evaluates the proposed equation for a range of simulated scenarios. The fourth 
section presents the simulation results for estimating the required sample size to calibrate the 
models based on the characteristics of data at hand. The fifth section documents the sample size 
guidelines. 

SEVERITY DISTRIBUTION FUNCTIONS  

The total number of crashes at each site (𝑠𝑠) can be classified into two severity categories: fatal-
injury (FI) and property damage only (PDO) crashes. The FI crashes can further be classified 
into four severity level categories: fatal (K), incapacitating injury (A), non-incapacitating injury 
(B), and possible injury (C). An SDF is a discrete choice model to predict the likelihood of each 
severity level described above (i.e., K, A, B, or C). The SDF usually includes explanatory 
variables, such as the geometric design of the sites, traffic control features, or traffic 
characteristics. Since the SDF accounts for all severity levels together, a single change in 
variables such as roadway characteristics could result in simply shifting the number of crashes 
between different severity level alternatives. The SDFs for freeways and ramps currently 
presented in the HSM Chapters 18 and 19, respectively, were developed using the multinomial 
logit (MNL) model. 

The theoretical framework of the SDF can be presented as follows. Assume an MNL model with 
the severity level C as the base scenario in the model. Let 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾

𝑠𝑠  and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶
𝑠𝑠  be the pre-

calibration likelihoods for the severity level KAB (K+A+B) and the severity level C at site 𝑠𝑠 
respectively. Let 𝑢𝑢𝐾𝐾, 𝑢𝑢𝐴𝐴, and 𝑢𝑢𝐾𝐾, respectively, denote the deterministic components (the utility 
function in the context of the MNL) of the severity level K, A, and B. Then, the pre-calibration 
predicted likelihoods for the severity levels KAB (K+A+B) and C can be determined as follows:  

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾
𝑠𝑠 = 𝑝𝑝𝑢𝑢𝑘𝑘

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐴𝐴

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐵𝐵

𝑜𝑜

1+𝑝𝑝𝑢𝑢𝑘𝑘
𝑜𝑜
+𝑝𝑝𝑢𝑢𝐴𝐴

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐵𝐵

𝑜𝑜  (28) 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶
𝑠𝑠 = 1

1+𝑝𝑝𝑢𝑢𝑘𝑘
𝑜𝑜
+𝑝𝑝𝑢𝑢𝐴𝐴

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐵𝐵

𝑜𝑜  (29) 

In addition, the likelihoods for the severity level K, A, and B are:  
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 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾
𝑠𝑠 = 𝑝𝑝𝑢𝑢𝑘𝑘

𝑜𝑜

1+𝑝𝑝𝑢𝑢𝑘𝑘
𝑜𝑜
+𝑝𝑝𝑢𝑢𝐴𝐴

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐵𝐵

𝑜𝑜  ; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐴𝐴
𝑠𝑠 = 𝑝𝑝𝑢𝑢𝐴𝐴

𝑜𝑜

1+𝑝𝑝𝑢𝑢𝑘𝑘
𝑜𝑜
+𝑝𝑝𝑢𝑢𝐴𝐴

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐵𝐵

𝑜𝑜  ; 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾
𝑠𝑠 = 𝑝𝑝𝑢𝑢𝐵𝐵

𝑜𝑜

1+𝑝𝑝𝑢𝑢𝑘𝑘
𝑜𝑜
+𝑝𝑝𝑢𝑢𝐴𝐴

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐵𝐵

𝑜𝑜  

where 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾
𝑠𝑠 , 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐴𝐴

𝑠𝑠 , and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾
𝑠𝑠  denote the pre-calibration likelihoods for the severity levels K, 

A, and B at site 𝑠𝑠, respectively. 

SEVERITY DISTRIBUTION FUNCTION CALIBRATION FACTOR 

Similar to the SPFs, the SDFs are also fitted and validated using data from a few selected 
numbers of states in the United States; since the roadway characteristics vary substantially from 
one jurisdiction to another, the SDF models are required to be calibrated to the local conditions. 
Recall that in Equations 28 and 29, the utility function of the severity level C was assumed as the 
base utility (i.e., 𝑒𝑒𝑆𝑆𝐶𝐶 = 1); to calibrate the models to the local condition, the base utility can be 
modified with a scalar C-factor. Consequently, we have, 

 𝑝𝑝𝑝𝑝𝑜𝑜𝑠𝑠𝑁𝑁,𝐾𝐾𝐴𝐴𝐾𝐾
𝑠𝑠 = 𝑝𝑝𝑢𝑢𝑘𝑘

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐴𝐴

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐵𝐵

𝑜𝑜

1
𝐶𝐶+𝑝𝑝

𝑢𝑢𝑘𝑘
𝑜𝑜
+𝑝𝑝𝑢𝑢𝐴𝐴

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐵𝐵

𝑜𝑜  (30) 

where C denote the calibration factor and 𝑝𝑝𝑝𝑝𝑜𝑜𝑠𝑠𝑁𝑁,𝐾𝐾𝐴𝐴𝐾𝐾
𝑠𝑠  and 𝑝𝑝𝑝𝑝𝑜𝑜𝑠𝑠𝑁𝑁,𝐶𝐶

𝑠𝑠  are the post-calibration 
likelihoods for the severity levels KAB and C. In addition, we have, 

 𝑝𝑝𝑝𝑝𝑜𝑜𝑠𝑠𝑁𝑁,𝐾𝐾
𝑠𝑠 = 𝑝𝑝𝑢𝑢𝑘𝑘

𝑜𝑜

1
𝐶𝐶+𝑝𝑝

𝑢𝑢𝑘𝑘
𝑜𝑜
+𝑝𝑝𝑢𝑢𝐴𝐴

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐵𝐵

𝑜𝑜 ;  𝑝𝑝𝑝𝑝𝑜𝑜𝑠𝑠𝑁𝑁,𝐴𝐴
𝑠𝑠 = 𝑝𝑝𝑢𝑢𝐴𝐴

𝑜𝑜

1
𝐶𝐶+𝑝𝑝

𝑢𝑢𝑘𝑘
𝑜𝑜
+𝑝𝑝𝑢𝑢𝐴𝐴

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐵𝐵

𝑜𝑜 ;  𝑝𝑝𝑝𝑝𝑜𝑜𝑠𝑠𝑁𝑁,𝐾𝐾
𝑠𝑠 = 𝑝𝑝𝑢𝑢𝐵𝐵

𝑜𝑜

1
𝐶𝐶+𝑝𝑝

𝑢𝑢𝑘𝑘
𝑜𝑜
+𝑝𝑝𝑢𝑢𝐴𝐴

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐵𝐵

𝑜𝑜  (31) 

Taking Equations 28 to 31 into account, we have: 

 
𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝,𝐾𝐾𝐴𝐴𝐵𝐵
𝑜𝑜

𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝,𝐶𝐶
𝑜𝑜 = 𝐶𝐶 ×

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐵𝐵
𝑜𝑜

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶
𝑜𝑜  (32) 

As a result, the scalar C-factor modifies the ratio of the predicted KAB to the predicted C 
crashes.  

In order to estimate the SDF C-factor for freeways and ramps, the HSM proposed the following 
procedure: 

(1) Find the average observed probability of KAB crashes (𝑝𝑝𝑜𝑜𝑜𝑜𝑠𝑠,𝐾𝐾𝐴𝐴𝐾𝐾) as follows: 

 𝑝𝑝𝑜𝑜𝑜𝑜𝑠𝑠,𝐾𝐾𝐴𝐴𝐾𝐾 =
∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐾𝐾𝐴𝐴𝐵𝐵

𝑜𝑜
𝑜𝑜

∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐾𝐾𝐴𝐴𝐵𝐵𝐶𝐶
𝑜𝑜

𝑜𝑜
 (33) 

(2) Find the average pre-calibration (C=1) predicted probability of KAB crashes (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾) as: 

 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾 =
∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐵𝐵

𝑜𝑜
𝑜𝑜

∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐵𝐵𝐶𝐶
𝑜𝑜

𝑜𝑜
 (34) 
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(3) Find the calibration factor using the Equation (35):  

 𝐶𝐶 = 𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜,𝐾𝐾𝐴𝐴𝐵𝐵
1−𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜,𝐾𝐾𝐴𝐴𝐵𝐵

× 1−𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐵𝐵

𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐵𝐵
 (35) 

Alternatively, one can show that the Equation 35 is equivalent to Equation 36 as follows:  

 𝐶𝐶 =
∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐾𝐾𝐴𝐴𝐵𝐵

𝑜𝑜
𝑜𝑜 /∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐵𝐵

𝑜𝑜
𝑜𝑜

∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐶𝐶
𝑜𝑜

𝑜𝑜 /∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶
𝑜𝑜

𝑜𝑜
 (36) 

Let us further investigate on how Equation 36 can be interpreted. As described earlier, since 
roadway characteristics vary from one jurisdiction to another, the SDFs need to be calibrated. 
For this purpose, one can modify the probability that is assigned to the KAB and the one that is 
assigned to the C severity levels. One way to look at this problem is to minimize the bias 
between the total observed and predicted KAB, and the total observed and predicted C crashes; 
the ratio of the KAB and C crashes can be modified by ∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑠𝑠,𝐾𝐾𝐴𝐴𝐾𝐾

𝑠𝑠
𝑠𝑠 /∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾

𝑠𝑠
𝑠𝑠  and ∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑠𝑠,𝐶𝐶

𝑠𝑠
𝑠𝑠 /

∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶
𝑠𝑠

𝑠𝑠 , respectively. Therefore, 

𝑝𝑝𝑝𝑝𝑜𝑜𝑠𝑠𝑁𝑁,𝐾𝐾𝐴𝐴𝐾𝐾
𝑠𝑠 =

∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐾𝐾𝐴𝐴𝐵𝐵
𝑜𝑜

𝑜𝑜
∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐵𝐵

𝑜𝑜𝑜𝑜
×(𝑝𝑝𝑢𝑢𝑘𝑘

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐴𝐴

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐵𝐵

𝑜𝑜
)

∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐶𝐶
𝑜𝑜𝑜𝑜

∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶
𝑜𝑜𝑜𝑜

×1+
∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐾𝐾𝐴𝐴𝐵𝐵

𝑜𝑜𝑜𝑜
∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐵𝐵

𝑜𝑜𝑜𝑜
×(𝑝𝑝𝑢𝑢𝑘𝑘

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐴𝐴

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐵𝐵

𝑜𝑜
)
  (37) 

𝑝𝑝𝑝𝑝𝑜𝑜𝑠𝑠𝑁𝑁,𝐶𝐶
𝑠𝑠 =

∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐶𝐶
𝑜𝑜𝑜𝑜

∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶
𝑜𝑜𝑜𝑜

×1

∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐶𝐶
𝑜𝑜𝑜𝑜

∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶
𝑜𝑜𝑜𝑜

×1+
∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐾𝐾𝐴𝐴𝐵𝐵

𝑜𝑜𝑜𝑜
∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐵𝐵

𝑜𝑜𝑜𝑜
×(𝑝𝑝𝑢𝑢𝑘𝑘

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐴𝐴

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐵𝐵

𝑜𝑜
)
  (38) 

 

This can transformed as follows: 

𝑝𝑝𝑝𝑝𝑜𝑜𝑠𝑠𝑁𝑁,𝐾𝐾𝐴𝐴𝐾𝐾
𝑠𝑠 = (𝑝𝑝𝑢𝑢𝐾𝐾+𝑝𝑝𝑢𝑢𝐴𝐴+𝑝𝑝𝑢𝑢𝐵𝐵)

�
∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐶𝐶

𝑜𝑜𝑜𝑜 /∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶
𝑜𝑜𝑜𝑜

∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐾𝐾𝐴𝐴𝐵𝐵
𝑜𝑜𝑜𝑜 /∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐵𝐵

𝑜𝑜𝑜𝑜
�×1+(𝑝𝑝𝑢𝑢𝑘𝑘

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐴𝐴

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐵𝐵

𝑜𝑜
)
  (39) 

𝑝𝑝𝑝𝑝𝑜𝑜𝑠𝑠𝑁𝑁,𝐶𝐶
𝑠𝑠 =

∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐶𝐶
𝑜𝑜

𝑜𝑜 /∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶
𝑜𝑜

𝑜𝑜
∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐾𝐾𝐴𝐴𝐵𝐵

𝑜𝑜𝑜𝑜 /∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐵𝐵
𝑜𝑜𝑜𝑜

×1

�
∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐶𝐶

𝑜𝑜𝑜𝑜 /∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶
𝑜𝑜𝑜𝑜

∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐾𝐾𝐴𝐴𝐵𝐵
𝑜𝑜𝑜𝑜 /∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐵𝐵

𝑜𝑜𝑜𝑜
�×1+(𝑝𝑝𝑢𝑢𝑘𝑘

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐴𝐴

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐵𝐵

𝑜𝑜
)
  (40) 

Taking the Equation 36 into account, we have, 

 𝑝𝑝𝑝𝑝𝑜𝑜𝑠𝑠𝑁𝑁,𝐾𝐾𝐴𝐴𝐾𝐾
𝑠𝑠 = 𝑝𝑝𝑢𝑢𝑘𝑘

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐴𝐴

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐵𝐵

𝑜𝑜

1
𝐶𝐶+𝑝𝑝

𝑢𝑢𝑘𝑘
𝑜𝑜
+𝑝𝑝𝑢𝑢𝐴𝐴

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐵𝐵

𝑜𝑜  



40 

 𝑝𝑝𝑝𝑝𝑜𝑜𝑠𝑠𝑁𝑁,𝐶𝐶
𝑠𝑠 =

1
𝐶𝐶

1
𝐶𝐶+𝑝𝑝

𝑢𝑢𝑘𝑘
𝑜𝑜
+𝑝𝑝𝑢𝑢𝐴𝐴

𝑜𝑜
+𝑝𝑝𝑢𝑢𝐵𝐵

𝑜𝑜  

which are equivalent to Equations 30 and 31 (i.e., the post-calibration likelihoods).  

VALIDATION OF THE C-FACTOR  

This section documents the validation of the calibration factor derived from Equation 36. The 
validation is performed using the following steps. First, a calibration factor (C) is assumed. In the 
next step, given a large sample size, for each site 𝑠𝑠, KAB and C crash data are randomly 
generated from a negative binomial distribution. The corresponding C-factor is then calculated 
(𝐶𝐶𝑚𝑚). The later step is repeated for 1,000 iterations. In the end, the mean of the generated C-
factors is calculated (𝐶𝐶�̅�𝑚) (the average 𝐶𝐶𝑚𝑚) and the bias between the 𝐶𝐶�̅�𝑚 and C (i.e., |𝐶𝐶�̅�𝑚 − 𝐶𝐶|) is 
measured and evaluated with the desired 𝜀𝜀-accuracy. 

This section is divided into two parts. First, the simulation protocol is presented to generate the 
calibration factors for different scenarios with different characteristics, followed by a process to 
evaluate them. In the second part, the simulation protocol is applied to different scenarios and 
results are presented.  

Simulation Protocol  

The following simulation protocol is proposed to validate the C-factor derived from Equation 36. 
In this simulation protocol, we evaluate the bias between 𝐶𝐶�̅�𝑚 and C. 

Step 1—Initialization 

1.1 Set a scenario by specifying: 

• Average predicted ratio for severity level KAB (𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾). Note: 𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶 = 1 − 𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾. 
• An SDF C-factor (C). 
• An inverse dispersion parameter for severity level KAB (φ1) and C (φ2).  

1.2 Take an SPF model for KABC crashes and modify its intercept to adopt the desired mean for 
total KABC crashes. Then, calculate the predicted number of KABC crashes for each site 
(𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾𝐶𝐶

𝑠𝑠 ). 

1.3 Use a beta distribution with a mean of 𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾 and standard deviation of 0.1 to generate the 
predicted KAB probability ratio at each site (𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾

𝑠𝑠 ). Note: 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶
𝑠𝑠 = 1 − 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾

𝑠𝑠 .  

1.4 Assign the predicted number of crashes to the KAB and C severity levels based on 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾
𝑠𝑠  

and 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶
𝑠𝑠 , respectively.  
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Step 2—Generating the Observed Dataset 

Repeat the following steps for 1,000 iterations. 

2.1 Find the post-calibration probability ratios (𝑃𝑃𝑝𝑝𝑜𝑜𝑠𝑠𝑁𝑁,𝐾𝐾𝐴𝐴𝐾𝐾
𝑠𝑠  and 𝑃𝑃𝑝𝑝𝑜𝑜𝑠𝑠𝑁𝑁,𝐶𝐶

𝑠𝑠 ) by solving the following 
two equations: 

 
𝑆𝑆𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝,𝐾𝐾𝐴𝐴𝐵𝐵
𝑜𝑜

𝑆𝑆𝑝𝑝𝑜𝑜𝑜𝑜𝑝𝑝,𝐶𝐶
𝑜𝑜 = 𝐶𝐶 ×

𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐵𝐵
𝑜𝑜

𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶
𝑜𝑜  (41) 

 𝑃𝑃𝑝𝑝𝑜𝑜𝑠𝑠𝑁𝑁,𝐾𝐾𝐴𝐴𝐾𝐾
𝑠𝑠 + 𝑃𝑃𝑝𝑝𝑜𝑜𝑠𝑠𝑁𝑁,𝐶𝐶

𝑠𝑠 = 1 (42) 

2.2 Generate the observed number of crashes for the severity level KAB (𝑁𝑁𝑜𝑜𝑜𝑜𝑠𝑠,𝐾𝐾𝐴𝐴𝐾𝐾
𝑠𝑠 ) from a 

negative binomial distribution with a mean equal to 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾𝐶𝐶
𝑠𝑠 × 𝑃𝑃𝑝𝑝𝑜𝑜𝑠𝑠𝑁𝑁,𝐾𝐾𝐴𝐴𝐾𝐾

𝑠𝑠  and the inverse 
dispersion parameter of φ1. 

2.3 Generate the observed number crashes for the severity level C (𝑁𝑁𝑜𝑜𝑜𝑜𝑠𝑠,𝐶𝐶
𝑠𝑠 ) from a negative 

binomial distribution with a mean equal to 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾𝐶𝐶
𝑠𝑠 × 𝑃𝑃𝑝𝑝𝑜𝑜𝑠𝑠𝑁𝑁,𝐶𝐶

𝑠𝑠  and the inverse dispersion 
parameter of φ2. 

2.4 Calculate the calibration factor using the following equation: 

 𝐶𝐶𝑚𝑚 =
∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐾𝐾𝐴𝐴𝐵𝐵

𝑜𝑜
𝑜𝑜 /∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐵𝐵

𝑜𝑜
𝑜𝑜

∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐶𝐶
𝑜𝑜

𝑜𝑜 /∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶
𝑜𝑜

𝑜𝑜
 (43) 

where 𝐶𝐶𝑚𝑚 indicates the calibration factor in iteration 𝑚𝑚.  

Step 3—Evaluation 

3.1 Find the average of the generated C-factors (𝐶𝐶�̅�𝑚). 

3.2 Find the bias |𝐶𝐶�̅�𝑚 − 𝐶𝐶| and the percentage of relative error as |𝐶𝐶�̅�𝑚−𝐶𝐶|
𝐶𝐶

× 100 and compare it 
with the desired accuracy. 

Simulation Results 

This subsection reports the simulation results for different scenarios. We set the predicted mean 
for total KABC crashes to 10 and modify the intercept of the KABC predictive model (the same 
model that was used in SPF sample size evaluation) to attain the desired mean. For simplicity, it 
was assumed that φ = φ1 = φ2 (i.e., KAB crashes have the same inverse dispersion parameter 
as C crashes). In total, 36 scenarios were generated and repeated for 1,000 iterations. The range 
of the average predicted ratio for the severity level KAB (𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾), the C-factor (C), and the 
inverse dispersion parameter (𝜑𝜑) were varied as follows: 
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𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾 = {0.2,0.4,0.6,0.8} 

𝐶𝐶 = {0.5, 1, 1.5, 2}  

𝜑𝜑 = {0.5,1,5} 

The range for the C-factor includes C<1, C=1, and C>1. In addition, the range for the inverse 
dispersion parameter covers the high, medium, and low dispersion. Table 13 shows the relative 
bias error for a range of scenarios described above. As it is shown in Table 13, the relative bias 
error is minimal for different scenarios. If a threshold of 5 percent is assumed for the accuracy, 
then for almost all scenarios, the C-factor bias lied below the accuracy threshold. The minimum 
bias is for the scenarios where the C-factor is equal to 1 (i.e., C=1). Based on this result, the 
equation presented in the HSM for calibrating the SDF is valid and appropriate. 

Table 13. The C-Factor Relative Bias (%) for Different Scenarios. 

Avg. Predicted 
KAB Ratio 
(𝑷𝑷�𝒑𝒑𝒑𝒑𝒑𝒑,𝑲𝑲𝑲𝑲𝑲𝑲) 

C-Factor 
(C) 

Inverse Dispersion Parameter (𝝋𝝋) 

0.5 1.0 5.0 

0.2 

0.5 3.67% 3.82% 3.76% 
1.0 0.01% 0.09% 0.02% 
1.5 2.91% 2.67% 2.81% 
2.0 4.97% 4.79% 5.02% 

0.4 

0.5 2.56% 2.84% 2.63% 
1.0 0.24% 0.07% 0.05% 
1.5 1.65% 1.84% 1.77% 
2.0 2.84% 2.88% 2.84% 

0.6 

0.5 3.01% 2.98% 3.03% 
1.0 0.04% 0.10% 0.05% 
1.5 1.51% 1.53% 1.55% 
2.0 2.37% 2.56% 2.60% 

0.8 

0.5 5.14% 5.39% 5.25% 
1.0 0.09% 0.08% 0.02% 
1.5 2.45% 2.17% 2.24% 
2.0 3.70% 3.66% 3.49% 

SAMPLE SIZE EVALUATION  

This section presents the results of the analysis to determine the required sample size to estimate 
the SDF calibration factor. The section is divided into two parts. First, a simulation protocol is 
presented to simulate and evaluate the sample size for different scenarios. Second, considering 
different scenarios, the results of the simulation are presented. 

Simulation Protocol 

The following protocol is proposed to simulate a wide range of scenarios and evaluate the 
required sample size for each case. In this protocol, the quality of each sample size is measured 
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with the same method used in Chapter 3 to evaluate the quality of the sample size to calibrate 
SPFs. With this method, it is assumed that the calibration factors that were generated for 1,000 
iterations, given a sample size, follow a normal distribution. Then, the sample size that fulfils the 
desired confidence levels that the calibration factor lies within 10 percent of the true factor is 
determined.  

Step 1—Initialization 

1.1 Set a scenario by specifying: 

• Average predicted ratio for severity level KAB (𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾). Note: 𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶 = 1 − 𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾. 
• An SDF C-factor (C). 
• An inverse dispersion parameter for severity level KAB (φ1) and C (φ2).  

1.2 Consider an SPF model for KABC crashes and modify its intercept to adopt the desired mean 
for total KABC crashes. Then calculate the predicted number of KABC crashes for each site 
(𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾𝐶𝐶

𝑠𝑠 ). 

1.3 Use a beta distribution with a mean of 𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾 and standard deviation of 0.1 to generate the 
predicted KAB probability ratio at each site (𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾

𝑠𝑠 ). Note: 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶
𝑠𝑠 = 1 − 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾

𝑠𝑠 .  

1.4 Assign the predicted number of crashes to the severity levels KAB and C based on 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾
𝑠𝑠  

and 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶
𝑠𝑠 , respectively.  

Step 2—Generating the Observed Dataset 

2.1 Find the post-calibration probability ratios (𝑃𝑃𝑝𝑝𝑜𝑜𝑠𝑠𝑁𝑁,𝐾𝐾𝐴𝐴𝐾𝐾
𝑠𝑠  and 𝑃𝑃𝑝𝑝𝑜𝑜𝑠𝑠𝑁𝑁,𝐶𝐶

𝑠𝑠 ) by solving Equations 41 
and 42. 

2.2 Generate the observed number of crashes for the severity level KAB (𝑁𝑁𝑜𝑜𝑜𝑜𝑠𝑠,𝐾𝐾𝐴𝐴𝐾𝐾
𝑠𝑠 ) from a 

negative binomial distribution with a mean equal to 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾𝐶𝐶
𝑠𝑠 × 𝑃𝑃𝑝𝑝𝑜𝑜𝑠𝑠𝑁𝑁,𝐾𝐾𝐴𝐴𝐾𝐾

𝑠𝑠  and the inverse 
dispersion parameter of φ1. 

2.3 Generate the observed number crashes for the severity level C (𝑁𝑁𝑜𝑜𝑜𝑜𝑠𝑠,𝐶𝐶
𝑠𝑠 ) from a negative 

binomial distribution with a mean equal to 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾𝐶𝐶
𝑠𝑠 × 𝑃𝑃𝑝𝑝𝑜𝑜𝑠𝑠𝑁𝑁,𝐶𝐶

𝑠𝑠  and the inverse dispersion 
parameter of φ2. 

2.4 Calculate the calibration factor as follows where 𝐶𝐶𝑁𝑁 indicates the calibration factor for the 
full dataset with a size N:  

 𝐶𝐶𝑁𝑁 =
∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐾𝐾𝐴𝐴𝐵𝐵

𝑜𝑜𝑁𝑁
𝑜𝑜=1 /∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐵𝐵

𝑜𝑜𝑁𝑁
𝑜𝑜=1

∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐶𝐶
𝑜𝑜𝑁𝑁

𝑜𝑜=1 /∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶
𝑜𝑜𝑁𝑁

𝑜𝑜=1
 (44) 
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Step 3—Evaluation of the Sample Size 

3.1 Repeat the following steps for 1,000 iterations: 

3.1.1 For a given sample size (n), randomly select (n) sites. 

3.1.2 Calculate the sample’s calibration factor as follows: 

 𝐶𝐶𝑛𝑛 =
∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐾𝐾𝐴𝐴𝐵𝐵

𝑜𝑜𝑛𝑛
𝑜𝑜=1 /∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐵𝐵

𝑜𝑜𝑛𝑛
𝑜𝑜=1

∑ 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐶𝐶
𝑜𝑜𝑛𝑛

𝑜𝑜=1 /∑ 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶
𝑜𝑜𝑛𝑛

𝑜𝑜=1
 (45) 

3.2 Measure the quality of each given sample size as follows: 

3.2.1 Calculate the mean and standard deviation of the generated calibration factors and 
denote them as Avg(Cn) and sd(Cn), respectively. 

3.2.2 Assume calibration factors that are generated from 1,000 iterates of simulation follow a 
normal distribution and then calculate following two statistics: 

 Zmin = 0.9×C𝑁𝑁−Avg(Cn)
sd(Cn)

 (46) 

 Zmax = 1.1×C𝑁𝑁−Avg(Cn)
sd(Cn)

 (47) 

3.2.3 Find the probability that the calibration factor lies within 10 percent of the true 
calibration factor (p) as:  

 P = Φ(Zmax) −Φ(Zmin) (48) 

where Φ(. ) indicates the CDF of the normal distribution. 

Simulation Results 

For simplicity, it was assumed that φ = φ1 = φ2 (i.e., KAB crashes have the same inverse 
dispersion parameter as C crashes). In addition, it was assumed that sites with zero KABC 
crashes do not add much information in calculating the SDF C-factor, so they were not 
considered in the simulated dataset (they were excluded from the dataset). In total, 5,000 sites 
with at least 1 KABC crash were generated and used for the sample size evaluation. In total, 36 
different scenarios were evaluated using the simulation protocol described above. The range of 
the characteristics was varied (similar to those that were considered for the SDF C-factor 
validation) as follows:  
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 𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾 = {0.2, 0.4, 0.6, 0.8} 

 𝐶𝐶 = {0.5, 1, 1.5, 2}  

 𝜑𝜑 = {0.5, 1, 5} 

Note that 𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶 = 1 − 𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾; the range of the 𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶 is varied as {0.8, 0.6, 0.4, 0.2}. 
(Technically, a 𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶 below 0.6 is not realistic in practice. However, the full range was used for 
completeness purposes.) As described in the previous section, the range for the C-factor includes 
C<1, C=1, and C>1. In addition, the range for the inverse dispersion parameter covers high, 
medium, and low dispersion. Furthermore, the range for 𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐾𝐾 combined with the given C-
factors covers a wide range of scenarios for the 𝑃𝑃�𝑜𝑜𝑜𝑜𝑠𝑠,𝐾𝐾𝐴𝐴𝐾𝐾 (and 𝑃𝑃�𝑜𝑜𝑜𝑜𝑠𝑠,𝐶𝐶). The sample size range was 
increased in increments of 25 for a sample size varying from 50 to 200, in increments of 50 for a 
sample varying from 200 to 1,000, and in increments of 100 for a sample size varying from 
1,000 to 1,500. Table 14 shows the simulation results and the sample size requirements for 
different scenarios.  
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Table 14. Sample Size Requirement. 
𝑷𝑷�𝒑𝒑𝒑𝒑𝒑𝒑,𝑲𝑲𝑲𝑲𝑲𝑲

𝑷𝑷�𝒑𝒑𝒑𝒑𝒑𝒑,𝑪𝑪
 C-factor 

(C)* 
𝑷𝑷�𝒐𝒐𝒐𝒐𝒐𝒐,𝑲𝑲𝑲𝑲𝑲𝑲

𝑷𝑷�𝒐𝒐𝒐𝒐𝒐𝒐,𝑪𝑪

∗
 

Inverse dispersion parameter (𝝋𝝋) 
0.5 1.0 5.0 

0.20/0.80 

0.5 0.11/0.89 
1,200 (90%)** 

800 (80%) 
550 (70%) 

900 (90%) 
600 (80%) 
400 (70%) 

400 (90%) 
250 (80%) 
175 (70%) 

1.0 0.20/0.80 
1,100 (90%) 
750 (80%) 
550 (70%) 

800 (90%) 
600 (80%) 
400 (70%) 

300 (90%) 
200(80%) 
125 (70%) 

1.5 0.27/0.73 
1,200 (90%) 
800 (80%) 
550 (70%) 

750 (90%) 
500 (80%) 
350 (70%) 

300 (90%) 
175 (80%) 
125 (70%) 

2.0 0.33/0.67 
1,200 (90%) 
750 (80%) 
550 (70%) 

800 (90%) 
450 (80%) 
350 (70%) 

250 (90%) 
175 (80%) 
100 (70%) 

0.40/0.60 

0.5 0.25/0.75 
1,100 (90%) 
750 (80%) 
500 (70%) 

750 (90%) 
500 (80%) 
350 (70%) 

300 (90%) 
175 (80%) 
125 (70%) 

1.0 0.40/0.60 
1,100 (90%) 
650 (80%) 
550 (70%) 

750 (90%) 
500 (80%) 
350 (70%) 

300 (90%) 
150 (80%) 
100 (70%) 

1.5 0.50/0.50 
1,100 (90%) 
700 (80%) 
500 (70%) 

700 (90%) 
450 (80%) 
350 (70%) 

250 (90%) 
150 (80%) 
100 (70%) 

2.0 0.57/0.43 
1,200 (90%) 
800 (80%) 
550 (70%) 

700 (90%) 
450 (80%) 
300 (70%) 

250 (90%) 
150 (80%) 
125 (70%) 

0.60/0.40 

0.5 0.43/0.57 
1,200 (90%) 
800 (80%) 
600 (70%) 

700 (90%) 
500 (80%) 
350 (70%) 

250 (90%) 
175 (80%) 
100 (70%) 

1.0 0.60/0.40 
1,200 (90%) 
800 (80%) 
550 (70%) 

700 (90%) 
450 (80%) 
300 (70%) 

250 (90%) 
150 (80%) 
125 (70%) 

1.5 0.69/0.31 
1,100 (90%) 
750 (80%) 
500 (70%) 

800 (90%) 
500 (80%) 
350 (70%) 

300 (90%) 
150 (80%) 
125 (70%) 

2.0 0.75/0.25 
1,100 (90%) 
750 (80%) 
550 (70%) 

700 (90%) 
500 (80%) 
350 (70%) 

300 (90%) 
150 (80%) 
125 (70%) 

0.80/0.20 

0.5 0.67/0.33 
1,200 (90%) 
750 (80%) 
550 (70%) 

750 (90%) 
450 80%) 
350 (70%) 

300 (90%) 
175(80%) 
125 (70%) 

1.0 0.80/0.20 
1,100 (90%) 
750 (80%) 
550 (70%) 

800 (90%) 
500 (80%) 
350 (70%) 

350 (90%) 
200 (80%) 
150 (70%) 

1.5 0.86/0.14 
1,200 (90%) 
800 (80%) 
600 (70%) 

750 (90%) 
550 (80%) 
350 (70%) 

350 (90%) 
250 (80%) 
150 (70%) 

2.0 0.89/0.11 
1,200 (90%) 
800 (80%) 
600 (70%) 

800 (90%) 
550 (80%) 
350 (70%) 

400 (90%) 
250 (80%) 
175 (70%) 

*The generated dataset might have slightly different C-factor or average observed severity ratios due to 
randomness but here we reported only the rounded values. 
**The numbers in parenthesis shows the confidence level that the sample size provides.  

As indicated in Table 14, for a same inverse dispersion parameter 𝜑𝜑, the effect of the average 
observed KAB and C probability ratio on the required sample size is rather small (i.e., the range 
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of the required sample size approximately remains the same). For example, in spite of what the 
average observed KAB to C ratio is, the required sample size to fulfill 90 percent level of 
accuracy, is 1,100–1,200 sites for 𝜑𝜑 = 0.5, 700–900 sites for 𝜑𝜑 = 1, and 250–400 sites for 𝜑𝜑 =
5. On the other hand, the level of dispersion can have a significant effect on the required sample 
size. For instance, if the average observed KAB/C probability is 0.20/0.80, to fulfill 90 percent of 
confidence, we need 1,100 sites for 𝜑𝜑 = 0.5, 800 sites for 𝜑𝜑 = 1, and 300 sites for 𝜑𝜑 = 5. Thus, 
it can be hypothesized that the variation in KAB or C crashes is more critical than their ratio in 
estimating the required sample size. 

Let 𝐶𝐶𝐶𝐶𝐾𝐾𝐴𝐴𝐾𝐾 and 𝐶𝐶𝐶𝐶𝐶𝐶 denote the CV of KAB and C severity levels, respectively:  

 𝐶𝐶𝐶𝐶𝐾𝐾𝐴𝐴𝐾𝐾 = 𝑠𝑠𝑠𝑠(𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐾𝐾𝐴𝐴𝐵𝐵)
𝑁𝑁�𝑜𝑜𝑜𝑜𝑜𝑜,𝐾𝐾𝐴𝐴𝐵𝐵

 (49) 

 𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑠𝑠𝑠𝑠(𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐶𝐶)
𝑁𝑁�𝑜𝑜𝑜𝑜𝑜𝑜,𝐶𝐶

 (50) 

Now, define the average of the CVs of KAB and C crashes as the following: 

 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴. = (𝐶𝐶𝑉𝑉𝐾𝐾𝐴𝐴𝐵𝐵+𝐶𝐶𝑉𝑉𝐶𝐶)
2

 (51) 

Then, to account the effect of the level of dispersion, one can sort the simulation results based on 
𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴. Table 15 shows the required sample size given the 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴. The 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴. ranged from 0.87 to 
1.74. For other values, an interpolation can be used to estimate required sample size. As shown 
in Table 15, as 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴. increases, a smaller sample size is required to find a reliable calibration 
factor. We use this observation to propose SDF sample size guidelines in the next section. 
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Table 15. Average CV of KAB and C Levels vs. Required Sample Size. 

𝑪𝑪𝑪𝑪𝑲𝑲𝑨𝑨𝑨𝑨. 𝑪𝑪𝑪𝑪𝑲𝑲𝑲𝑲𝑲𝑲 𝑪𝑪𝑪𝑪𝑪𝑪 
Required Sample Size 

90%* 80% 70% 

1.74 1.75 1.73 1,200 (0.90)** 850 (0.83) 550 (0.72) 
1.74 1.50 1.98 1,200 (0.90) 850 (0.82) 600 (0.74) 
1.73 1.49 1.97 1,200 (0.90) 800 (0.81) 600 (0.73) 
1.73 1.83 1.63 1,200 (0.90) 800 (0.81) 600 (0.73) 
1.73 1.91 1.55 1,200 (0.92) 800 (0.82) 550 (0.71) 
1.71 1.63 1.79 1,200 (0.90) 750 (0.81) 550 (0.72) 
1.69 1.77 1.60 1,100 (0.90) 750 (0.82) 550 (0.71) 
1.69 1.75 1.62 1,200 (0.91) 800 (0.83) 550 (0.72) 
1.68 1.66 1.71 1,200 (0.90) 800 (0.82) 550 (0.72) 
1.68 1.77 1.59 1,200 (0.92) 750 (0.81) 550 (0.72) 
1.67 1.56 1.78 1,100 (0.90) 750 (0.80) 550 (0.72) 
1.65 1.59 1.71 1,100 (0.91) 750 (0.82) 500 (0.71) 
1.65 1.54 1.76 1,100 (0.90) 750 (0.81) 550 (0.72) 
1.64 1.57 1.71 1,100 (0.92) 700 (0.80) 500 (0.71) 
1.63 1.68 1.57 1,100 (0.91) 750 (0.82) 500 (0.72) 
1.62 1.57 1.67 1,100 (0.90) 650 (0.80) 550 (0.76) 
1.50 1.67 1.34 800 (0.90) 600 (0.83) 400 (0.72) 
1.47 1.73 1.21 900 (0.91) 600 (0.83) 400 (0.72) 
1.43 1.20 1.66 800 (0.91) 550 (0.82) 350 (0.71) 
1.43 1.53 1.33 750 (0.90) 500 (0.81) 350 (0.71) 
1.42 1.19 1.64 750 (0.90) 550 (0.82) 350 (0.71) 
1.41 1.22 1.61 800 (0.91) 500 (0.81) 350 (0.71) 
1.39 1.45 1.34 800 (0.91) 450 (0.81) 350 (0.72) 
1.34 1.24 1.44 750 (0.92) 450 (0.80) 350 (0.73) 
1.34 1.33 1.35 800 (0.91) 500 (0.81) 350 (0.72) 
1.33 1.24 1.42 700 (0.91) 500 (0.84) 350 (0.74) 
1.33 1.38 1.27 750 (0.92) 500 (0.83) 350 (0.75) 
1.32 1.32 1.32 650 (0.90) 450 (0.81) 350 (0.74) 
1.32 1.32 1.31 700 (0.91) 450 (0.80) 350 (0.73) 
1.31 1.35 1.27 750 (0.91) 500 (0.83) 350 (0.73) 
1.30 1.29 1.31 700 (0.91) 450 (0.81) 300 (0.72) 
1.29 1.27 1.32 700 (0.92) 450 (0.80) 300 (0.70) 
1.08 0.79 1.36 400 (0.90) 250 (0.82) 175 (0.73) 
1.07 1.34 0.79 400 (0.90) 250 (0.81) 175 (0.72) 
1.04 0.80 1.27 350 (0.90) 250 (0.83) 150 (0.71) 
0.99 0.79 1.19 350 (0.94) 200 (0.82) 150 (0.75) 
0.97 1.15 0.79 300 (0.91) 200 (0.81) 125 (0.71) 
0.95 1.08 0.82 300 (0.90) 175 (0.82) 125 (0.74) 
0.95 0.88 1.01 300 (0.92) 175 (0.82) 125 (0.74) 
0.94 1.03 0.85 250 (0.90) 175 (0.83) 100 (0.71) 
0.92 1.02 0.83 300 (0.93) 175 (0.82) 125 (0.73) 
0.92 0.83 1.01 300 (0.92) 175 (0.82) 125 (0.71) 
0.90 0.86 0.95 250 (0.90) 150 (0.81) 125 (0.77) 
0.90 0.83 0.97 300 (0.93) 150 (0.80) 125 (0.75) 
0.89 0.90 0.88 250 (0.91) 150 (0.80) 100 (0.71) 
0.89 0.91 0.87 300 (0.93) 150 (0.80) 100 (0.72) 
0.88 0.84 0.91 250 (0.92) 150 (0.81) 125 (0.77) 
0.87 0.88 0.87 250 (0.91) 150 (0.80) 100 (0.72) 

* Confidence level accuracy 
** The numbers in parenthesis show the actual confidence level by the sample size. 
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In order to further investigate the potential reason behind the later observation (the relationship 
between 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴. and the required sample size), we have rewritten Equation 36 as the following 
alternative: 

 𝐶𝐶 =
𝑁𝑁�𝑜𝑜𝑜𝑜𝑜𝑜,𝐾𝐾𝐴𝐴𝐵𝐵
𝑁𝑁�𝑜𝑜𝑜𝑜𝑜𝑜,𝐶𝐶

𝑁𝑁�𝑝𝑝𝑝𝑝𝑝𝑝,𝐾𝐾𝐴𝐴𝐵𝐵
𝑁𝑁�𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶

 (52) 

Let us assume that the only source of the C-factor dispersion is the observed KAB/C ratio (the 
dispersion in predicted ratio was assumed to be relatively negligible to the observed ratio). Next, 
it can be argued that a better estimate for both 𝑁𝑁�𝑜𝑜𝑜𝑜𝑠𝑠,𝐾𝐾𝐴𝐴𝐾𝐾 and 𝑁𝑁�𝑜𝑜𝑜𝑜𝑠𝑠,𝐶𝐶 would result in a better 
estimate for the ratio as well. As crash data become more dispersed around either 𝑁𝑁�𝑜𝑜𝑜𝑜𝑠𝑠,𝐾𝐾𝐴𝐴𝐾𝐾 or 
𝑁𝑁�𝑜𝑜𝑜𝑜𝑠𝑠,𝐶𝐶, a larger sample size is required to have accurate estimates for 𝑁𝑁�𝑜𝑜𝑜𝑜𝑠𝑠,𝐾𝐾𝐴𝐴𝐾𝐾 or 𝑁𝑁�𝑜𝑜𝑜𝑜𝑠𝑠,𝐶𝐶 . On the 
other hand, once data are less dispersed around both 𝑁𝑁�𝑜𝑜𝑜𝑜𝑠𝑠,𝐾𝐾𝐴𝐴𝐾𝐾 and 𝑁𝑁�𝑜𝑜𝑜𝑜𝑠𝑠,𝐶𝐶, a smaller sample can 
be needed to attain reliable estimates. Consequently, if either 𝐶𝐶𝐶𝐶𝐾𝐾𝐴𝐴𝐾𝐾 or 𝐶𝐶𝐶𝐶𝐶𝐶 is large, we need a 
larger sample size; conversely, if both are small, we need a smaller sample size. The average of 
𝐶𝐶𝐶𝐶𝐾𝐾𝐴𝐴𝐾𝐾 and 𝐶𝐶𝐶𝐶𝐶𝐶 was used to account both effects simultaneously. 

SAMPLE SIZE GUIDELINES  

Given the simulation results, Table 16 provides the sample size guidelines to fulfill a confidence 
level of 90 percent, 80 percent, and 70 percent for a range of 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴.. Similar to the SPFs sample 
size guidelines, these guidelines can also be used for any SDF models, either an intersection or a 
segment model. In order to use the sample size guidelines, the agency needs to secure or estimate 
the KAB and C crash mean and standard deviation for sites with at least 1 KABC crash 
separately. Once done, the average of the 𝐶𝐶𝐶𝐶𝐾𝐾𝐴𝐴𝐾𝐾 and 𝐶𝐶𝐶𝐶𝐶𝐶 to find the 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴. is calculated. Then, 
given the 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴., a sample size that fulfills the desired level of accuracy can be selected from 
Table 16. The sample size guidelines show the minimum sample size needed to meet a given 
level of accuracy. In cases when more data are readily available, the agency is advised to use the 
full dataset. On the other hand, for cases when the agency cannot meet the minimum sample size 
guidelines, the agency is advised to consider developing a state-specific SDF. The recommended 
sample size is smaller than the guidelines proposed for developing new SDFs (Ye and Lord, 
2014). 
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Table 16. SDF Sample Size Guidelines. 

𝑪𝑪𝑪𝑪𝑲𝑲𝑨𝑨𝑨𝑨. 
Confidence Level 

90% 80% 70% 
2.0† 1,400 900 650 
1.8 1,200 800 600 
1.6 1,000 650 550 
1.4 800 450 350 
1.2 600 350 200 
1.0 400 200 150 
0.8 200 125 100 

≤ 0.6  100 75 50 
†Values larger than 2.0 are would require even larger sample sizes, 
which may not be practical to collect. Hence, they are not 
presented in this table. Agencies may need to revise the datasets 
for recalibrating the models. 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

This chapter summarizes the results and analyses from earlier chapters to formulate conclusions 
and guidelines.  

CONCLUSIONS 

The research was conducted to (1) identify factors that influence the selection of the sample size 
for the SPFs calibration (or recalibration), (2) determine how frequently or when an agency 
should update their calibration factors, (3) determine whether or not having region-specific C-
factors are justified and when they are needed, and (4) identify factors that influence the 
selection of the sample size for the SDFs calibration (or recalibration). The study objectives were 
accomplished using simulated and observed data.  

The calibration of predictive models is a time-consuming task in addition to problems associated 
with the collection, readiness, and completeness of the data. Independent of the level of crash 
data history for different types of facilities, the HSM still recommends using between 30 and 50 
sites with at least 100 crashes for the calibration of SPFs. It was also reported in the literature 
that not only the HSM one-size-fits all recommendation is inappropriate but is also insufficient to 
acquire the desirable accuracy in most cases. In this research, an extensive simulation analysis 
was performed for a range of predicted means, calibration factors, and inverse dispersion 
parameters. As the mean of observed number of crashes and the given inverse dispersion 
parameter increases (a measure of variation in the data), a smaller sample size is needed to 
achieve desirable levels of accuracies. These observations were used to propose sample size 
guidelines based on the ratio of the standard deviation to the mean of the crash data (i.e., the CV 
of the crash data that will be used for calibrating the model). The study results showed that as the 
CV increases, the required sample size to attain a certain confidence level increases as well. The 
proposed sample size guidelines can be used for all facility types and prediction models either 
for intersections or segments (independent of the length of the sections). 

Since the recalibration of prediction models is a time-consuming and expensive task, the agency 
may need to know when or how often SPFs should be recalibrated. The HSM recommends 
deriving calibration factors at least every two to three years. However, there is no research to 
support this recommendation. In this research, we have developed guidelines about when the 
predictive models are advised to be recalibrated. The guidelines were successfully validated by 
applying them to two observed datasets in Texas. The guidelines are straightforward and can be 
used for any predictive model, irrespective of the type of facility, such as an intersection model 
or a roadway segment model. The only variables that are needed to use the guidelines are: (1) the 
total number of crashes, (2) the average ADT or AADT (or the average traffic flow on major and 
minor roads), and (3) the total segment length (or number of intersections for intersection 
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models). The agency is required to secure these variables periodically and follow the steps stated 
in the guidelines.  

Currently, there exists no clear guidance on whether or not region-specific calibration factors are 
needed in a particular jurisdiction. Using two observed crash datasets, one collected in Texas and 
the other one in Michigan, we have developed region-specific calibration factors and compared 
them between regions. The derived factors revealed that the region-specific factors were advised 
for both datasets, at least for some regions. Guidelines similar to the one for the recalibration 
were proposed to identify when developing a region-specific factor is justified. The region-
specific guidelines are also based on the general characteristics of data at hand. It requires (1) the 
total number of crashes, (2) the average ADT or AADT (or the average traffic flow on major and 
minor roads), and (3) the total segment length (or number of intersections).  

Similar to the SPFs, the HSM SDFs were also fitted and validated with data obtained from a few 
selected numbers of states. Therefore, calibration is needed when they are applied to a new 
jurisdiction. The HSM provided a method to calculate the calibration factor for SDFs. In this 
study, the calibration factor that was proposed to calibrate SDFs in HSM Chapters 18 and 19 was 
investigated and validated using simulation. Then the required sample size to derive a reliable 
SDF C-factor was investigated for a wide range of scenarios using simulation. Based on the 
simulation results, sample size guidelines were provided based on the average CVs of the KAB 
and C crashes. The proposed sample size guidelines can be used for all facility types and 
prediction models either for intersections or segments (independent of the length of the sections). 

RECOMMENDATIONS 

This section summarizes the most important guidelines developed in this research.  

What Is the Required Sample Size to Calibrate the SPF Models? 

The sample size guidelines show the minimum sample size needed to meet a given level of 
accuracy. In cases when more data are readily available, the agency is advised to use the full 
dataset. When the agency cannot meet the minimum sample size guidelines, it is advised to 
develop a state-specific crash prediction model. The following steps are used in finding the 
required sample size: 

Step 1. Calculate the sample mean of observed crashes (N�obs). 

Step 2. Calculate the sample standard deviation of observed crashes (𝑠𝑠𝑠𝑠(𝑁𝑁𝑜𝑜𝑜𝑜𝑠𝑠)). 

Step 3. Estimate the coefficient of variation �𝐶𝐶𝐶𝐶 = 𝑠𝑠𝑠𝑠(𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜)
N�obs

�. 

Step 4. Using Table 4, find the required sample size based on the CV.  
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The recommended minimum sample size was presented in Table 4, which is reproduced below: 

CV. 
Confidence Level 

90% 80% 70% 
3.0† 1,500 1,100 700 
2.8 1,400 1,000 650 
2.6 1,300 900 600 
2.4 1,200 800 550 
2.2 1,000 650 450 
2.0 900 550 400 
1.8 750 450 300 
1.6 600 350 250 
1.4 450 300 200 
1.2 300 200 150 
1.0 200 125 75 
0.8 100 75 50 

≤ 0.6  50 30 30 
†Values larger than 3.0 are would require even larger sample sizes, 
which may not be practical to collect, so they are not presented in 
this table. Agencies may need to revise the datasets for 
recalibrating the models. 

When Recalibration Is Needed? 

In order to identify when calibration is needed, the agency should secure these three variables 
periodically: (1) total number of crashes, (2) the average ADT or AADT (or the average traffic 
flow on major and minor streets in case of intersections), and (3) total segment length (or the 
total number of intersections). The following steps are used for segment models to decide when 
to calibrate (similar guidelines for intersection models can be found in Chapter 4). 

Step 1. Find the total number of crashes (𝑁𝑁𝑜𝑜𝑜𝑜𝑠𝑠𝐴𝐴 ) and the total segment length (𝐿𝐿𝐴𝐴) on the network 
facility.  

Step 2. Find the average ADT (𝐴𝐴𝐴𝐴𝐴𝐴������) (or AADT) on the facility. 

Note that if the average ADT is not available to the agency on all sites, it is advised to randomly 
collect ADT for a limited number of sites that provide the overall representation of the network 
to find the mean value of the ADT.  

Step 3. Consider the base SPF model (i.e., the model without CMFs) from the HSM. Let 𝑏𝑏0 and 
𝑏𝑏1 denote the intercept and the coefficient of ADT, respectively. Estimate the approximate 
average predicted number of crashes (𝑁𝑁�𝑝𝑝𝑝𝑝𝑝𝑝) using the following functional form:  
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 𝑁𝑁�𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑒𝑒𝑜𝑜0+𝑜𝑜1×ln (𝐴𝐴𝐴𝐴𝐴𝐴������) 

Step 4. Find the �̃�𝐶 using the following equation: 

 �̃�𝐶 = 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜
𝐴𝐴

𝑁𝑁�𝑝𝑝𝑝𝑝𝑝𝑝×𝐿𝐿𝐴𝐴
 

Step 5. Find the variable �̃�𝑒 as follows: 

 �̃�𝑒 = |�̃�𝐶−�̃�𝐶𝑅𝑅𝑅𝑅𝑅𝑅|
�̃�𝐶𝑅𝑅𝑅𝑅𝑅𝑅

× 100 

where �̃�𝐶𝑅𝑅𝑅𝑅𝑆𝑆 denote the �̃�𝐶 that was calculated in the reference year. The reference year is the latest 
or most recent year that the model was calibrated. 

Step 6. If �̃�𝑒 > 10%, the model needs to be recalibrated; calibrate the model and set the current �̃�𝐶 
as the new �̃�𝐶𝑅𝑅𝑅𝑅𝑆𝑆. Otherwise, keep the current �̃�𝐶𝑅𝑅𝑅𝑅𝑆𝑆 and use the calibration factor that was 
estimated in the reference year.  

When Region-Specific Calibration Factors Are Needed? 

To determine the need of region-specific calibration, the agency needs to secure (1) the total 
number of crashes, (2) the average ADT or AADT (or the average traffic flow on major and 
minor streets in case of intersections), and (3) total segment length for the region of interest and 
whole state (or the total number of intersections). The following steps are used for segment 
models to decide the need of region-specific calibration (similar guidelines for intersection 
models can be found in Chapter 5): 

Step 1. Find the total number of crashes and the total segment length in the state (𝑁𝑁𝑠𝑠,𝑜𝑜𝑜𝑜𝑠𝑠
𝐴𝐴  and 𝐿𝐿𝑠𝑠𝐴𝐴) 

and in the region of interest (𝑁𝑁𝑝𝑝,𝑜𝑜𝑜𝑜𝑠𝑠
𝐴𝐴  and 𝐿𝐿𝑝𝑝𝐴𝐴).  

Step 2. Find the average ADT in the state (𝐴𝐴𝐴𝐴𝐴𝐴������𝑠𝑠) and in the region ( 𝐴𝐴𝐴𝐴𝐴𝐴������𝑝𝑝). 

Step 3. Take the base model SPF (i.e., the model without CMFs) from the HSM. Let 𝑏𝑏0 and 𝑏𝑏1, 
respectively, denote the intercept and the coefficient of ADT. Find the approximate average 
predicted number of crashes in the state (𝑁𝑁�𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝) and in the region ( 𝑁𝑁�𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝) as:  

 𝑁𝑁�𝑠𝑠,𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑒𝑒𝑜𝑜0+𝑜𝑜1×ln (𝐴𝐴𝐴𝐴𝐴𝐴������𝑜𝑜) 

 𝑁𝑁�𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑒𝑒𝑜𝑜0+𝑜𝑜1×ln (𝐴𝐴𝐴𝐴𝐴𝐴������𝑝𝑝) 

Step 4. Find the parameter �̃�𝐶 in the state (�̃�𝐶𝑠𝑠) and in the region (�̃�𝐶𝑝𝑝) as follows: 
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 �̃�𝐶𝑠𝑠 = 𝑁𝑁𝑜𝑜,𝑜𝑜𝑜𝑜𝑜𝑜
𝐴𝐴

𝑁𝑁�𝑜𝑜,𝑝𝑝𝑝𝑝𝑝𝑝×𝐿𝐿𝑜𝑜𝐴𝐴
 

 �̃�𝐶𝑝𝑝 = 𝑁𝑁𝑝𝑝,𝑜𝑜𝑜𝑜𝑜𝑜
𝐴𝐴

𝑁𝑁�𝑝𝑝,𝑝𝑝𝑝𝑝𝑝𝑝×𝐿𝐿𝑝𝑝𝐴𝐴
 

Step 5. Find �̃�𝑒𝑝𝑝 as follows: 

 �̃�𝑒𝑝𝑝 = |�̃�𝐶𝑝𝑝−�̃�𝐶𝑜𝑜|
�̃�𝐶𝑜𝑜

× 100 

Step 6: If �̃�𝑒𝑝𝑝 > 10%, calculate and use the region-specific C-factor. Otherwise, use the statewide 
calibration factor.  

What Is the Required Sample Size to Calibrate the SDF Models? 

The sample size guidelines show the minimum sample size needed to meet a given level of 
accuracy (Note: only the sites with at least 1 KABC crash are considered for calibration). In 
cases when more data are readily available, the agency is advised to use the full dataset. When 
the agency cannot meet the minimum sample size guidelines, it is advised to develop a state-
specific SDF. The following steps are used in finding the required sample size: 

Step 1. Calculate the sample mean of observed KAB crashes (𝑁𝑁�𝑜𝑜𝑜𝑜𝑠𝑠,𝐾𝐾𝐴𝐴𝐾𝐾) and C crashes (𝑁𝑁�𝑜𝑜𝑜𝑜𝑠𝑠,𝐶𝐶)  

Step 2. Calculate the sample standard deviation of observed KAB crashes �𝑠𝑠𝑠𝑠�𝑁𝑁𝑜𝑜𝑜𝑜𝑠𝑠,𝐾𝐾𝐴𝐴𝐾𝐾�� and C 

crashes �𝑠𝑠𝑠𝑠�𝑁𝑁𝑜𝑜𝑜𝑜𝑠𝑠,𝐶𝐶��. 

Step 3. Estimate the coefficient of variation for KAB crashes �𝐶𝐶𝐶𝐶𝐾𝐾𝐴𝐴𝐾𝐾 = 𝑠𝑠𝑠𝑠(𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐾𝐾𝐴𝐴𝐵𝐵)
𝑁𝑁�𝑜𝑜𝑜𝑜𝑜𝑜,𝐾𝐾𝐴𝐴𝐵𝐵

� and C 

crashes �𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑠𝑠𝑠𝑠(𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝐶𝐶)
𝑁𝑁�𝑜𝑜𝑜𝑜𝑜𝑜,𝐶𝐶

�. 

Step 4. Calculate the average CV �𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴. = 𝐶𝐶𝑉𝑉𝐾𝐾𝐴𝐴𝐵𝐵+𝐶𝐶𝑉𝑉𝐶𝐶
2

�.  

Step 5. Using Table 16, find the required sample size based on the 𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴..  

The recommended minimize sample size was presented in Table 16, which is reproduced below: 
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𝑪𝑪𝑪𝑪𝑲𝑲𝑨𝑨𝑨𝑨. 
Confidence Level 

90% 80% 70% 
2.0† 1,400 900 650 
1.8 1,200 800 600 
1.6 1,000 650 550 
1.4 800 450 350 
1.2 600 350 200 
1.0 400 200 150 
0.8 200 125 100 

≤ 0.6  100 75 50 
†Values larger than 2.0 are would require even larger sample sizes, 
which may not be practical to collect. Hence, they are not 
presented in this table. Agencies may need to revise the datasets 
for recalibrating the models. 
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APPENDIX A: SIMULATION RESULTS 
FOR AN INTERSECTION MODEL 

The same simulation protocol described in Chapter 3 was also applied to an intersection 
predictive model. The model was fitted and validated for 4-legged signalized intersections using 
the Texas and California crash data. The data were collected for an on-going national research 
project. The model is shown in Equation A.1: 

 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑏𝑏0 × 𝐶𝐶10.175 × 𝐶𝐶20.325 (A.1) 

The variables 𝐶𝐶1 and 𝐶𝐶2, respectively, denote the traffic flow on the major and minor streets. The 
traffic flow on the major streets was simulated from a lognormal distribution with a mean and 
standard deviation of 45,003 veh/day and 17,066 veh/day, respectively. The traffic flows on the 
minor streets were generated from a lognormal distribution with a mean and standard deviation 
of 13,931 veh/day and 11,454 veh/day, respectively. Both flow characteristics are based on the 
characteristics of the data that were used to develop the original model. For each simulation run, 
the intercept (b0) was manipulated until the mean of the predicted number of crashes was equal 
to value of the desired scenario. The simulation results for a range of scenarios (the same 
scenarios that were described in Chapter 3) are shown in Table A.1. As described in this table, 
similar and compatible sample size requirements to the ones proposed for the segment model are 
shown. The small variations are due to the simulation randomness. 
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Table A.1 Simulation Results for the Intersection Model*. 
Predicted 

Crash Mean 
Calibration 

Factor 
Observed 

Crash Mean** 
Inverse Dispersion Parameter 

0.5 1 5 

0.5 

0.5 0.25 
1300 (90%)*** 

850 (80%) 
600 (70%) 

1100 (90%) 
700 (80%) 
550 (70%) 

900 (90%) 
700 (80%) 
400 (70%) 

1.0 0.50 
900 (90%) 
600 (80%) 
400 (70%) 

700 (90%) 
450 (80%) 
325 (70%) 

550 (90%) 
350 (80%) 
225 (70%) 

1.5 0.75 
800 (90%) 
500 (80%) 
325 (70%) 

550 (90%) 
375 (80%) 
250 (70%) 

400 (90%) 
250 (80%) 
175 (70%) 

2.0 1.00 
800 (90%) 
450 (80%) 
325 (70%) 

550 (90%) 
325 (80%) 
225 (70%) 

325 (90%) 
200 (80%) 
125 (70%) 

2.5 

0.5 1.25 
700 (90%) 
450 (80%) 
300 (70%) 

450 (90%) 
300 (80%) 
200 (70%) 

300 (90%) 
175 (80%) 
125 (70%) 

1.0 2.50 
700 (90%) 
375 (80%) 
300 (70%) 

375 (90%) 
225 (80%) 
175 (70%) 

175 (90%) 
125 (80%) 
75 (70%) 

1.5 3.75 
600 (90%) 
375 (80%) 
250 (70%) 

325 (90%) 
225 (80%) 
150 (70%) 

150 (90%) 
100 (80%) 
75 (70%) 

2.0 5.00 
600 (90%) 
375 (80%) 
250 (70%) 

325 (90%) 
200 (80%) 
150 (70%) 

125 (90%) 
75 (80%) 
50 (70%) 

5.0 

0.5 2.50 
700 (90%) 
375 (80%) 
300 (70%) 

375 (90%) 
225 (80%) 
175 (70%) 

175 (90%) 
125 (80%) 
75 (70%) 

1.0 5.00 
600 (90%) 
375 (80%) 
250 (70%) 

325 (90%) 
200 (80%) 
150 (70%) 

125 (90%) 
75 (80%) 
50 (70%) 

1.5 7.50 
550 (90%) 
375 (80%) 
250 (70%) 

300 (90%) 
200 (80%) 
125 (70%) 

100 (90%) 
75 (80%) 
50 (70%) 

2.0 10.00 
550 (90%) 
325 (80%) 
225 (70%) 

300 (90%) 
200 (80%) 
150 (70%) 

100 (90%) 
75 (80%) 
50 (70%) 

* The small difference in sample size requirement in this table and Tables 2 in Chapter 3 is due to the 
randomness in simulation.  
**The observed crash mean might be slightly different for different runs of simulations due to randomness. 
However, this table shows only the rounded values. 
***The number in parenthesis shows the confidence level for the sample size. 
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APPENDIX B: DERIVATION OF THE SAMPLE SIZE 
REQUIREMENT 

First, let us define key variables and parameters. Let C be the calibration factor. Let 𝑁𝑁𝑖𝑖 ,𝑜𝑜𝑜𝑜𝑠𝑠 and 
𝑁𝑁𝑖𝑖 ,𝑝𝑝𝑝𝑝𝑝𝑝, respectively, denote the observed and predicted number of crashes at site 𝑖𝑖. Let 𝑁𝑁�𝑜𝑜𝑜𝑜𝑠𝑠 and 
𝑁𝑁�𝑝𝑝𝑝𝑝𝑝𝑝 denote the true observed and predicted mean of crashes, respectively. In addition, let 𝜑𝜑 be 
the inverse dispersion parameter of the NB distribution or model. 

The true calibration factor can be calculated as follows (with a significantly large sample size):  

 𝐶𝐶𝑁𝑁𝑝𝑝𝑆𝑆𝑝𝑝 = ∑ 𝑁𝑁𝑖𝑖 ,𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛→∞
𝑖𝑖=1

∑ 𝑁𝑁𝑖𝑖 ,𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛→∞
𝑖𝑖=1

= 𝑁𝑁�𝑜𝑜𝑜𝑜𝑜𝑜
𝑁𝑁�𝑝𝑝𝑝𝑝𝑝𝑝

 (B.1) 

The calibration factor, however, can be estimated as follows with a sufficient number of sites 
(𝑛𝑛): 

 �̂�𝐶 = ∑ 𝑁𝑁𝑖𝑖 ,𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛
𝑖𝑖=1

∑ 𝑁𝑁𝑖𝑖 ,𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛
𝑖𝑖=1

 (B.2) 

Let us assume the observed number of crashes is the only source of dispersion in �̂�𝐶 . Therefore, 
the variance of the C-factor (�̂�𝐶) can be derived as follows:  

 𝐶𝐶𝑉𝑉𝑉𝑉(�̂�𝐶) = 𝐶𝐶𝑉𝑉𝑉𝑉 �∑ 𝑁𝑁𝑖𝑖 ,𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛
𝑖𝑖=1

∑ 𝑁𝑁𝑖𝑖 ,𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛
𝑖𝑖=1

� = 𝑉𝑉𝑉𝑉𝑝𝑝�∑ 𝑁𝑁𝑖𝑖 ,𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛
𝑖𝑖=1 �

(∑ 𝑁𝑁𝑖𝑖 ,𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛
𝑖𝑖=1 )2

=
∑ �𝑁𝑁𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜+

𝑁𝑁𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜
2

𝜑𝜑 �𝑛𝑛
𝑖𝑖=1

(∑ 𝑁𝑁𝑖𝑖 ,𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛
𝑖𝑖=1 )2

 (B.3) 

Since the variation of the predicted number of crashes were assumed to be negligible compared 
to the observed number of crashes, we have: 

 𝐶𝐶𝑉𝑉𝑉𝑉(�̂�𝐶) =
∑ �𝑁𝑁𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜+

𝑁𝑁𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜
2

𝜑𝜑 �𝑛𝑛
𝑖𝑖=1

𝑁𝑁�𝑝𝑝𝑝𝑝𝑝𝑝2 ×𝑛𝑛2
 (B.4) 

The ultimate goal is to minimize the variation of �̂�𝐶 around its true value. Therefore, in order to 
achieve the goal, one can minimize the CV (the ratio of the standard deviation to the mean) of �̂�𝐶. 
Hence, the following function can be minimized: 

 𝐶𝐶𝐶𝐶��̂�𝐶� = 𝑠𝑠.𝑠𝑠(�̂�𝐶)
𝐶𝐶𝑝𝑝𝑝𝑝𝑢𝑢𝑝𝑝

=

�
∑ �𝑁𝑁𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜+

𝑁𝑁𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜
2

𝜑𝜑 �𝑛𝑛
𝑖𝑖=1

𝑁𝑁�𝑝𝑝𝑝𝑝𝑝𝑝
2 ×𝑛𝑛2

𝐶𝐶𝑝𝑝𝑝𝑝𝑢𝑢𝑝𝑝
=

�∑ �𝑁𝑁𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜+
𝑁𝑁𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜
2

𝜑𝜑 �𝑛𝑛
𝑖𝑖=1

𝑁𝑁�𝑝𝑝𝑝𝑝𝑝𝑝×𝑛𝑛
𝑁𝑁�𝑜𝑜𝑜𝑜𝑜𝑜
𝑁𝑁�𝑝𝑝𝑝𝑝𝑝𝑝

 
=  

�∑ �𝑁𝑁𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜+
𝑁𝑁𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜
2

𝜑𝜑 �𝑛𝑛
𝑖𝑖=1

𝑛𝑛×𝑁𝑁�𝑜𝑜𝑜𝑜𝑜𝑜 
 (B.5) 
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For a sufficiently large 𝑛𝑛, we have: 

 𝐶𝐶𝐶𝐶��̂�𝐶� =  
�𝑛𝑛×𝑁𝑁�𝑜𝑜𝑜𝑜𝑜𝑜+

1
𝜑𝜑
∑ 𝑁𝑁𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜

2𝑛𝑛
𝑖𝑖=1

𝑛𝑛×𝑁𝑁�𝑜𝑜𝑜𝑜𝑜𝑜 
 (B.6) 

Equation (B.6) can be written as:  

 𝐶𝐶𝐶𝐶��̂�𝐶� =  � 1
𝑛𝑛×𝑁𝑁�𝑜𝑜𝑜𝑜𝑜𝑜 

+ 1
𝜑𝜑

×
∑ 𝑁𝑁𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜

2𝑛𝑛
𝑖𝑖=1

𝑛𝑛2×(𝑁𝑁�𝑜𝑜𝑜𝑜𝑜𝑜)2
 (B.7) 

Note that the following inequality is always true:  

 ∑ 𝑁𝑁𝑖𝑖,𝑜𝑜𝑜𝑜𝑠𝑠2 ≤ 𝑛𝑛2 × (𝑁𝑁�𝑜𝑜𝑜𝑜𝑠𝑠)2𝑛𝑛
𝑖𝑖=1 . 

Furthermore, as 𝑁𝑁�𝑜𝑜𝑜𝑜𝑠𝑠 increases, the inequality can become even larger. 

If either of the variables 𝑁𝑁�𝑜𝑜𝑜𝑜𝑠𝑠, 𝜑𝜑 or 𝑛𝑛 increases, the coefficient variation of 𝐶𝐶 will be decreased. 
The analyst goal can then be focused on providing a balance between these three variables to 
minimize the 𝐶𝐶𝐶𝐶��̂�𝐶�.  
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